

T-1 3/4 (5mm) SOLID STATE LAMPS

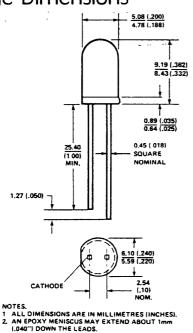
HIGH EFFICIENCY • HLMP-3300 SERIES

YELLOW • HLMP-3400 SERIES

HIGH PERFORMANCE GREEN • HLMP-3500 SERIES

TECHNICAL DATA JANUARY 1984

Features


- HIGH INTENSITY
- CHOICE OF 3 BRIGHT COLORS
 High Efficiency Red
 Yellow
 High Performance Green
- POPULAR T-1¼ DIAMETER PACKAGE
- LIGHT OUTPUT CATEGORIES
- WIDE VIEWING ANGLE AND NARROW VIEWING ANGLE TYPES
- GENERAL PURPOSE LEADS
- IC COMPATIBLE/LOW CURRENT REQUIREMENTS
- RELIABLE AND RUGGED

Description

The HLMP-3300 and the HLMP-3400 Series lamps are Gallium Arsenide Phosphide on Gallium Phosphide diodes emitting red and yellow light respectively. The HLMP-3500 Series lamps are green light emitting Gallium Phosphide diodes.

General purpose and selected brightness versions of both the diffused and non-diffused lens type are available in each family.

Package Dimensions

	Manifest All Manifest	

Part Number HLMP-	Application	Lens	Color	
3300	Indicator - General Purpose	Diffused		
3301	Indicator - High Ambient	Wide Angle	High Efficiency	
3315	Illuminator/Point Source	Non Diffused	Red	
3316	Illuminator/High Brightness	Narrow Angle		
3400	Indicator General Purpose	Diffused		
3401	Indicator - High Ambient	Wide Angle	Yellow	
3415	Illuminator/Point Source	Non Diffused	reliow	
3416	Illuminator/High Brightness	Narrow Angle		
3502	Indicator - General Purpose	Diffused		
3507	Indicator - High Ambient	Wide Angle	Green	
3517	Illuminator/Point Source	Non Diffused	Green	
3519	Illuminator/High Brightness	Narrow Angle		

Electrical Characteristics at $T_A = 25$ °C

Symbol	Description	Device HLMP-	Min.	Тур.	Max.	Units	Test Conditions
lv -	Luminous Intensity	3300 3301 3315 3316	2.0 4.0 12.0 20.0	3.5 7.0 18.0 30.0		mcd	I _F = 10 mA (Figure 3)
-		3400 3401 3415 3416	2.0 4.0 10.0 20.0	4.0 8.0 18.0 30.0	٠	mcd	I _F = 10 mA (Figure 8)
		3502 3507 3517 3519	1.6 4.2 6.7 10.6	2.4 5.2 10.0 25.0		mcd	F _F = 10 mA (Figure 3)
2θ 1/2	Including Angle Between Half Luminous Intensity Points	3300 3301 3315 3316		65 65 35 35		Deg.	I _F = 10 mA See Note 1 (Figure 6)
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		3400 3401 3415 3416		75 75 35 35		Deg.	I _F = 10 mA See Note 1 (Figure 11)
		3502 3507 3517 3519		75° 40′ 75° , 24° 24°		Deg.	I _F = 10 mA See Note 1 (Figure 16)
λΡΕΑΚ	Peak Wavelength	3300 3400 3500		635 583 565		nm	Measurement at Peak (Figure 1)
λα	Dominant Wavelength	3300 3400 3500		626 585 569	. 1	nm	See Note 2 (Figure 1)
_T\$	Speed of Response	3300 3400 3500		90 90 500		ns	
C	Capacitance	3300 3400 3500	•	16 18 18	ı	pF	V _F = 0; f = 1 MHz
θJC	Thermal Resistance	3300 3400 3500		140		°C/W	Junction to Cathode Lead at Seating Plane
VF	Forward Voltage	3300 3400 3500	1.5 1.5 1.6	2.2 2.2 2.3	3.0 3.0 3.0	V	I _F = 10 mA (Figure 2) I _F = 10 mA (Figure 7) I _F = 20 mA (Figure 12)
VBR	Reverse Breakdown Volt.	All	5.0			٧	In = 100 μA
ην	Luminous Efficacy	3300 3400 3500		147 570 630		lumens Watt	See Note 3

^{1.} Θ_{N} is the off-axis angle at which the luminous intensity is half the axial luminous intensity
2. The dominant wavelength, λ_{d} , is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device

^{3.} Radiant intensity, l_e , in watts/steradian, may be found from the equation $l_e = l_v/\eta_v$, where l_v is the luminous intensity in candelas and η_v is the luminous efficacy in lumens/watt.

Yellow HLMP-3400 Series

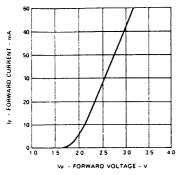


Figure 7. Forward Current vs. Forward Voltage Characteristics.

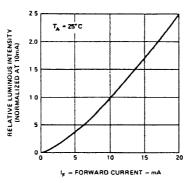


Figure 8. Relative Luminous Intensity vs. Forward Current.

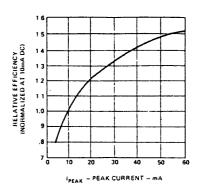


Figure 9. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Current.

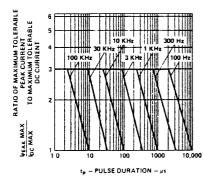


Figure 10. Maximum Tolerable Peak Current vs. Pulse Duration. (IDC MAX as per MAX Ratings)

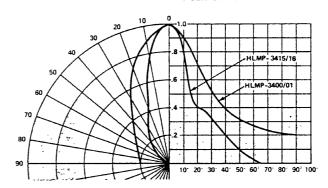


Figure 11. Relative Luminous Intensity vs. Angular Displacement.

Green HLMP-3500 Series

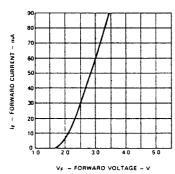


Figure 12. Forward Current vs. Forward Voltage Characteristics.

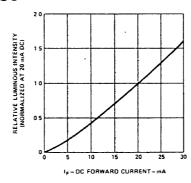


Figure 13. Relative Luminous Intensity vs. DC Forward Current.

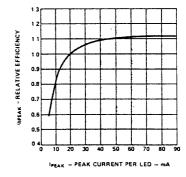


Figure 14. Relative Efficiency (Luminous Intensity per Unit Current) vs.

Peak LED Current.

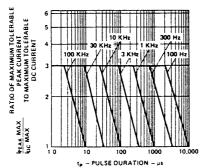


Figure 15. Maximum Tolerable Peak Current vs. Pulse Duration. (I_{DC} MAX as per MAX Ratings)

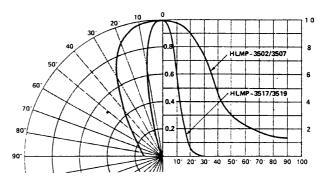


Figure 16. Relative Luminous Intensity vs. Angular Displacement. T-1 3/4 Lamp.

For more information, call your local HP sales office listed in the telephone directory white pages. Ask for the Components Department. Or write to Hewlett-Packard. U.S.A.—P.O. Box 10301 Palo Alto. CA 94303-0890. Europe.—P.O. Box 999-1180 AZ Amstelveen. The Netherlands. Canada.—6877 Goreway. Orive. Mississauga. L4V. 1M8. Ontario. Japan.—Yokoga.va-Hewlett-Packard. Ltd. 3-29-21. Takaido-Higashi. Suginaini-ku. Tokyo. 168. Elsewhere in the world write to Hewlett-Packard. Intercontinental. 3495 Deer Creek. Road. Palo Alto. CA 94304.

Absolute Maximum Ratings at T_A = 25°C

Parameter	3300 Series	3400 Series	3500 Series	Units	
Peak Forward Current	90	60	90	mA	
Average Forward Current[1]	25	20	25	mA	
DC Current ^[2]	30	20	30	mA	
Power Dissipation[3]	135	85	135	mW	
Operating Temperature Range	55 to 1400	55 +- 1400	-40 to +100		
Storage Temperature Range	-55 to +100	-55 to +100	-55 to +100	C°	
Lead Soldering Temperature [1.6 mm (0.063 in.) from body]	260° C for 5 seconds				

NOTES:

- 1. See Figure 5 (Red), 10 (Yellow) or 15 (Green) to establish pulsed operating conditions.
- 2. For Red and Green series derate linearly from 50° C at 0.5 mA/° C. For Yellow series derate linearly from 50° C at 0.2 mA/° C.
- 3. For Red and Green series derate power linearly from 25°C at 1.8 mW/°C. For Yellow series derate power linearly from 50°C at 1.6 mW/°C.

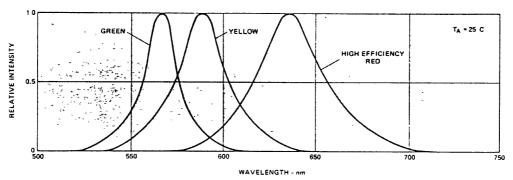


Figure 1. Relative Intensity vs. Wavelength

High Efficiency Red HLMP-3300 Series

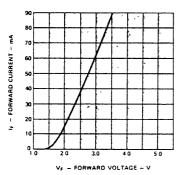


Figure 2. Forward Current vs. Forward Voltage Characteristics.

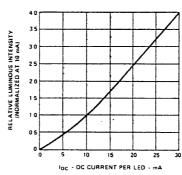


Figure 3. Relative Luminous Intensity vs. DC Forward Current.

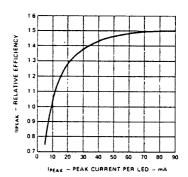


Figure 4. Relative Efficiency (Luminous Intensity per Unit Current) vs. LED Peak Current.

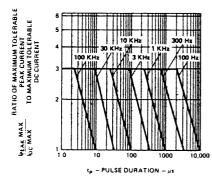


Figure 5. Maximum Tolerable Peak Current vs. Pulse Duration. (IDC MAX as per MAX Ratings

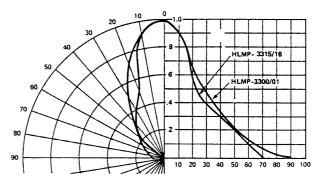


Figure 6. Relative Luminous Intensity vs. Angular Displacement.