SERIES AM/S Circuit Breakers

UL 489 Listed to 10 KAIC
International Approvals

UL/CSA Recognized

Ratings from .02 to 100
Amperes
DC Ratings at 80 VDC
AC Ratings at 480 VAC
Hydraulic-Magnetic
Technology

UL489 LISTED / MEETS INTERNATIONAL STANDARDS
Heinemanni ${ }^{\text {w }}$ wrote the book on the HYDRAULIC MAGNETIC CIRCUIT BREAKERS by patenting the original technology back in 1932. Today, Eaton Corporation, through its Commercial Controls Division/Heinemannii Products, continues the tradition of technical leadership by introducing the latest innovation in the evolution of the hydraulic magnetic circuit breaker, the rugged and versatile NEW AM/S Series.

The NEW AM/S is designed to be a World Product and solve the toughest equipment circuit protection problems around the globe. It combines the proven high quality and reliability of the current AM Series with the spacing, dielectric and interrupt requirements of International Standards such as EN60947. The NEW AM/S is UL489 Listed as a branch circuit breaker, UL1077 Recognized for appliance protection and CSA Certified for industrial controls. Available in a wide variety of configurations, the NEW AM/S is rated as high as $100 \mathrm{~A} @ 250 \mathrm{~V}$ ac or 80 V dc. It is the solution for demanding dc applications requiring 10k amps interrupting capacity. Of course, the NEW AM/S is ambient temperature insensitive.

FEATURES: NEW AM/S SERIES
Current range up to $100 \mathrm{~A} 50 / 60 \mathrm{~Hz}, 60 \mathrm{~A} 400 \mathrm{~Hz}, 100 \mathrm{~A}$ dc Available with ac/dc rating
Available in one-, two-, three-, and four-pole models Common trip on multipole breakers UL and CSA Recognition and UL Listing International Standards approvals
MIL-STD approvals for shock, vibration, humidity and moisture Ignition protected Tamper-proof terminals
Mid-trip alarm
Handles knurled for positive grip
Custom marked handles and colors
Replacement for all previous AM and AM/S models

General Specifications

International Specifications. Series AM/S breakers are designed to meet the requirements of IEC-380, IEC-435, IEC-601, VDE-7030, IEC-0750, VDE-0804, VDE-0806, VDE-0660.
Environmental Data. Designed to meet MIL-C-55629 as specified below.

Fungus- and Moisture-Resistance is provided by treating all ferrous parts with a special moisture-resistant finish and by using special springs and inherently fungus-resistant cases, covers and handles. Tested for moisture-resistance per MIL-STD-202, Method 106; tested for salt-spray resistance per MIL-STD-202, Method 101.
Humidity. Tested in accordance with MIL-STD-202, Method 103, test condition A.

Shock and Vibration. Tested for shock in accordance with MIL-STD-202, Method 213, test condition I (100 Gs at 6 milliseconds). Tested for vibration in accordance with MIL-STD-202, Method 204: 10 to $500 \mathrm{~Hz}, 0.06$ " total excursion on three mutually perpendicular planes. Shock and vibration tests are conducted with breakers carrying full rated current. Shock and vibration specifications apply to time-delay breakers only.

Operating Temperature. -40 C to +85 C.
Dielectric Strength. Tested in accordance with MIL-STD-202, Method $301 ; 1500 \mathrm{~V}$ at $50 / 60$ or $400 \mathrm{~Hz}, 1100 \mathrm{~V}$ dc (or twice rating plus 1000 V).
Meets 8 mm international spacing and $3750 \mathrm{~V} 50 / 60 \mathrm{~Hz}$ dielectric requirements from hazardous voltage to operator accessible surfaces, between adjacent poles and from main circuit to auxiliary circuit.
Insulation Resistance. 100 Megaohms minimum at 500 V dc, per MIL-STD-202, Method 302.
Endurance. Breakers are subjected to an endurance test consisting of 10,000 on/off operations; 6000 at rated current and voltage, 4000 at no load.

Flammability Specifications:
UL 94-V0
UL 94-HB
Approximate Weights. AM1S, 3 oz; AM2S, 6.5 oz; AM3S, 9.5 oz; AM4S, 12.5 oz.

AM/S AGENCY APPROVALS							
Circuit Configuration	Voltage			Rated Current	Interrupting Capacity, Amps (9)		
	Max. Rating	Frequency (2)	Phase		$\begin{gathered} \text { UL } 1077 \\ \text { CSA } \end{gathered}$	VDE 0660 PENDING	UL 489 Listed
Series	65	DC	1	. 1 -100	7500 (1)	N/A	7000 (10)
	80	DC	1	. 1 -70	7500 (1)	5000 (6)	10000 (1)
	80	DC	1	70.1-100	7500 (1)	1500 (7)	10000 (1)
	120	50/60	1	.1-50	---	---	5000 (1)
	120/240	50/60	1	.1-50	---	---	5000 (1)
	120	50/60	1	.1-20	---	--	10000 (1)
	125/250	50/60	1	. $02-100$	3000 ①	---	---
	250	50/60	1 \& 3	. $02-100$	5000 (3)	(8)	--
	80/250	50/60/DC	1 \& 3	. $02-100$	5000 (3)	---	---
	240/415	50/60	3	.1-50	5000 (4)	(5)	---
	277/480	50/60	3	.1-30	3000 (4)	(5)	---
	277	50/60	1	.1-50	5000 (3)	---	---
	250	50/60	1 \& 3	.1-50	1500 (1)	---	---
Switch Only Per UL 508	80	DC	---	. $02-100$	N/A	N/A	N/A
	415	50/60	3	. 02 - 50	N/A	N/A	N/A
	250	50/60	1 \& 3	. $02-100$	N/A	N/A	N/A
	277	50/60	1	. 02 - 50	N/A	N/A	N/A
	277/480	50/60	1 \& 3	. 02 - 30	N/A	N/A	N/A
Marine Ignition UL 1500	250	50/60	1	.1-75	2000 (3)	---	---
	65	DC	---	.1-60	2000 (3)	---	---
	250/65	50/60/DC	1 \& 3	.1-60	2000 (3)	---	---

[^0]
Precise overload protection -

with Heinemann ${ }^{\circledR}$ Hydraulic-Magnetic circuit breakers

Heat-induced nuisance tripping eliminated

Heinemann ${ }^{\circledR}$ hydraulic-magnetic circuit breakers offer three major advantages over thermal devices:

1. Elimination of nuisance tripping caused by high ambient temperature in or near the installation. The breaker responds only to current variations, not to temperature change.
2. Assurance that 100% of the rated current will be carried. There is no such assurance with thermal devices, which may fail to carry rated current when subjected to above-normal ambient temperatures. A Heinemann ${ }^{\oplus}$ breaker rated at 20 A , for example, will sustain 20 A , even at elevated temperatures. Derating and other forms of temperature compensation are unnecessary.
3. Immediate reset. Since there are no thermal elements, heat build-up is not a factor. Therefore, no "cooling off" period is required after fault interruption.

Time delay eliminates breaker tripping due to transient current surges

Elimination of transient current surges as a cause of nuisance tripping is accomplished through the creation of a controlled time delay. In any installation where a power supply or compressor motor is on the line, an inrush of current occurs
when the equipment is first turned on. The bigger the equipment, the larger the surge. Although inrush surges are, in fact, transient overloads, they usually pose no threat of damage to the line or to the equipment. So, it is not necessary or even desirable to interrupt the power when they occur.

The hydraulically-controlled time-delay mechanism of a Heinemann ${ }^{\circledR}$ breaker eliminates nuisance tripping without lessening overload protection. The delay is inversely proportional to the overload; response is quicker on large overloads, where greater potential danger exists, and slower on small overloads. Except in special high-inrush models, heavy overload and short-circuit currents of greater than 10 times the breaker's rating provide instantaneous response. (An instantaneous-trip breaker is available for use on, for example, modern medical and communication equipment, which cannot tolerate even brief overloads.)

For added protection, the time-delay is self-adjusting to ambient temperature conditions. At high ambients, where the overload tolerance of most circuits is lowered, the viscosity of the special fluid in the breaker's dashpot is lessened, and the time-delay response is correspondingly longer to allow cold-equipment startups.

The Hydraulic-Magnetic principle How the breaker works

1. The Heinemann ${ }^{\circledR}$ hydraulic-magnetic circuit breaker operates on load-currentproduced magnetic-flux variations in a solenoid. The coil is wound around a hermetically-sealed, non-magnetic tube containing a spring-loaded, movable iron core in a special-liquid fill. With the load current either at or below the breaker's nominal rating, the magnetic flux is of insufficient strength to move the core, so it remains at the end of the tube opposite the armature.

2. With excessive current, the magnetic flux force increases, pulling the iron core toward the armature end of the tube. This core insertion reduces the reluctance of the magnetic circuit and further increases the strength of the magnetic field. The special liquid regulates the core's speed of travel, creating a controlled trip delay that is inversely proportional to the magnitude of the overload. If the overload subsides before the core reaches the pole piece, the core returns to its original position, and the breaker does not trip. (For non-delay applications, the breaker is modified to omit the intentional delay.)

3. When the magnetic flux reaches a predetermined value, the armature is attracted to the pole piece and the breaker trips. (The breaker may trip before the core reaches the pole piece if the critical flux value is achieved first.) On very heavy overloads or short circuits, the flux produced by the coil alone, regardless of core position, is sufficient to pull in the armature. This circuit interruption occurs with no intentional delay - a highly desirable response characteristic.

Heinemanni Circuit Breakers Series AM/S

Tripping Specifications

Breakers (in standard wall-mounted position) shall hold 100\% rated current. For table and ceiling mount consult factory.

60 Hz or DC

Breakers may trip between 101% and 125% rated load; must trip at 125% rated load and above, as shown on time-delay curve selected.

AC/DC

Breakers may trip between 101% and 135% rated load; must trip at 135% rated load and above.

400 Hz

Breakers may trip between 101% and 150%, must trip at 150% and above.

Non-Time Delay Trip Ranges

Breakers that have no deliberately imposed delay (less than 100 ms) are specified as follows.
Breakers shall hold 100% rated current.
Breakers for $50 / 60 \mathrm{~Hz}$ or dc service may trip between 101% and 125% rated current, must trip at 125% rated current and above.
Breakers for 400 Hz service may trip between 101% and 150% rated current, must trip at 150% rated current and above.

Note: All the curves shown describe breaker response with no pre-loading. (Breakers do not carry current prior to application of overload for calibration testing.) Curves are plotted at an ambient temperature of $77 \mathrm{~F}(25 \mathrm{C})$, with breakers in the standard wall-mounted position.

Time Delay Curve Selection

1. Determine required frequency.
2. Determine required high inrush tolerance (tolerance to starting surges caused by high-resistance loads such as ferroresonant power supplies which may last up to 8 milliseconds). Select lowest high inrush tolerance compatible with application.
3. Determine required curve characteristics based on application:

Long Time Delay Curve Motor starting, locked rotor tolerance, general purpose applications.

Medium Time Delay Curve Transformer protection, capacitor loads, special incandescent lamp loads, general purpose applications (most widely used curve).

Short Time Delay Curve Electronic equipment.
Instantaneous Curve (no deliberate time delay provided) Unusual circumstances in electronic equipment and other special applications.

Frequency				High-Inrush Tolerance			Inertia Wheel	Curve Characteristics				Curve No.
$50 / 60 \mathrm{~Hz}$	400 Hz	DC	AC/DC	8 X	18X	25X		Long	Medium	Short	Inst.	
-	-	-	-	-				-				1
-	-	$:$:	-					-			2
								-				
-		-	-		-			-	-			20
,		,	-		-					-		30
-		-				-		-				251
-		-				-			-			252
-		-				-				-		253
-	-	-	-								-	P

(1) Multiples of Breaker Must Hold Rating.

Resistance and Impedance Values

Tolerance Limits

Current (amps) Tolerance (\%)
0.1 to 19.9 -25

20 to $100 \quad-35$

How to order Series AM/S circuit breakers*

* Non-Standard part numbers may require a factory assigned part number.

AM2S-	A2A3-	L	AA-	02J-	H-	A-	$52-$	PN-	$30-$
Step 1	Step 2a \& b	Step 3	Step 4	Step 5a \& b	Step 6	Step 7	Step 8	Step 9	Step 10

Step 1 - AM2S-

Series prefix (AM) and number of poles (1-4) followed by an S. Series MM/S (UL 1500 Marine Ignition Protection).

Step 2a - A2A3-

Voltage, frequency and internal circuit for first pole on left as viewed from front of panel, or for all poles if identical, from Tabels A and B.

Table A

Code	Frequency	Terminal Location	Maximum Voltage
A	60 Hz	Back	$250 / 400$
A	60 Hz	Back	480
A	60 Hz	Back	415
B	dc (Note 5)	Back	80
C	400 Hz	Back	250
D	$60 \mathrm{~Hz} / \mathrm{DC}$	Back	$250 \mathrm{AC/}$
			80 DC

Table B

Inrush Code - Std. 18 x 25 x			Internal Circuit	VDE	$\begin{aligned} & \text { UL/ } \\ & \text { CSA } \end{aligned}$	489
			Construction			
0			Switch (no overload coil)	Yes	Yes	No
2	9	394	Series trip with SPDT aux. switch	Yes	Yes	Yes
3	8	384	Series trip	Yes	Yes	Yes
5			Shunt/Tap (1)	Yes	Yes	No
6			Relay-trip (2)	No	Yes	No
154			Du-Con with Shunt/Tap voltage coil (1) (3)	Yes	Yes	No
164			Du-Con with relay-trip voltage coil (2) (3)	No	Yes	No

(1) Voltage rated shunt/tap coils provide tripping on line voltage.
(2) Relay trip constructions do not meet spacing requirements for World Market Applications. Consult factory for construction alternatives. Consult factory for other internal circuits that are available.
(3) Du-Con voltage coils require 30 VA minimum power to trip instantaneously.
(4) 40 Amp max.

Notes:

1. Specify voltage-rated coils separately. Example: Catalog Number AM1-A5. Voltage coil, intermittent-duty, trips on $250 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$ ac, Curve P. 2. Relay-trip poles. Always specify load values for coil and contacts separately. Example: Catalog Number AM1-B6. Coil: 5 amp , 60 V dc. Curve 3; contacts: $10 \mathrm{amp}, 250 \mathrm{~V} 50 / 60 \mathrm{~Hz}$. 3. UL/CSA models are labeled with the UL/CSA-recognized voltage (page 3). The catalog number of the breaker label will contain a special suffix indicating UL/CSA recognition. See Table E. 4. If voltage is rectifier-produced dc, furnish separately: (a) Full- or half-wave rectification, (b) Number of phases, (c) Filtered or unfiltered. If filtered, give ripple factor or percent filter factor.

Step 2b - A2A3-

Repeat Step 2 for second and third poles and subsequent poles if different from first. Repeat aux. switch codes when more than one switch is specified (ex. AM2S-A2A2).

Step 3 Table C — L

Number of handles and handle position from Table C.
A - Single pole unit.
B - Two pole unit. Handle on left pole only.
D - Three pole unit. Handle on center pole only.
L - Handle on each pole.
R - Four pole unit. Handle on left center and right center poles only. Other configurations available; consult factory.

Step 4 Table D - AA-

Handle color and marking from Table D.

Mounting information:
02 6-32 THD
05 M3-0.5 THD

Step 5b - J-

C 10-32 THD screws standard to 50A
F M5 THD screws standard to 50A
J 10-32 THD stud standard to 70A (VDE to 50A)
K \quad-20 THD stud standard over 70A (VDE over 50A)
L M5 THD stud standard to 70A (VDE to 50A)
M M6 THD stud standard over 70A (VDE over 50A)
$\mathrm{N} \quad$ Fuse clip terminals
R Plug in terminals

Step 6 - H- or D-

VDE approved (H). Available as shown in Table B.
(H) voltage - 400V ac (VDE) $50 / 60 \mathrm{~Hz}, 80 \mathrm{~V}$ dc (VDE pending) or 240 V ac -400 Hz .
(D) domestic - no VDE label.

Step 7 Table E - A-

Suffix Code, if for UL application, from Table E.
Suffix Code for UL Applications
A -250 V ac, $50 / 60 \mathrm{~Hz} ; 65 \mathrm{~V} \mathrm{dc} ; 250 \mathrm{~V}, 400 \mathrm{~Hz}, 80 \mathrm{~V}$ dc
L $-277 \mathrm{Vac}, 50 / 60 \mathrm{~Hz}$
AD - 415V ac, $50 / 60 \mathrm{~Hz}$ (50 Amp max.)
NU - Non-UL Recognized - call factory
AB - 480V ac, $50 / 60 \mathrm{~Hz}$ (30 Amp max.)
DU - UL listed to UL $489120 \mathrm{Vac}, 50 / 60 \mathrm{~Hz} ; 80 \mathrm{~V}$ dc
See page 3 for UL approved ratings.
Consult factory for additional UL codes.

Step 8 Table F-52-
Auxiliary switch information from Table F.
52 - SPDT 10 Amp . 110 Quick Connect Terminals (Std.)
54 - SPDT 0.1 Amp . 110 Quick Connect Terminals
07 - SPDT 10 Amp . 187 Quick Connect Terminals ©
Other auxiliary switches available; consult factory.
(6) Not VDE approved.

Step 9 — PN-
Customer part number to be marked on breaker.

Step 10 Table G - 30-

Current rating in amperes.
Standard Ampere Ratings

0.10	2.5	20	50
0.25	5	25	60
0.50	7.5	30	70
0.75	10	35	100
1	15	40	

Other non-listed ratings are available.
Consult factory for availability and lead times.
Current rating will be identified on breaker label but may not be shown in product description.

Step 11 Table H - 02

Time Delay Curves

Code Inrush Codes (7)

Std. 18x 25x

-SW
(Switch Only)
-OP X
-01 X
-02 X
-03 X
-10 X
-20 X
-30
251
252 X
253 X
See time delay curves on pages 8-10 for required delay.
(7) Inrush values based on 60 Hz .

Time delay curve will be identified on breaker label but may not be shown in product description.

Note: The new series AM/S is form, fit and function interchangeable with the Series "AM" and/or Series "AM/S" product. Incoming requirements and orders for product carrying a special catalog number in either the "AM" or "AM/S" will be produced as a new AM/S and will be identified with the existing special catalog number.

Heinemann ${ }^{\text {i }}$ Circuit Breakers Series AM/S

AM/S Time Delay Chart

Percent of Rated Current Versus/Seconds Delay

INRUSH	Delay	100\%	125\%	135\%	150\%	200\%	300\%	400\%	500\%	600\%	700\%	800\%	900\%	1000\%	1100\%	1200\%
$\begin{gathered} 50 / 60 \mathrm{~Hz} \\ 8 \mathrm{x} \end{gathered}$	1	No Trip	50-700	---	32-350	10-90	---	1.50-15	---	.5-7	---	.02-3	---	.006-2	---	.005-1
	2	No Trip	10-110	---	4.5-50	1.7-18	.55-6.0	.25-2.8	.11-1.9	.05-1.5	.025-1.2	.015-80	.011-41	.01-20	.009-10	.008-05
	3	No Trip	1-12	---	40-5.0	15-1.9	.054-64	.03-.30	.017-. 20	.01-.14	007-.09	.005-.06	.004-05	.004-05	.004-046	.004-04
$\begin{gathered} 50 / 60 \mathrm{~Hz} \\ 18 \mathrm{x} \end{gathered}$	10	No Trip	60-700	---	30-350	10-120	3.4-42	2.0-22	1.1-12.5	.50-8.0	.17-5.2	.05-4.0	.02-3.4	.01-3.0	.008-2.5	.008-2.0
	20	No Trip	10-110	---	4.5-50	1.7-18	.54-6.9	.30-4.0	.18-2.75	.10-2.0	.04-1.4	.02-1.0	.013-75	.01-50	.01-25	.01-10
	30	No Trip	1.0-12	---	.40-5.0	.15-1.9	.052-.73	.03-.40	.02-.27	. $015-20$.012-. 14	.01-. 10	.008-074	.006-.06	.005-.053	.005-.05
$\begin{gathered} 50 / 60 \mathrm{~Hz} \\ 25 \mathrm{x} \end{gathered}$	251	No Trip	75-400	---	35-170	15-70	5.0-25	3.0-15	2.0-9.5	1.5-8	.9-7	.5-6	.4-5	.3-5	.2-5	.1-4
	252	No Trip	10-100	---	6-55	2.5-20	.85-4.5	.45-2.5	. $30-1.8$.22-1.6	.15-1.5	.10-1.4	.08-1.2	.07-1.0	.06-.90	.05-70
	253	No Trip	1-17	---	.40-4.5	.16-1.6	. $06-46$.05-.40	. $04-.35$.03-30	.025-.25	.020-.22	.015-20	.012-.15	.009-12	.008-.08
$\begin{aligned} & \text { DC } \\ & 8 \mathrm{x} \end{aligned}$	1	No Trip	45-345	---	20-150	9-60	3-20	1.4-11.4	.45-7.5	.15-5.8	.03-4.5	.009-3.7	.006-2.6	.005-1.7	.005-.90	.005-.50
	2	No Trip	6.0-80	---	2.5-30	.80-10	.25-3.7	.15-2.0	.09-1.2	.05-80	.021-.50	.01-. 30	.006-17	.005-10	.004-06	.004-04
	3	No Trip	1.0-12	---	.40-5.0	.15-1.9	.054-64	.03-.30	.017-.20	. $01-14$.007-.09	.005-.06	.004-052	.004-05	.004-046	.004-04
$\begin{aligned} & \text { DC } \\ & \text { 18x } \end{aligned}$	10	No Trip	60-700	---	30-350	10-120	3.4-42	2.0-22	1.1-12.5	.50-8.0	.17-5.2	.05-4.0	.02-3.4	.01-3.0	.008-2.5	.008-2.0
	20	No Trip	10-110	---	4.5-50	1.7-18	.54-6.9	. $30-4.0$.18-2.75	.10-2.0	.04-1.4	.02-1.0	.013-75	.01-50	.01-.25	.01-.10
	30	No Trip	1.0-12	---	.40-5.0	.14-1.9	.052-.73	.03-.40	.02-.27	. $015-20$.012-.14	.01-. 10	.008-074	.006-.06	.005-.053	.005-.05
DC 25x	252	No Trip	10-100	---	6-55	2.5-20	.85-4.5	.45-2.5	.30-1.8	.20-1.6	.15-1.5	.10-1.4	.08-1.2	.07-1.1	.07-1.0	.06-.90
$\begin{gathered} 400 \mathrm{~Hz} \\ 8 \mathrm{x} \end{gathered}$	1	No Trip	---	---	30-350	10-120	3.4-35	2.0-25	.86-19	.25-10	.06-2.6	.02-60	. $012-25$.01-15	.008-12	.008-10
	2	No Trip	---	---	6.0-70	2.5-26	.85-8.5	.40-5.0	.23-3.1	.10-2.0	.02-1.1	.01-60	.01-.30	.01-. 15	.009-085	.008-05
	3	No Trip	---	---	.60-7.0	.20-2.3	.075-.84	.04-.50	.02-.37	. $01-.25$.006-.18	.005-12	.004-075	.004-05	.004-042	.004-04
$\begin{gathered} 50 / 60 \mathrm{~Hz} \\ \text { DC } \\ 8 \mathrm{x} \end{gathered}$	1	No Trip	---	35-520	20-350	9-90	3-26	1.4-15	.45-10	.15-7	.03-4.8	.009-3.7	.006-2.5	.005-2	.005-1.6	.005-1
	2	No Trip	---	7.0-80	4.5-50	1.7-18	.55-6.0	.25-2.8	.11-1.9	.05-1.5	.025-1.2	.015-80	.011-41	.01-20	.009-10	.008-05
	3	No Trip	---	.60-9.0	.40-5.0	.15-1.9	.054-64	.03-.30	.017-. 20	.01-.14	.007-.09	.005-.06	.004-052	.004-05	.004-046	.004-04
$\begin{gathered} 50 / 60 \mathrm{~Hz} \\ \text { DC } \\ 18 x \end{gathered}$	10	No Trip	---	45-500	30-350	10-120	3.4-42	2.0-22	1.1-12.5	.50-8.0	.17-5.2	.05-4.0	.02-3.4	.01-3.0	.008-2.5	.008-2.0
	20	No Trip	---	7.0-80	4.5-50	1.7-18	.54-6.9	.30-4.0	.18-2.75	.10-2.0	.04-1.4	.02-1.0	.013-75	.01-50	.01-. 25	.01-.10
	30	No Trip	---	.60-9.0	.40-5.0	.15-1.9	.052-.73	.03-.40	.02-.27	. $015-20$.012-.14	.01-10	.008-074	.006-.06	.005-.053	.005-.05
50/60/DC	Instant. Delay "P" Max. Time	No Trip	. 100	. 060	. 050	. 034	. 020	. 015	. 012	. 011	. 011	. 011	. 011	. 011	. 011	. 011

Heinemann ${ }^{\text {fi }}$ Circuit Breakers Series AM/S

Heinemann ${ }^{\text {i }}$ Circuit Breakers Series AM/S

Dimensions

All dimensions are in inches (mm) tolerance $-.020 / .51$ except where noted. Dimensions are given here only as preliminary guide to specifying. Final engineering drawings should be made from the latest Heinemannif factory drawings, available on request.
Note: Two and three pole units shown with non-standard single handle construction. Standard is handle each pole.

Notes:

1. Handles are marked with both $O N / I$ and $O F F / O$
2. $10-32$ to $50 \mathrm{amps}, \ldots-20$ above 50 amps , also available, M5 $\times 0.8$ up to 50
amps, M6x1 above 50 amps .
3. $\mathrm{M} 3 \times 0.5$ pitch mounting clips are available.
4. Tightening torque specifications.
$\begin{array}{ll}\text { Thread size } & \text { Torque } \\ \# 6-32, ~ M 3 & 5-7 \text { in-lbs }\end{array}$
$\begin{array}{ll}\text { \#6-32, M3 } & 5-7 \text { in-lbs } \\ \# 10-32, \text { M5 } & 15-20 \text { in-lbs }\end{array}$
...20, M6 $\quad 30-35 \mathrm{in}-\mathrm{lbs}$

	TERMINAL	0-70 AMPS	71-100 AMPS	. $138(3.51) \rightarrow$
X	LENGTH	.640/16.26	.695/17.65	
X	DIA/ \varnothing	10-32	...-20	(0)
X	LENGTH	.812/20.63	.852/21.64	
	DIA \varnothing METR	M5x0.8	M6x1	

Terminal length tol. - .062/1.57
Line Load Terminal Chart
Screw Terminals

For the widest selection of circuit protection, from 0.01 to 700 amperes, look to Heinemanni .

Arab, AL
Salisbury, MD
Selma, NC
Plymouth, England

- Salisbury, MD
- Selma, NC
- Arab, AL
- Matamoros, Mexico

Eaton Corporation

Heinemann ${ }^{\circledR}$ Products
2300 Northwood Drive
Salisbury, MD 21801
Phone: (410) 546-9778, Fax: (410) 546-2116

[^0]: (1) Units do not require backup (series) fusing.
 (2) DC and 1 Phase 277 V max ratings are 1 or 2 pole breaking. 3 phase ratings are 3 pole breaking.
 (3) Requires branch circuit backup with UL Listed Type K5 fuse rated (15A minimum) at no more than 175A for 51 thru 100A rating.
 (4) UL Recognized/CSA Certified. Refers to 3 and 4 pole versions used only in a 3 phase, WYE connection with series fusing as stated in note (3).
 (5) VDE Certification at 400 volts.
 (6) P1 Rating.
 (7) P2 Rating.
 (8) Consult Factory for availability.
 (9) A clearance of 1 inch for dc and 2 inches for ac is required between the arc vent and conductive surfaces or components.
 (10) Fuse clip construction.

