DUAL 4-INPUT MULTIPLEXER WITH 3-STATE OUTPUTS

The LSTTL/MSI SN54/74LS253 is a Dual 4-Input Multiplexer with 3-state outputs. It can select two bits of data from four sources using common select inputs. The outputs may be individually switched to a high impedance state with a HIGH on the respective Output Enable (E_{0}) inputs, allowing the outputs to interface directly with bus oriented systems. It is fabricated with the Schottky barrier diode process for high speed and is completely compatible with all Motorola TTL families.

- Schottky Process for High Speed
- Multifunction Capability
- Non-Inverting 3-State Outputs
- Input Clamp Diodes Limit High Speed Termination Effects

CONNECTION DIAGRAM DIP (TOP VIEW)

PIN NAMES		LOADING (Note a)	
		HIGH	LOW
S_{0}, S_{1}	Common Select Inputs	0.5 U.L.	0.25 U.L.
Multiplexer A			
$\mathrm{E}_{0} \mathrm{a}$	Output Enable (Active LOW) Input	0.5 U.L.	0.25 U.L.
${ }^{1} a^{-1}{ }_{3 a}$	Multiplexer Inputs	0.5 U.L.	0.25 U.L.
Z_{a}	Multiplexer Output (Note b)	65 (25) U.L.	15 (7.5) U.L.
Multiplexer B			
E_{0}	Output Enable (Active LOW) Input	0.5 U.L.	0.25 U.L.
$\mathrm{I}_{0} \mathrm{l}^{-1} 3 \mathrm{~b}$	Multiplexer Inputs	0.5 U.L.	0.25 U.L.
Z_{b}	Multiplexer Output (Note b)	65 (25) U.L.	15 (7.5) U.L.

NOTES:
a) 1 TTL Unit Load (U.L.) $=40 \mu \mathrm{~A}$ HIGH/1.6 mA LOW.
b) The Output LOW drive factor is 7.5 U.L. for Military (54) and 15 U.L. for Commercial (74) Temperature Ranges. The Output HIGH drive factor is 25 U.L. for Military (54) and 65 U.L. for Commercial (74) Temperature Ranges.

DUAL 4-INPUT MULTIPLEXER WITH 3-STATE OUTPUTS LOW POWER SCHOTTKY

SN54/74LS253

LOGIC DIAGRAM

FUNCTIONAL DESCRIPTION

The LS253 contains two identical 4-Input Multiplexers with 3 -state outputs. They select two bits from four sources selected by common select inputs ($\mathrm{S}_{0}, \mathrm{~S}_{1}$). The 4-input multiplexers have individual Output Enable ($\mathrm{E}_{0 \mathrm{a}}, \mathrm{E}_{0 \mathrm{~b}}$) inputs which when HIGH, forces the outputs to a high impedance (high Z) state.
The LS253 is the logic implementation of a 2-pole, 4 -position switch, where the position of the switch is determined by the logic levels supplied to the two select inputs. The logic equations for the outputs are shown below:
$Z_{a}=\bar{E}_{0 a} \cdot\left(I_{0 a} \cdot \bar{S}_{1} \cdot \bar{S}_{0}+I_{1 a} \cdot \bar{S}_{1} \cdot S_{0} \cdot I_{2 a} \cdot S_{1} \cdot \bar{S}_{0}+I_{3 a} \cdot S_{1}\right.$ - S_{0})
$Z_{b}=\bar{E}_{0 b} \cdot\left(I_{0 b} \cdot \bar{S}_{1} \cdot \bar{S}_{0}+I_{1 b} \cdot \bar{S}_{1} \cdot S_{0} \cdot I_{2 b} \cdot S_{1} \cdot \bar{S}_{0}+I_{3 b} \cdot S_{1}\right.$ So)

If the outputs of 3-state devices are tied together, all but one device must be in the high impedance state to avoid high currents that would exceed the maximum ratings. Designers should ensure that Output Enable signals to 3-state devices whose outputs are tied together are designed so that there is no overlap.

TRUTH TABLE

SELECT INPUTS			DATA INPUTS		OUTPUT ENABLE	OUTPUT	
$\mathrm{S}_{\mathbf{0}}$	$\mathrm{S}_{\mathbf{1}}$	$\mathrm{I}_{\mathbf{0}}$	$\mathrm{I}_{\mathbf{1}}$	$\mathrm{I}_{\mathbf{2}}$	$\mathrm{I}_{\mathbf{3}}$	$\mathrm{E}_{\mathbf{0}}$	Z
X	X	X	X	X	X	H	$\mathrm{Z})$
L	L	L	X	X	X	L	L
L	L	H	X	X	X	L	H
H	L	X	L	X	X	L	L
H	L	X	H	X	X	L	H
L	H	X	X	L	X	L	L
L	H	X	X	H	X	L	H
H	H	X	X	X	L	L	L
H	H	X	X	X	H	L	H

[^0]GUARANTEED OPERATING RANGES

Symbol	Parameter		Min	Typ	Max	Unit
$V_{\text {CC }}$	Supply Voltage	54	4.5	5.0	5.5	$\mathrm{~V}^{\prime}$
		74	4.75	5.0	5.25	
$\mathrm{~T}_{\mathrm{A}}$	Operating Ambient Temperature Range	54	-55	25	125	${ }^{\circ} \mathrm{C}$
		74	0	25	70	
IOH	Output Current — High	54			-1.0	mA
		74			-2.6	
IOL	Output Current - Low	54			12	mA
		74			24	

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

Symbol	Parameter		Limits			Unit	Test Conditions	
			Min	Typ	Max			
V_{IH}	Input HIGH Voltage		2.0			V	Guaranteed I All Inputs	HIGH Voltage for
VIL	Input LOW Voltage	54			0.7	V	Guaranteed Input LOW Voltage for All Inputs	
		74			0.8			
V_{IK}	Input Clamp Diode Voltage			-0.65	-1.5	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$,	18 mA
V_{OH}	Output HIGH Voltage	54	2.4	3.4		V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{IOH}_{\mathrm{O}}=\mathrm{MAX}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$or VIL per Truth Table	
		74	2.4	3.1		V		
VOL	Output LOW Voltage	54, 74		0.25	0.4	V	$\mathrm{IOL}=12 \mathrm{~mA}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CC}} \mathrm{MIN}, \\ & \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\text {IL }} \text { or } \mathrm{V}_{\text {IH }} \\ & \text { per Truth Table } \end{aligned}$
		74		0.35	0.5	V	$\mathrm{IOL}=24 \mathrm{~mA}$	
IOZH	Output Off Current HIGH				20	$\mu \mathrm{A}$	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V}$	
IOZL	Output Off Current LOW				-20	$\mu \mathrm{A}$	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0.4 \mathrm{~V}$	
IIH	Input HIGH Current				20	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$	
					0.1	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}$	
IIL	Input LOW Current				-0.4	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$	
los	Short Circuit Current (Note 1)		-30		-130	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$	
ICC	Power Supply Current				12	mA	$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{\mathrm{E}}=0 \mathrm{~V}$	
					14	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{E}}=4.5 \mathrm{~V}$	

Note 1: Not more than one output should be shorted at a time, nor for more than 1 second.
AC CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}\right)$ See SN54LS251 for Waveforms

Symbol	Parameter	Limits			Unit	Test Conditions	
		Min	Typ	Max			
$\begin{aligned} & \text { tpLH } \\ & \text { tphen } \end{aligned}$	Propagation Delay, Data to Output		$\begin{aligned} & 17 \\ & 13 \end{aligned}$	$\begin{aligned} & 25 \\ & 20 \end{aligned}$	ns	Figure 1	$\begin{aligned} & C_{\mathrm{L}}=45 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=667 \Omega \end{aligned}$
$\begin{aligned} & \text { tpLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, Select to Output		$\begin{aligned} & 30 \\ & 21 \end{aligned}$	$\begin{aligned} & 45 \\ & 32 \end{aligned}$	ns	Figure 1	
$\begin{aligned} & \text { tpZH } \\ & \text { tp7l } \end{aligned}$	Output Enable Time		$\begin{aligned} & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & 28 \\ & 23 \end{aligned}$	ns	Figures 4, 5	
$\begin{aligned} & \text { tPHZ } \\ & \text { tpLZ } \\ & \hline \end{aligned}$	Output Disable Time		$\begin{aligned} & 27 \\ & 18 \end{aligned}$	$\begin{aligned} & 41 \\ & 27 \end{aligned}$	ns	Figures 3, 5	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=5.0 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=667 \Omega \end{aligned}$

[^0]: $\mathrm{H}=\mathrm{HIGH}$ Level
 L = LOW Level
 X = Irrelevant
 (Z) = High Impedance (off)

 Address inputs S_{0} and S_{1} are common to both sections.

