

Resistor Product Discontinuation & Update

We would like to take this opportunity to thank you for your patronage and the many years of support you have given to our resistive products. As you know we are de-emphasizing the product line and would like to inform you of our decision to re-alignment our product offering.

AVX will expand our focus on our 0408 and smaller resistor array products and discontinue to offer our larger case size resistor chip series along with the 1206 resistor arrays. This will be accomplished in several stages over the next twelve months. Please refer to each product series below and the effective dates we will cease to supply the products.

Chip Resistor Series (CR63, CR32, CR21, CR10)

Final Ship Date: February 1st, 2004

Chip Resistor Series (CR05)

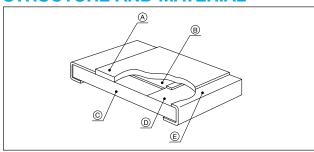
Final Ship Date: August 1st, 2004

1206 Resistor Array Series (CRA3A4E, CRB3A4E, CRC3A4E)

Final Ship Date: August 1st, 2004

We would like to work closely with you during the discontinuation period and minimize any inconveniences that may arise. Should you have any questions or comments, please contact KDP Marketing.


Thick Film Chip Resistors



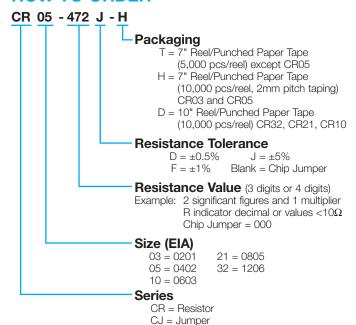
millimeters (inches)

-55 to +125°C

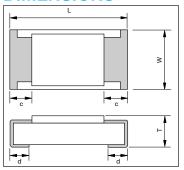
STRUCTURE AND MATERIAL

Code	Structure	Material
Α	Coating	Glass or Epoxy
В	Resistor	RuO ₂ Resistor (The same material of Termination for chip jumper)
С	Substrate	96% Alumina
D	Termination	Silver
Е	Plating	(Ni, Sn-Pb) Plating

-55 to +125°C


FEATURES

- Low Noise
- Nickel Barrier Terminations


APPLICATION

General Purpose

HOW TO ORDER

DIMENSIONS

SPECIFICATIONS

	CR03, CJ03	CR05, CJ05	CR10, CJ10	CR21, CJ21	CR32, CJ32
	(0201)	(0402)	(0603)	(0805)	(1206)
w	0.30±0.03 (0.012±0.001)	0.50±0.05 (0.020±0.002)	0.80 +0.15 -0.10 (0.031 +0.006)	1.25 +0.15 -0.10 (0.050 +0.006)	1.55 ±0.15 (0.061 ±0.006)
L	0.60±0.03 (0.024±0.001)	1.00±0.05 (0.039±0.002)	1.60±0.10 (0.063±0.004)	2.00±0.10 (0.080±0.004)	3.10±0.10 (0.122±0.004)
С	0.15±0.10 (0.006±0.004)	0.20±0.15 (0.008±0.006)	0.25±0.20 (0.010±0.008)	0.35±0.20 (0.014±0.008)	0.45±0.20 (0.018±0.008)
d	0.15±0.05 (0.006±0.002)	0.20±0.10 (0.008±0.004)	0.20+0.20 -0.15 (0.008+0.008 -0.006)	0.40±0.20 (0.016±0.008)	0.45±0.20 (0.018±0.008)
Т	0.23±0.05 (0.009+0.002)	0.35±0.05 (0.014+0.002)	0.50±0.10 (0.020±0.004)	0.55±0.10 (0.022+0.004)	0.55 +0.10 -0.05 (0.022 +0.004)

-55 to +125°C

CR10 (0603) CR32 (1206) **Series** CR03 (0201) CR05 (0402) CR21 (0805) 0.050 (1/20) W **Rated Power** 0.0625 (1/16) W 0.10 (1/10) W 0.125 (1/8) W 0.25 (1/4) W Max. 15V 50V 50V 100V 200V **Working Voltage** Resistance $F = \pm 1\%$ $D = \pm 0.5\%$ $D = \pm 0.5\%$ $D = \pm 0.5\%$ $J = \pm 5\%$ **Tolerance** $J = \pm 5\%$ $F = \pm 1\%$ $F = \pm 1\%$ $F = \pm 1\%$ $J = \pm 5\%$ $J=\pm 5\%$ $J=\pm 5\%$ Resistance 10 Ω to 1M Ω : D 10 Ω to 1M Ω : D 10Ω to $1M\Omega$: D Value Range 10 Ω to 1M Ω 10Ω to $1M\Omega$: F 10Ω to $1M\Omega$ 10Ω to $1M\Omega$: F 10Ω to $1M\Omega$: F 1.0Ω to $10M\Omega: J$ 1.0Ω to $10M\Omega$: J 1.0Ω to $10M\Omega$: J 1.0Ω to $10M\Omega: J$

-55 to +125°C

-55 to +125°C

Working

Temperature

Thick Film Chip Resistors

SPECIFICATIONS

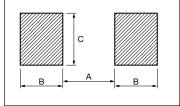
CJ Series

Part Number	CJ03	CJ05, CJ10, CJ21 (0402, 0603, 0805 Type)	CJ32 (1206 Type)
Rated Current	0.5A (70°C)	1A (70°C)	2A (70°C)
Resistivity	50m $Ω$ max.	50m $Ω$ max.	50m $Ω$ max.
Working Temperature	-55 to +125°C	-55 to +125°C	-55 to +125°C

HOW TO CALCULATE RATED VOLTAGE

 $E = \sqrt{P \cdot R}$

E = Rated Voltage (V)


P = Rated Power (W)

 $R = Standard Resistance Value (\Omega)$

Rated voltage should be lower than max. working voltage.

RECOMMENDED LAND PATTERN

millimeters (inches)

EIA Size	0201	0402	0603	0805	1206
Α	0.25	0.50	0.80	1.00	2.00
	(0.010)	(0.020)	(0.031)	(0.039)	(0.079)
В	0.225	0.40	0.70	0.80	0.80
	(0.009)	(0.016)	(0.028)	(0.031)	(0.031)
С	0.30	0.50	0.80	1.20	1.50
	(0.012)	(0.020)	(0.031)	(0.047)	(0.059)

MARKING

Marking available as follows:

Series: CR32, CJ32, CR21, CJ21, CR10, CJ10

3 digit indication

Example: $473=47 \times 10^3 = 47000 \ \Omega = 47 \ k\Omega$

 $0 = 0 \Omega$ (Jumper)

 $100 = 10 \ \Omega$

 $102 = 1 \text{ k}\Omega$

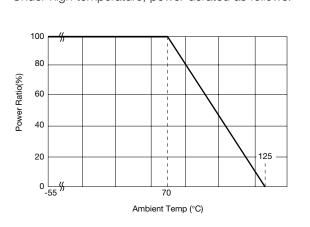
 $105 = 1 M\Omega$

Series: CR03, CJ03, CR05 and CJ05 - No marking Note: On CR32 4 digit marking is standard for

±1% and ±0.5% tolerances.

STANDARD RESISTANCE VALUE

	1.0	1.1	1.2	1.3	1.5	1.6	1.8	2.0	2.2
E24	2.4	2.7	3.0	3.3	3.6	3.9	4.3	4.7	5.1
	5.6	6.2	6.8	7.5	8.2	9.1			


For ±1% and ±.5% Tolerance

	,				ш					
	10.0	10.2	10.5	10.7	11.0	11.3	11.5	11.8	12.1	12.4
	12.7	13.0	13.3	13.7	14.0	14.3	14.7	15.0	15.4	15.8
	16.2	16.5	16.9	17.4	17.8	18.2	18.7	19.1	19.6	20.0
	20.5	21.0	21.5	22.1	22.6	23.2	23.7	24.3	24.9	25.5
E96	26.1	26.7	27.4	28.0	28.7	29.4	30.1	30.9	31.6	32.4
	33.2	34.0	34.8	35.7	36.5	37.4	38.3	39.2	40.2	41.2
	42.2	43.2	44.2	45.3	46.4	47.5	48.7	49.9	51.1	52.3
	53.6	54.9	56.2	57.6	59.0	60.4	61.9	63.4	64.9	66.5
	68.1	69.8	71.5	73.2	75.0	76.8	78.7	80.6	82.5	84.5
	86.6	88.7	90.9	93.1	95.3	97.6				

DERATING CURVE

Rated power should be reduced as below when temperature become higher.

Under high temperature, power derated as follows:

TEMPERATURE CHARACTERISTICS

Resistance (Ω)	TCR (ppm/°C)
D, F	
10≤ R ≤1M	-100 to +100
J	
R <10	-100 to +600
10≤ R ≤1M	-200 to +200
1M< R	-500 to +300

Chip Resistor Arrays

CR, CJ, CRA, CRB, CRC Series - Test Conditions

ELECTRICAL CHARACTERISTICS

Item			Standard		Test Cond	itions	
item		Resis	stor	Jumper	Resistor	Jumper	
DC Resist	tance	Within Initial	Tolerance	50mΩ max.	Power Condition (20°C, 65% F		
Tempera Character		Resistance (Ω) *D, F 10≤ R ≤1M J, CR05 = F R <10 10≤ R ≤1M 1M< R	*D, F 10≤ R ≤1M		Test Temperature: 25, 125(°C) Δ R/R=R ₂ -R ₁ /R ₁ x1/T ₂ -T ₁ x10 ⁶ Δ R/R = Temp. Coefficient (ppm/°C) T ₁ = 25(°C) T ₂ = 125(°C) R ₁ = T ₁ Resistance at (Ω) R ₂ = T ₂ Resistance at (Ω)		
Short-time Overload	ΔR/R	±(2.0%+0.1 of the init	ial value	50m $Ω$ max.	(1) Apply 2.0 x rated voltage for 5 sec. (2.5 x rated voltage for Arrays) (2) Wait 30 minutes (3) Measure resistance CR03 = 30V max. CR05 = 50V max CR10 = 100V max. CR21 = 200V max. CR32 = 400V max.		
	Visual		ence of mechanical da intermittent overload	amage	CRA3A, CRB3A, CRC3A = 100V max.		
Intermittent Overload	ΔR/R	±(5%+0.1 of the init		50mΩ max.	(1) Perform 10,000 voltage cycles as follows: ON (2.0 x rated voltage, 2.5 x for Arrays) 1 sec. OFF 25 sec. (2) Stabilization time 30 min. without loading (3) Measure resistance CR03 = 30V max. CR05 = 50V max. (1) Perform 10 current cyc as follows: ON (2A) 1 (2) Wait 30 min (3) Measure resistance CR03 = 30V max. CR05 = 50V max.		
	Visual	No evid	ence of mechanical da	amage	CR10 = 150V max. CR21 = 200V max. CR32 = 400V max. CRA, CRB, CRC = 100V max.		
	Dielectric Withstanding Voltage		No evidence of mechanical damage		Apply 500 VAC for 1 min. (CR10 300 VAC) (CR05, CRA3A, CRB3A, CRC3A 300 VAC/1 sec.		
Insulation Resistance		• CR05, (• CR10, (• CR21, (• CR32, (CJ03 = $10^8 \Omega$ min. CJ05 = $10^8 \Omega$ min. CJ10 = $10^9 \Omega$ min. CJ21 = $10^{10} \Omega$ min. CJ32 = $10^{12} \Omega$ min. , CRB3A, CRC3A = $10^{12} \Omega$	OºΩ min.	Apply 500V DC (CR05, CRA3A, CRB3A, CRC3A CR03 50 VDC)	A 100V DC	

Chip Resistor Arrays =

CR, CJ, CRA, CRB, CRC Series - Test Conditions

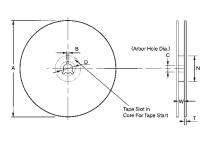
MECHANICAL CHARACTERISTICS

Item		Standard		Test Conditions		
Item		Resistor	Jumper	Resistor	Jumper	
	Δ R/R	$\pm (1\% + 0.05\Omega)$ max. of the initial value	50mΩ max.	Apply the load as shown: Measure resistance during load a	pplication	
Terminal Strength	Visual	No evidence of mechanical damage afte	Bending in 10 seconds PC Board = Glass epoxy t = 1.60	45 (1.772) 45 (1.772)		
Soldering Heat	ΔR/R	\pm (1%+0.05 Ω) max. 50m Ω max.		Immerse into molten solder at 260±5°C for 10±1 sec. Stabilize component at room temperature for 1 hr.		
Resistance	Visual	No evidence of leaching		Measure resistance.		
Solderabi	lity	Coverage ≥95% each termination end		Immerse in Rogin Flux for 2±0.5 sec. and in SN62 solder at 235±5°C for 2±0.5 sec.		
Anti-Vibration	ΔR/R	$\pm (1\% + 0.1\Omega)$ max. 50m Ω max.		2 hrs. each in X, Y and Z axis. (TTL 6 hrs.) 10 to 55 Hz sweep in 1 min. at 1.5mm amplitude.		
lest	Test Visual No evidence of mechanical damage					
Solvent Resistance	ΔR/R	$\pm (0.5\% + 0.05\Omega)$ max. of the initial value	50m $Ω$ max.	Immerse in static state butyl acetate at 20°C to 25°C for 30±5 sec. Stabilize component at room temperature for 30 min.		
	Visual	No evidence of mechanical damag	ge	then measure value.		

ENVIRONMENTAL CHARACTERISTICS

Item		Standard		Test Condi	tions	
Item		Resistor	Jumper	Resistor Jumper		
Temperature	ΔR/R	$\pm (1\% + 0.05\Omega)$ max. of the initial value	50mΩ max.	(1) Run 5 cycles as follows: -55± 125±3°C for 30 min. Room t	emp. for 10-15 min.	
Cycle	Visual	No evidence of mechanical dam	age	(2) Stabilize component at room then measure value.	temperature for 1 hr.	
Low Temperature	ΔR/R	$\pm (2\% + 0.1\Omega)$ max. of the initial value	50mΩ max.	(1) Dwell in -55°C chamber witho hrs.		
Storage	Visual	No evidence of mechanical dan	nage	(2) Stabilize component at room then measure value.	temperature for 1 hr.	
High Temperature	ΔR/R	$\pm (3\% + 0.1\Omega)$ max. of the initial value	50mΩ max.	(1) Dwell in 125°C chamber without hrs.	out loading for 1000^{+48}_{-0}	
Storage	Visual	No evidence of mechanical dan	nage	(2) Stabilize component at room then measure value.	temperature for 1 hr.	
Moisture	ΔR/R	$\pm (3\% + 0.1\Omega)$ max. of the initial value	50mΩ max.	(1) Dwell in temp.: 65°C RH90 to without loading for 1000 48 h	irs.	
Resistance	Visual	No evidence of mechanical dan	nage	(2) Stabilize component at room then measure value.	temperature for 1 hr.	
Life Test	ΔR/R	$\pm (3\% + 0.1\Omega)$ max. of the initial value	50m $Ω$ max.	(1) Temp.: 70±3°C Voltage: (rate off 30 min. Duration: 1000 td	hrs.	
2.10 1000	Visual	No evidence of mechanical dan	nage	(2) Stabilize component at room then measure value.	temperature for 1 hr.	
Loading Life	ΔR/R	$\pm (3\% + 0.1\Omega)$ max. of the initial value	50m $Ω$ max.	(1) Temp.: 40±2°C RH: 90-95% min. (rated voltage) off 30 min.	Duration: 1000 +48 hrs	
in Moisture	Visual	No evidence of mechanical dan	nage	(2) Stabilize component at room temperature for 1 hi then measure value.		

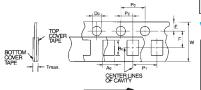
Packaging of Chip Component



TAPE AND REEL

REEL DIMENSIONS

millimeters (inches)

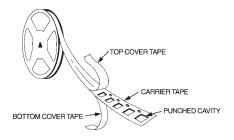


Tape Size	A Max.	B Min.	С	D Min.	N Min.	W	T Max.
	178 (7)	1.50	13.0±0.50	20.2	50	10.0±1.50	2.50
8mm	260 (10)	(0.059)	(0.512±0.020)	(0.795)	(1.969)	(0.394±0.059)	(0.098)

Metric dimensions will govern. English measurements rounded and for reference only.

millimeters (inches)

PUNCHED TAPE CONFIGURATION 8MM TAPE ONLY

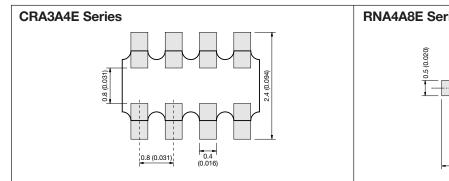


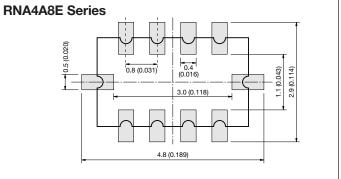
Tape Size	D ₀	E	P ₀	P ₂	w	F
8mm	1.50 ^{+0.10} _{-0.00} (0.059 ^{+0.004} _{-0.000})	1.75±0.10 (0.069±0.004)	4.0±0.10 (0.157±0.004)	2.00±0.05 (0.079±0.002)	8.00±0.20 (0.135±0.008)	3.50±0.05 (0.138±0.002)

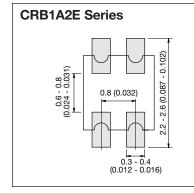
VARIABLE DIMENSIONS

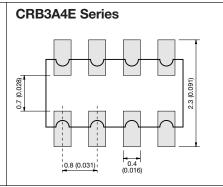
VAINABLE DIVIENDIDIO				
Style	P ₁	A_0	B ₀	T max.
CR/CJ03 CR/CJ05	2.00±0.10 (0.079±0.004)	0.65±0.10 (0.026±0.004)	1.15±0.10 (0.045±0.004)	0.60 (0.024)
CR/CJ/FR10	4.00±0.10 (0.157±0.004) or 2.00±0.10 (0.079±0.004)	1.10±0.20 (0.043±0.008)	1.90±0.20 (0.075±0.008)	
CR/CJ/FR21		1.65±0.20 (0.065±0.008)	2.40±0.20 (0.094±0.008)	
CR/CJ/FR32	4.00±0.10 (0.157±0.004)	2.00±0.20 (0.079±0.008)	3.60±0.20 (0.142±0.008)	1.10 (0.043)
CRB1A		1.90±0.20 (0.075±0.008)	1.90±0.20 (0.075±0.008)	
CRA3A CRB3A CRC3A		2.00±0.20 (0.079±0.008)	3.60±0.20 (0.142±0.008)	
CRB2A	2.00±0.10 (0.079±0.004)	1.25±0.20 (0.049±0.008)	2.50±0.20 (0.098±0.008)	

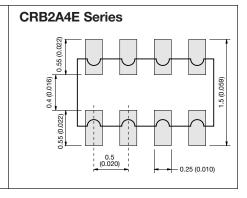
PUNCHED CARRIER

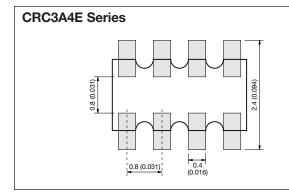

Recommended Land Patterns

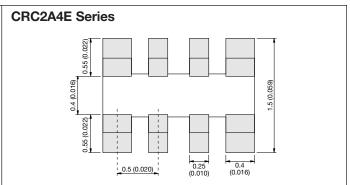


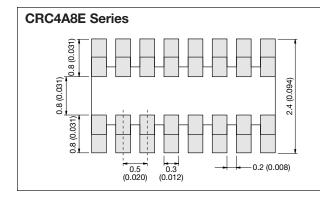


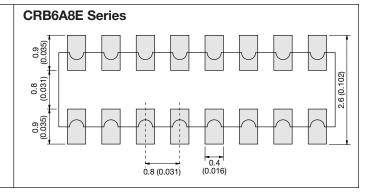

RECOMMENDED LAND PATTERNS IS REFERRED THE FOLLOWING FOR EXAMPLE


millimeters (inches)









Chip Resistor and Array Kits

SAMPLE KIT PART NUMBERS

Part Number	Description	
CRJ-E6-Kit	Combination 0603, 0805, 1206, 5% parts 21 values per case size 100 pcs. per value (approx.)	
CR05-E12-Kit	0402, 5% parts 63 values 100 pcs. per value	
CR10J-E12-Kit	0603, 5% parts 63 values 100 pcs. per value (approx.)	
CR21J-E12-Kit	0805, 5% parts 63 values 100 pcs. per value (approx.)	
CR32J-E12-Kit	1206, 5% parts 63 values 100 pcs. per value (approx.)	
CR05F-E24-Kit	0402, 1% parts 63 values 100 pcs. per value	
CR10F-E24-Kit	0603, 1% parts 63 values 100 pcs. per value	
CR-ARRAY-E6-Kit	Arrays, Various styles, CRA, CRB, CRC, RNA, 5% 13 values per style (approx.) 20 pcs. per value	