Analog Devices

Overview

This chapter describes the analog devices supported by PSpice A/D and PSpice. The following information is provided:

- device type
- format
- usage
- library location

Analog Devices

This chapter describes the different types of analog devices supported by PSpice and PSpice A/D. These device types include analog primitives, independent and controlled sources, and subcircuit calls. Each device type is described separately, and each description includes the following information as applicable:

- A description, and example of, the proper netlist syntax.
- The corresponding model types and their description.
- The corresponding list of model parameters and their descriptions.
- The equivalent circuit diagram and characteristic equations for the model (as required).
- References to publications on which the model is based.

These analog devices include all of the standard circuit components that normally are not considered part of the two-state (binary) devices that are found in the digital devices.

The model library consists of analog models of off-the-shelf parts that can be used directly in circuits that are being developed. Refer to the Library Reference Manual for device models and in which library they can be found. The model library includes models implemented using the .MODEL statement and macromodels implemented as subcircuits with the . SUBCKT statement.

This chapter includes a summary table, Table 2-1, which lists all of the analog device primitives supported by the simulator. Each primitive is described in detail in the sections following the table.

Device Types

PSpice supports many types of analog devices, including sources and general subcircuits. PSpice A/D also supports digital devices. The supported devices are categorized into device types. each of which can have one or more model types. For example, the BJT device type has three model types: NPN, PNP, and LPNP (Lateral PNP). The description of each devices type includes a description of any of the model types it supports.
The device declarations in the netlist always begin with the name of the individual device (instance). The first letter of the name determines the device type. What follows the name depends on the device type and its requested characteristics. Table 2-1 summarizes the device types and the general form of their declaration formats.

Note The "Device Type" column in the table includes the designator (letter) used in the device modeling.

Table 2-1 Analog Device Summary

Device Type	Letter	Declaration Format	Page
Bipolar Transistor	Q	Q<name> <collector node> <base node> <emitter node> + [substrate node] <model name> [area value]	2-54
Capacitor	C	C <name> <+ node> <- node> [model name] <value> + [$\mathrm{C}=<$ initial value>]	2-13
Voltage-Controlled Voltage Source	E	E<name> <+ node> <- node> <+ controlling node> + <controlling node> <gain> (additional Analog Behavioral Modeling forms: VALUE, TABLE, LAPLACE, and FREQ; additional POLY form)	2-18
Voltage-Controlled Current Source	G	G<name> <+ node> <- node> <+ controlling node> + <controlling node> <transconductance> (additional Analog Behavioral Modeling forms: VALUE, TABLE, LAPLACE, and FREQ; additional POLY form)	2-18
Current-Controlled Current Source	F	F<name> <+ node> <- node> <controlling V device name> + <gain> (additional POLY form)	2-20
Current-Controlled Switch	W	W <name> <+ switch node> <- switch node> + <controlling V device name> <model name>	2-67

2-4 Analog Devices

Table 2-1 Analog Device Summary (continued)

Device Type	Letter	Declaration Format	Page
Current- Controlled Voltage Source	H	H<name> <+ node> <- node> <controlling V device name> + <transresistance> (additional POLY form)	2-20
Digital Input	N	N <name> <interface node> <low level node> <high level node> + <model name> <input specification>	2-47
Digital Output	0	O<name> <interface node> <low level node> <high level node> + <model name> <output specification>	2-50
Digital Primitive*	U	U<name> <primitive type> ([parameter value]*) + <digital power node> <digital ground node> <node>* + <timing model name>	2-66
Diode	D	D<name> <anode node> <cathode node> <model name> [area value]	2-15
GaAsFET	B	B<name> <drain node> <gate node> <source node> + <model name> [area value]	2-6
Independent Current Source \& Stimulus	1	I<name> <+ node> <- node> [[DC] <value>] + [AC <magnitude value> [phase value]] [transient specification]	2-21
Independent Stimulus	V	V <name> <+ node> <- node> [[DC] <value>] + [AC <magnitude value> [phase value]] [transient specification]	2-21
Inductor	L	L<name> <+ node> <- node> [model name] <value> + [IC=<initial value>]	2-35
Inductor Coupling	K	```K<name> L<inductor name> <L<inductor name>>* + <coupling value> K<name> <L<inductor name>>* <coupling value> + <model name> [size value]```	2-31
JFET	J	J<name> <drain node> <gate node> <source node> + <model name> [area value]	2-26

Table 2-1 Analog Device Summary (continued)

Device Type	Letter	Declaration Format	Page
MOSFET	M	M<name> <drain node> <gate node> <source node> + <bulk/substrate node> <model name> + [common model parameter] ${ }^{*}$	2-36
Resistor	R	R<name> <+ node> <- node> [model name] <value>	2-61
Subcircuit Call	X	X<name> [node]* <subcircuit name>	$\underline{2-70}$
Transmission Line	T	T<name> <A port + node> <A port - node> + <B port + node> <B port - node>	2-64
Transmission Line Coupling	K	K<name> T<line name> <T<line name>>* + $\mathrm{CM}=<$ coupling capacitance $\mathrm{LM}=$ <coupling inductance>	2-31
VoltageControlled Switch	S	S<name> <+ switch node> <- switch node> + <+ controlling node> <- controlling node> <model name>	2-62

*The Digital Primitive and Digital Stimulus device types are generic in form. They have flexible syntax, and can refer to numerous different devices.

GaAsFET

General Form	B<name> <drain node> <gate node> <source node> $+\quad$ <model name> [area value]
Examples	BIN 100100 GFAST B13 221423 GNOM 2.0
Model Form	MODEL <model name> GASFET [model parameters]

As shown in Figure 2-1, the GaAsFET is modeled as an intrinsic FET using an ohmic resistance (RD/area) in series with the drain, another ohmic resistance ($\mathbf{R S} /$ area) in series with the source, and another ohmic resistance ($\mathbf{R G}$) in series with the gate. The [area value] is the relative device area and defaults to 1 .

Figure 2-1 GaAsFET Mode

The LEVEL model parameter selects between different models for the intrinsic GaAsFET:

GaAsFET LEVELS	Definition
LEVEL=1	"Curtice" model (see reference [1]).
LEVEL=2	"Raytheon" or "Statz" model (see reference [3]) and is equivalent to the GaAsFET model in SPICE3.

Model Parameters

Table 2-2 GaAsFET Model Parameters for All Levels

Model Parameters	Description	Units	Default
LEVEL	Model index (1 or 2)		1
Vto	Pinchoff voltage	volt ${ }^{-2}$. 5
ALPHA	Saturation voltage parameter	volt ${ }^{-1}$	2.0
BETA	Transconductance coefficient	amp/volt ${ }^{2}$	0.1
B	Doping tail extending parameter (LEVEL=2 only)	volt ${ }^{-1}$	0.3
LAMBDA	Channel-length modulation	volt ${ }^{-1}$	0
TAU	Conduction current delay time	sec	0
RG	Gate ohmic resistance	ohm	0
RD	Drain ohmic resistance	ohm	0
RS	Source ohmic resistance	ohm	0
IS	Gate p-n saturation current	amp	1E-14
N	Gate p-n emission coefficient		1
M	Gate p-n grading coefficient		0.5
VBI	Gate p-n potential	volt	1.0
CGD	Zero-bias gate-drain p-n capacitance	farad	0
CGS	Zero-bias gate-source p-n capacitance	farad	0
CDS	Drain-source capacitance	farad	0
FC	Forward-bias depletion capacitance coefficient		0.5
vtotc	VTO temperature coefficient	volt ${ }^{\circ} \mathrm{C}$	0
betatce	BETA exponential temperature coefficient	$\%{ }^{10} \mathrm{C}$	0
KF	Flicker noise coefficient		0
AF	Flicker noise exponent		1

Equations

In the following equations:

$$
\begin{array}{ll}
\text { Vgs } & =\text { intrinsic gate-intrinsic source voltage } \\
\mathrm{Vgd} & =\text { intrinsic gate-intrinsic drain voltage } \\
\mathrm{Vds} & =\text { intrinsic drain-intrinsic source voltage } \\
\mathrm{Vt} & =\mathrm{k} \cdot \mathrm{~T} / \mathrm{q} \text { (thermal voltage) } \\
\mathrm{k} & =\text { Boltzmann constant } \\
\mathrm{q} & =\text { electron charge } \\
\mathrm{T} & =\text { analysis temperature (}{ }^{\circ} \mathrm{K} \text {) } \\
\mathrm{Tnom} & =\text { nominal temperature (set using .OPTIONS TNOM=) }
\end{array}
$$

These equations describe an N -channel GaAsFET.
Positive current is current flowing into a terminal (for example, positive drain current flows from the drain through the channel to the source).

DC Currents

$\lg =$ gate current $=$ area $\cdot(\operatorname{lgs}+\operatorname{lgd})$
Igs = gate-source leakage current
lgd = gate-drain leakage current
$\operatorname{lgs}=\mathbf{I S} \cdot\left(\mathrm{e}^{\mathrm{Vgs} /(\mathbf{N} \cdot \mathrm{Vt})}-1\right)$
$\left.\operatorname{lgd}=\mathbf{I S} \cdot\left(\mathrm{e}^{\mathrm{Vgd} /(\mathrm{N} \cdot \mathrm{Vt}}\right)-1\right)$

Equations for Idrain: LEvEL=1

```
For: Vds \(\geq 0 \quad\) (normal mode)
    and: Vgs - VTO < \(0 \quad\) (cutoff region)
        Idrain \(=0\)
    and: Vgs - VTO \(\geq 0 \quad\) (linear \& saturation region)
        Idrain \(=\) BETA \(\cdot(1+\) LAMBDA \(\cdot V d s) \cdot(V g s-V T O)^{2} \cdot \tanh (A L P H A \cdot V d s)\)
For: Vds \(<0 \quad\) (inverted mode)
    Switch the source and drain in equations (above).
```

Equations for Idrain: LEVEL=2
For: Vds $\geq 0 \quad$ (normal mode)
and: Vgs - VTO $<0 \quad$ (cutoff region)
Idrain $=0$
and: Vgs - VTO $\geq 0 \quad$ (linear \& saturation region) Idrain = BETA $\cdot(1+\mathrm{LAMBDA} \cdot \mathrm{Vds}) \cdot(\mathrm{Vgs}-\mathrm{VTO})^{2} \cdot \mathrm{Kt} /(1+\mathrm{B} \cdot(\mathrm{Vgs}-\mathrm{VTO}))$
where Kt (a polynomial approximation of tanh) is:
for: $0<\mathrm{Vds}<3 /$ ALPHA (linear region)
$\mathrm{Kt}=1-(1-\mathrm{Vds} \cdot \mathrm{ALPHA} / 3)^{3}$
for: Vds $\geq 3 /$ ALPHA \quad (saturation region)
$\mathrm{Kt}=1$
For: Vds $<0 \quad$ (inverted mode)
Switch the source and drain in equations (above).

Capacitance ${ }^{1}$

Cds $=$ drain-source capacitance $=$ area $\cdot \operatorname{CDS}$

Equations for Cgs and Cgd: Level=1

Cgs = gate-source capacitance
For: Vgs \leq FC.VBI
Cgs = area.CGS $\cdot(1-\mathrm{Vgs} / \mathrm{VBI})^{-\mathrm{M}}$
For: Vgs > FC.VBI Cgs = area $\cdot \mathbf{C G S} \cdot(1-\mathbf{F C})^{-(1+\mathbf{M})} \cdot(1-\mathbf{F C} \cdot(1+\mathbf{M})+\mathbf{M} \cdot \mathrm{Vgs} / \mathrm{VBI})$

Cgd = gate-drain capacitance
For: Vgd \leq FC.VBI
$\mathrm{Cgd}=$ area $\cdot \mathbf{C G D} \cdot(1-\mathrm{Vgd} / \mathrm{VBI})^{-\mathrm{M}}$
For: Vgd > FC.VBI
Cgd $=$ area $\cdot \mathbf{C G D} \cdot(1-\mathbf{F C})^{-(1+\mathbf{M})} \cdot(1-\mathbf{F C} \cdot(1+\mathbf{M})+\mathbf{M} \cdot \mathrm{Vgd} /$ VBI $)$

Equations for Cgs and Cgd: Level=2

Cgs = gate-source capacitance $=$ area $\cdot\left(\right.$ CGS $\left.\cdot \mathrm{K} 2 \cdot \mathrm{~K} 1 /(1-\mathrm{Vn} / \mathrm{VBI})^{1 / 2}+\mathrm{CGD} \cdot \mathrm{K} 3\right)$
Cgd $=$ gate-drain capacitance $=$ area $\cdot\left(\mathbf{C G S} \cdot \mathrm{K} 3 \cdot \mathrm{~K} 1 /(1-\mathrm{Vn} / \mathrm{VBI})^{1 / 2}+\mathbf{C G D} \cdot \mathrm{K} 2\right)$
where

$$
\begin{aligned}
& \mathrm{K} 1=\left(1+(\mathrm{Ve}-\mathrm{VTO}) /\left(\left(\mathrm{Ve}^{\mathrm{V}} \mathrm{VTO}\right)^{2}+\text { VDELTA }^{2}\right)^{1 / 2}\right) / 2 \\
& \mathrm{~K} 2=\left(1+(\mathrm{Vgs}-\mathrm{Vgd}) /\left((\mathrm{Vgs}-\mathrm{Vgd})^{2}+(1 / \text { ALPHA })^{2}\right)^{1 / 2}\right) / 2 \\
& \mathrm{~K} 3=\left(1-(\mathrm{Vgs}-\mathrm{Vgd}) /\left((\mathrm{Vgs}-\mathrm{Vgd})^{2}+(1 / \text { ALPHA })^{2}\right)^{1 / 2}\right) / 2 \\
& \mathrm{Ve}=\left(\mathrm{Vgs}+\mathrm{Vgd}+\left((\mathrm{Vgs}-\mathrm{Vgd})^{2}+(1 / \text { ALPHA })^{2}\right)^{1 / 2}\right) / 2 \\
& \text { If: }\left(\mathrm{Ve}+\mathrm{VTO}+\left((\mathrm{Ve}-\mathrm{VTO})^{2}+\text { VDELTA }^{2}\right)^{1 / 2}\right) / 2<\text { VMAX } \\
& \mathrm{Vn}=\left(\mathrm{Ve}+\mathrm{VTO}+\left((\mathrm{Ve}-\mathrm{VTO})^{2}+\text { VDELTA }^{2}\right)^{1 / 2}\right) / 2 \\
& \text { else: } \mathrm{Vn}=\mathrm{VMAX}
\end{aligned}
$$

[^0]
Temperature Effects

For all levels:

$$
\begin{aligned}
& \text { VTO }(\mathrm{T})=\text { VTO }+ \text { VTOTC•(T-Tnom) } \\
& \operatorname{BETA}(\mathrm{T})=\text { BETA•1.01 }{ }^{\text {BETATCE.(T-Tnom) }} \\
& \mathbf{I S}(\mathrm{T})=\mathbf{I S} \cdot \mathrm{e}^{(\mathrm{T} / \mathrm{Tnom}-1) \cdot \mathbf{E G} /(\mathrm{N} \cdot \mathrm{Vt})} \cdot(\mathrm{T} / \text { Tnom })^{\mathrm{XTI} / \mathbf{N}} \\
& \operatorname{VBI}(\mathrm{T})=\mathrm{VBI} \cdot \mathrm{~T} / \text { Tnom }-3 \cdot \mathrm{Vt} \cdot \ln (\mathrm{~T} / \text { Tnom })-\mathbf{E G}(\text { Tnom }) \cdot \mathrm{T} / \text { Tnom }+\mathbf{E G}(\mathrm{T}) \\
& \text { where } \mathbf{E G}(T)=\text { silicon bandgap energy }=1.16-.000702 \cdot T^{2} /(T+1108) \\
& \text { CGS(T) }=\text { CGS } \cdot(1+\mathbf{M} \cdot(.0004 \cdot(\mathrm{~T}-\mathrm{Tnom})+(1-\mathrm{VBI}(\mathrm{~T}) / \mathbf{V B I}))) \\
& \mathbf{C G D}(\mathrm{T})=\mathbf{C G D} \cdot(1+\mathbf{M} \cdot(.0004 \cdot(\mathrm{~T}-\mathrm{Tnom})+(1-\mathrm{VBI}(\mathrm{~T}) / \mathrm{VBI})))
\end{aligned}
$$

Noise

Noise is calculated assuming a one hertz bandwidth, using the following spectral power densities (per unit bandwidth):
the parasitic resistances, RS, RD, and RG generate thermal noise ...

$$
\begin{aligned}
& \mathrm{Is}^{2}=4 \cdot k \cdot \mathrm{~T} /(\mathrm{RS} / \text { area }) \\
& \mathrm{Id}^{2}=4 \cdot k \cdot \mathrm{~T} /(\mathrm{RD} / \text { area }) \\
& \mathrm{Ig}^{2}=4 \cdot k \cdot \mathrm{~T} / \mathrm{RG}
\end{aligned}
$$

the intrinsic GaAsFET generates shot and flicker noise ...

$$
\mathrm{Id}^{2}=4 \cdot k \cdot \mathrm{~T} \cdot \mathrm{gm} \cdot 2 / 3+\mathrm{KF} \cdot \mathrm{ld} \mathrm{AF}^{\text {AF }} / \text { FREQUENCY }
$$

where $\mathrm{gm}=d \mathrm{~d}$ drain $/ \mathrm{dVgs}$ (at the DC bias point)

References

For more information on this GaAsFET model, refer to:
[1] W. R. Curtice, "A MESFET model for use in the design of GaAs integrated circuits," IEEE Transactions on Microwave Theory and Techniques, MTT-28, 448456 (1980).
[2] S. E. Sussman-Fort, S. Narasimhan, and K. Mayaram, "A complete GaAs MESFET computer model for SPICE," IEEE Transactions on Microwave Theory and Techniques, MTT-32, 471-473 (1984).
[3] H. Statz, P. Newman, I. W. Smith, R. A. Pucel, and H. A. Haus, "GaAs FET Device and Circuit Simulation in SPICE," IEEE Transactions on Electron Devices, ED-34, 160-169 (1987).
[4] A. J. McCamant, G. D. McCormack, and D. H. Smith, "An Improved GaAs MESFET Model for SPICE," IEEE Transactions on Microwave Theory and Techniques, June 1990 (est).
[5] A. E. Parker and D. J. Skellern "Improved MESFET Characterization for Analog Circuit Design and Analysis," 1992 IEEE GaAs IC Symposium Technical Digest, pp. 225-228, Miami Beach, October 4-7, 1992.
[6] A. E. Parker, "Device Characterization and Circuit Design for High Performance Microwave Applications," IEE EEDMO'93, London, October 18, 1993.
[7] D. H. Smith, "An Improved Model for GaAs MESFETs," Publication forthcoming. (Copies available from TriQuint Semiconductors Corporation or MicroSim.)

Capacitor

General Form	C<name> <(+) node> <(-) node> [model name] <value> $+\quad[\mathrm{IC}=<$ initial value>]
Examples	CLOAD 150 20pF
	C2 122 . $2 \mathrm{E}-12 \mathrm{IC=1.5V}$
	CFDBCK 333 CMOD 10pF
Model Form	.MODEL <model name> CAP [model parameters]

Table 2-3 Capacitor Model Parameters

Model Parameters*	Description	Units	Default
C	Capacitance multiplier		1
VC1	Linear voltage coefficient	volt ${ }^{-1}$	0
VC2	Quadratic voltage coefficient	volt ${ }^{-2}$	0
TC1	Linear temperature coefficient	${ }^{\circ} \mathrm{C}{ }^{-1}$	0
TC2	Quadratic temperature coefficient	${ }^{\circ} \mathrm{C}{ }^{-2}$	0

(+) and (-) nodes Define the polarity when the capacitor has a positive voltage across it. The first node listed (or pin one in Schematics), is defined as positive. The voltage across the component is therefore defined as the first node voltage less the second node voltage.

Positive current flows from the (+) node through the capacitor to the $(-)$ node. Current flow from the first node through the component to the second node is considered positive

$$
\begin{aligned}
& \text { [model name] If [model name]is left out then <value> is the capacitance in farads. } \\
& \text { If [model name] is specified, then the capacitance is given by the } \\
& \text { formula } \\
& \text { <value>.C.(1+VC1•V+VC2•V } 2) \cdot(1+\mathrm{TC} 1 \cdot(\mathrm{~T}-\mathrm{Tnom})+\mathrm{TC} 2 \cdot(\mathrm{~T}-\mathrm{Tnom}) 2 \text {) } \\
& \text { where <value> is normally positive (though it can be negative, but } \\
& \text { not zero). "Tnom" is the nominal temperature (set using TNOM } \\
& \text { option). } \\
& \text { <initial value> } \quad \begin{array}{l}
\text { The initial voltage across the capacitor during the bias point } \\
\text { calculation. It can also be specified in a circuit file using a .IC } \\
\text { command as follows: } \\
\text {.IC V(+node, -node) <initial value> }
\end{array} \\
& \text { For details on using the .IC command in a circuit file, see page 1-12 } \\
& \text { of this manual, and refer to your PSpice user's guide, for more } \\
& \text { information. }
\end{aligned}
$$

Noise

The capacitor does not have a noise model.

Diode

General Form \quad <name $><(+)$ node> $<(-)$ node> $<$ model name> [area value]
Examples DCLAMP 140
DMOD D13 1517 SWITCH 1.5
Model Form \quad MODEL < model name> D [model parameters]

Figure 2-2 Diode Model

As shown, the diode is modeled as an ohmic resistance (RS/area) in series with an intrinsic diode. The <(+) node> is the anode and <(-) node> is the cathode. Positive current is current flowing from the anode through the diode to the cathode. The [area value] scales IS, ISR, IKF,RS, CJO, and IBV, and defaults to 1. IBV and BV are both specified as positive values.

Model Parameters

Table 2-4 Diode Model Parameters

Model Parameters*	Description	Unit	Default
IS	Saturation current	amp	$1 \mathrm{E}-14$
N	Emission coefficient		1
ISR	Recombination current parameter	amp	0
NR	Emission coefficient for ISR		2
IKF	High-injection "knee" current	amp	infinite
BV	Reverse breakdown "knee" voltage	volt	infinite
IBV	Reverse breakdown "knee" current	amp	$1 \mathrm{E}-10$
RS	Parasitic resistance	ohm	0
TT	Transit time	sec	0
CJO	Zero-bias p-n capacitance	farad	0
VJ	$p-n$ potential	volt	1
M	Forward-bias depletion capacitance coefficient		0.5
FC	Bandgap voltage (barrier height)	$e^{2 V}$	0.5
EG	IS temperature exponent	1.11	
XTI	IKF temperature coefficient (linear)	${ }^{\circ}{ }^{\circ}{ }^{-1}$	0
TIKF	RS temperature coefficient (linear)	${ }^{\circ}{ }^{\circ}{ }^{-1}$	0
TRS1	RS temperature coefficient (quadratic)	${ }^{\circ}{ }^{\circ}{ }^{-2}$	0
TRS2	Flicker noise coefficient		0
KF	Flicker noise exponent		1
AF			0

Equations

In the following equations:
$\mathrm{Vd} \quad=$ voltage across the intrinsic diode only
$\mathrm{Vt} \quad=\mathrm{k} \cdot \mathrm{T} / \mathrm{q}$ (thermal voltage)
k = Boltzmann's constant
q = electron charge
T = analysis temperature (${ }^{\circ} \mathrm{K}$)
Tnom = nominal temperature (set using TNOM option)
Other variables are from the model parameter list.

DC Current

```
\(\mathrm{Id}=\) area.(Ifwd - Irev)
    Ifwd \(=\) forward current \(=\) Inrm \(\cdot\) Kinj + Irec \(\cdot\) Kgen
    Inrm \(=\) normal current \(=I S \cdot\left(\mathrm{e}^{\mathrm{Vd} /(\mathrm{N} \cdot \mathrm{Vt})}-1\right)\)
    Kinj \(=\) high-injection factor
        For: IKF > 0
            Kinj \(=(\mathbf{I K F} /(\mathbf{I K F}+\operatorname{Inrm}))^{1 / 2}\)
            otherwise
            \(K i n j=1\)
    Irec \(=\) recombination current \(=\) ISR \(\cdot\left(\mathrm{e}^{\mathrm{Vd} /(\mathrm{NR} \cdot \mathrm{Vt})}-1\right)\)
    \(\mathrm{Kgen}=\) generation factor \(=\left((1-\mathrm{Vd} / \mathrm{VJ})^{2}+0.005\right)^{\mathrm{M} / 2}\)
\(\operatorname{Irev}=\) reverse current \(=\operatorname{Irev}_{\text {high }}+\operatorname{Irev}_{\text {low }}\)
    Irev \(_{\text {high }}=\operatorname{IBV} \cdot \mathrm{e}^{-(\mathrm{Vd}+\mathrm{BV})^{\prime} /(\mathrm{NBV} \cdot \mathrm{Vt})}\)
    \(\operatorname{Irev}_{\text {low }}=\mathrm{IBVL} \cdot e^{-(\mathrm{Vd}+\mathrm{BV}) /(\mathrm{NBVL} \cdot \mathrm{Vt})}\)
```


Capacitance

```
Cd=Ct + area.Cj
    Ct}=\mathrm{ transit time capacitance = TT }\cdot\textrm{Gd
            where Gd = DC conductance
    Cj = junction capacitance
            For: Vd \leq FC.VJ
            Cj = CJO.(1-Vd/VJ)-M
    For: Vd > FC.VJ
            Cj = CJO (1-FC) (1+M)}\cdot(1-FC\cdot(1+M)+M\cdotVd/VJ)
```


Voltage-Controlled Voltage Source and Voltage-Controlled Current Source

Note \quad The Voltage-Controlled Voltage Source (E) and the Voltage-
Controlled Current Source (G) devices have the same syntax.
For a Voltage-Controlled Current Source just substitute a "G"
for the " E ". The "G" device generates a current, whereas, the
" E "device generates a voltage.

General Form

Examples

E<name> <(+) node> <(-) node> <(+) controlling node> <(-) controlling node> <gain>

E<name> <(+) node> <(-) node> POLY(<value>)
$+\quad \ll(+)$ controlling node> <(-) controlling node\gg*
$+\quad$ < polynomial coefficient value\gg*
E<name> <(+) <node> <(-) node> VALUE $=\{$ <expression> \}
E<name> <(+) <node> <(-) node> TABLE $\{$ <expression> \} =
$+\quad$ \llinput value>,<output value\gg*
E<name> <(+) node> <(-) node> LAPLACE $\{$ <expression> \} = + \{ <transform> \}
$\mathrm{E}<$ name> <(+) node> <(-) node> FREQ \{ <expression> \} = [KEYWORD] + <<frequency value>,<magnitude value>,<phase value\gg* + [DELAY $=<$ delay value $>]$

EBUFF $1 \begin{array}{lllll}2 & 10 & 11 & 1.0\end{array}$
EAMP $130 \operatorname{POLY}(1) 2600500$
ENONLIN 100101 POLY(2) 304000.013 .60 .20 .005
The first form and the first two examples apply to the linear case. The second form and the last example are for the nonlinear case.

Abstract

POLY(<value>) Specifies the number of dimensions of the polynomial. The number of pairs of controlling nodes must be equal to the number of dimensions.

$(+)$ and (-) nodes Output nodes. Positive current flows from the (+) node through the source to the (-) node.

The <(+) controlling node> and <(-) controlling node> are in pairs and define a set of controlling voltages. A particular node can appear more than once, and the output and controlling nodes need not be different. The TABLE form has a maximum size of 2048 input/output value pairs.

For the linear case, there are two controlling nodes and these are followed by the gain. For all cases, including the nonlinear case (POLY), refer to your PSpice user's guide.

Expressions cannot be used for linear and polynomial coefficient values in a voltage-controlled voltage source device statement.

Current-Controlled Current Source and Current-Controlled Voltage Source

\author{
Note The Current-Controlled Current Source (F) and the CurrentControlled Voltage Source (H) devices have the same syntax. For a Current-Controlled Voltage Source just substitute a "H" for the "F". The "H" device generates a voltage, whereas, the "F" device generates a current.
 ```
General Form \quad $<$ name $><(+)$ node $><(-)$ node>
 $+\quad$ <controlling V device name> <gain>
 F <name> <(+) node> <(-) node> POLY(<value>)
 $+\quad$ <controlling V device name>*
 $+\quad$ \llpolynomial coefficient value\gg*

``` \\ \((+)\) and (-) These nodes are the output nodes. A positive current flows from the
} \((+)\) node through the source to the (-) node. The current through the controlling voltage source determines the output current. The controlling source must be an independent voltage source (V device), although it need not have a zero DC value.

For the linear case, there must be one controlling voltage source and its name is followed by the gain. For all cases, including the nonlinear case (POLY), refer to your PSpice user's guide.
\begin{tabular}{ll} 
Note & \begin{tabular}{l} 
Expressions cannot be used for linear and polynomial \\
coefficient values in a current-controlled current source device \\
statement.
\end{tabular} \\
& \\
& \\
Examples & FSENSE 1.2 VSENSE 10.0
\end{tabular}

The first form and the first two Examples apply to the linear case.
The second form and the last example are for the nonlinear case. POLY(<value>) specifies the number of dimensions of the polynomial.

The number of controlling voltage sources must be equal to the number of dimensions.

\title{
Independent Current Source \& Stimulus and Independent Voltage Source \& Stimulus
}
Note The Independent Current Source \& Stimulus (I) and the
Independent Voltage Source \& Stimulus (V) devices have the
same syntax. For an Independent Voltage Source \& Stimulus
just substitute a " \(V\) " for the " \(I\) ". The " \(V\) " device functions
identically and has the same syntax as the "I" device, except
that it generates voltage instead of current.

\author{
General Form
}

Examples
\begin{tabular}{lrrlllllllll} 
IBIAS & 13 & 0 & 2.3 mA & & & & & & & \\
IAC & 2 & 3 & AC & .001 & & & & & & & \\
IACPHS & 2 & 3 & AC & .001 & 90 & & & & & \\
IPULSE & 1 & 0 & PULSE(-1mA & 1 mA & 2 ns & 2 ns & 2 ns & 50 ns & \(100 \mathrm{~ns})\) \\
I3 & 26 & 77 & DC & .002 & AC & 1 & SIN \((.002\) & .002 & \(1.5 \mathrm{MEG})\)
\end{tabular}

This element is a current source. Positive current flows from the (+) node through the source to the (-) node: in the first example, IBIAS drives node 13 to have a negative voltage. The default value is zero for the DC, AC, and transient values. None, any, or all of the DC, AC, and transient values can be specified. The AC phase value is in degrees. The pulse and exponential examples are explained later in this section.
[transient specification] If present, they must be one of: EXP (<parameters>) for an exponential waveform

PULSE (<parameters>) for a pulse waveform
PWL (<parameters>) for a piecewise linear waveform
SFFM (<parameters>) for a frequency-modulated waveform
SIN (<parameters>) for a sinusoidal waveform

The variables TSTEP and TSTOP, which are used in defaulting some waveform parameters, are set by the .TRAN command. TSTEP is <print step value> and TSTOP is <final time value>. The .TRAN command can be anywhere in the circuit file; it need not come after the voltage source.

\section*{Independent Current Source \& Stimulus (EXP)}

\author{
General Form \\ EXP (<i1> <i2> <td1> <tc1> <td2> <tc2>) \\ Example \\ IRAMP \(10 \begin{array}{lllllll}5 & \operatorname{EXP}(1 & 5 & 1 & .2 & 2 & .5)\end{array}\)
}

Table 2-5 Independent Current Source and Stimulus Exponential Waveform Parameters
\begin{tabular}{llll}
\hline Parameters & Description & Units & Default \\
\hline <i1> & Initial current & amp & none \\
<i2> & Peak current & amp & none \\
<td1> & Rise (fall) delay & sec & 0 \\
<tc1> & Rise (fall) time constant & sec & TSTEP \\
<td2> & Fall (rise) delay & sec & <td1>+TSTEP \\
<tc2> & Fall (rise) time constant & sec & TSTEP \\
\hline
\end{tabular}

The EXP form causes the current to be <i1> for the first <td1> seconds. Then, the current decays exponentially from <i1> to <i2> using a time constant of <tc1>. The decay lasts td2-td1 seconds. Then, the current decays from <i2> back to <i1> using a time constant of <tc2>.

\section*{Independent Current Source \& Stimulus (PULSE)}

General Form PULSE (<i1> <i2> <td> <tr> <tf> <pw> <per>)
Examples ISW 105 PULSE(1A 5 A 1sec .1 sec .4 sec .5 sec 2 sec\()\)

Table 2-6 Independent Current Source and Stimulus Pulse
Waveform Parameters
\begin{tabular}{llll}
\hline Parameters & Description & Units & Default \\
\hline <i1> & Initial current & amp & none \\
<i2> & Pulsed current & amp & none \\
<per> & Period & sec & TSTOP \\
<pw> & Pulse width & sec & TSTOP \\
<td> & Delay & sec & 0 \\
<tf> & Fall time & sec & TSTEP \\
<tr> & Rise time & sec & TSTEP \\
\hline
\end{tabular}

The PULSE form causes the current to start at <i1>, and stay there for <td> seconds. Then, the current goes linearly from <i1> to <i2> during the next <tr> seconds, and then the current stays at <i2> for <pw> seconds. Then, it goes linearly from <i2> back to <i1> during the next <tf> seconds. It stays at <i1> for per-(tr+pw+tf) seconds, and then the cycle is repeated except for the initial delay of <td> seconds.

\section*{Independent Current Source \& Stimulus (PWL)}
```

General Form PWL (corner_points)
where corner_points are: (<tn>, <in>)
Examples
$\left.\begin{array}{lll}11 & 1 & 2 \\ P W L & \left(\begin{array}{lllllllll}0 & 1 & 1.2 & 5 & 1.4 & 2 & 2 & 4 & 3\end{array}\right. & 1\end{array}\right)$

```

Table 2-7 Independent Voltage Source and Stimulus PWL
Waveform Parameters
\begin{tabular}{llll}
\hline Parameters* & Description & Units & Default \\
\hline\(<\) tn \(>\) & Time at corner & seconds & None \\
\(<\) vn> & Voltage at corner & volts & None \\
\hline
\end{tabular}

The PWL form describes a piecewise linear waveform. Each pair of time-current values specifies a corner of the waveform. The current at times between corners is the linear interpolation of the currents at the corners.

\section*{Independent Current Source \& Stimulus (SFFM)}

\author{
General Form \\ SFFM (<ioff> <iampl> <fc> <mod> <fm>) \\ Examples \\ IMOD 105 SFFM(2 18 Hz 41 Hz )
}

Table 2-8 Independent Current Source and Stimulus Frequency-
Modulated Waveform Parameters
\begin{tabular}{llll}
\hline Parameter & Description & Units & Default \\
\hline <ioff> & Offset current & amp & none \\
<iampl> & Peak amplitude of current & amp & none \\
<fc> & Carrier frequency & hertz & 1/TSTOP \\
<mod> & Modulation index & & 0 \\
<fm> & Modulation frequency & hertz & 1/TSTOP \\
\hline
\end{tabular}

The SFFM (Single-Frequency FM) form causes the current, to follow this formula
\[
\text { ioff }+ \text { iampl } \cdot \sin (2 \pi \cdot f \mathrm{fc} \cdot \mathrm{TIME}+\mathrm{mod} \cdot \sin (2 \pi \cdot f \mathrm{fm} \cdot \text { TIME }))
\]

\section*{Independent Current Source \& Stimulus (SIN)}
```

General Form
SIN (<ioff> <iampl> <freq> <td> <df> <phase>)
Examples ISIG 10 5 SIN(2 2 5Hz 1sec 1 30)

```

Table 2-9 Independent Current Source and Stimulus Sinusoidal
Waveform Parameters
\begin{tabular}{llll}
\hline Parameters & Description & Units & Default \\
\hline <ioff> & Offset current & amp & none \\
<iampl> & Peak amplitude of current & amp & none \\
<freq> & Frequency & hertz & \(1 /\) TSTOP \\
<td> & Delay & sec \(^{0}\) & 0 \\
<df> & Damping factor & sec \(^{-1}\) & 0 \\
<phase> & Phase & degree & 0 \\
\hline
\end{tabular}

The sinusoidal (SIN) waveform causes the current to start at <ioff> and stay there for <td> seconds.
Then, the current becomes an exponentially damped sine wave. The waveform could be described by the following formulas.
ioff+iampl \(\cdot \sin \left(2 \pi \cdot\left(\right.\right.\) freq \(\cdot(\) TIME-td \()+\) phase \(\left.\left./ 360^{\circ}\right)\right) \cdot \mathrm{e}^{-(\text {TIME-td) }) \text { df }}\)

Note The SIN waveform is for transient analysis only. It does not have any effect during AC analysis. To give a value to a current during AC analysis, use an AC specification, such as

IAC 30 AC 1mA
where IAC has an amplitude of one milliampere during AC analysis, and can be zero during transient analysis. For transient analysis use (for example)

ITRAN 30 SIN( 01 mA 1 kHz )
where ITRAN has an amplitude of one milliampere during transient analysis and is zero during AC analysis. Refer to your PSpice user's guide.

\section*{Junction FET}
```

General Form J<name> <drain node> <gate node> <source node>
+ <model name> [area value]
Examples JIN 100 1 0 JFAST
J13 22 14 23 JNOM 2.0
Model Form .MODEL <model name> NJF [model parameters]
.MODEL <model name> PJF [model parameters]

```

Figure 2-3 JFET Model


As shown in Figure 2-3, the JFET is modeled as an intrinsic FET using an ohmic resistance (RD/area) in series with the drain, and using another ohmic resistance (RS/area) in series with the source. Positive current is current flowing into a terminal. The [area value] is the relative device area and defaults to 1 .

Table 2-10 Junction FET Model Parameters
\begin{tabular}{lllr}
\hline Model Parameters & Description & Units & Default \\
\hline AF & Flicker noise exponent & & 1 \\
ALPHA & lonization coefficient & volt \(^{-1}\) & 0 \\
BETA & Transconductance coefficient & amp/volt \({ }^{2}\) & \(1 \mathrm{E}-4\) \\
BETATCE & BETA exponential temperature coefficient & \(\% /{ }^{\circ} \mathrm{C}\) & 0 \\
CGD & Zero-bias gate-drain \(p-n\) capacitance & farad & 0 \\
CGS & Zero-bias gate-source \(p-n\) capacitance & farad & 0 \\
FC & Forward-bias depletion capacitance coefficient & & 0.5 \\
IS & Gate \(p-n\) saturation current & amp & \(1 \mathrm{E}-14\) \\
ISR & Gate \(p-n\) recombination current parameter & amp & 0 \\
KF & Flicker noise coefficient & & 0 \\
LAMBDA & Channel-length modulation & volt \({ }^{-1}\) & 0 \\
M & Gate \(p-n\) grading coefficient & & 0.5 \\
N & Gate \(p-n\) emission coefficient & & 1 \\
NR & Emission coefficient for ISR & & 2 \\
PB & Gate \(p-n\) potential & volt & 1.0 \\
RD & Drain ohmic resistance & ohm & 0 \\
RS & Source ohmic resistance & ohm & 0 \\
VK & lonization "knee" voltage & volt & 0 \\
VTO & Threshold voltage & volt & -2.0 \\
VTOTC & VTO temperature coefficient & volt \({ }^{\circ} \mathrm{C}\) & 0 \\
XTI & IS temperature coefficient & & 3 \\
\hline
\end{tabular}
\begin{tabular}{ll} 
Note & \(V T O<0\) means the device is a depletion-mode JFET (for both N- \\
channel and P-channel) and vto \(>0\) means the device is an \\
enhancement-mode JFET. This conforms to U.C. Berkeley SPICE.
\end{tabular}

\section*{Equations}

In the following equations:
\[
\begin{array}{ll}
\mathrm{Vgs} & =\text { intrinsic gate-intrinsic source voltage } \\
\mathrm{Vgd} & =\text { intrinsic gate-intrinsic drain voltage } \\
\mathrm{Vds} & =\text { intrinsic drain-intrinsic source voltage } \\
\mathrm{Vt} & =k \cdot \mathrm{~T} / q \text { (thermal voltage) } \\
k & =\text { Boltzmann's constant } \\
q & =\text { electron charge } \\
\mathrm{T} & =\text { analysis temperature }\left({ }^{\circ} \mathrm{K}\right) \\
\mathrm{Tnom} & =\text { nominal temperature (set using TNOM option) }
\end{array}
\]

Other variables are from the model parameter list. These equations describe an N channel JFET. For P-channel devices, reverse the sign of all voltages and currents.

\section*{DC Currents}

Note Positive current is current flowing into a terminal.
\(\lg =\) gate current \(=\) area \(\cdot(\operatorname{lgs}+\operatorname{lgd})\)
\(\operatorname{lgd}=\) gate-drain leakage current \(=\mathrm{In}+\mathrm{Ir} \cdot \mathrm{Kg}+\mathrm{li}\)
In = normal current \(=\mathbf{I S} \cdot\left(\mathrm{e}^{\mathrm{Vgd} /(\mathrm{N} \cdot \mathrm{Vt})}-1\right)\)
\(\mathrm{Ir}=\) recombination current \(=\mathbf{I S R} \cdot\left(\mathrm{e}^{\mathrm{Vgd} /(\mathrm{NR} \cdot \mathrm{Vt})}-1\right)\)
\(\mathrm{Kg}=\) generation factor \(=\left((1-\mathrm{Vgd} / \mathrm{PB})^{2}+0.005\right)^{\mathbf{M} / 2}\)
\(\mathrm{li}=\) impact ionization current
\[
\text { For: } 0<\text { Vgs-VTO < Vds (forward saturation region) }
\]
\(\mathrm{II}=\mathrm{Idrain} \cdot \mathbf{A L P H A} \cdot \mathrm{vdif} \cdot \mathrm{e}^{-\mathrm{VK} / v d i f}\)
where \(\mathrm{vdif}=\) Vds \(-(\) Vgs-VTO)
otherwise
\(\mathrm{li}=0\)
\(\mathrm{Id}=\) drain current = area.(-Idrain-Igd)
Is = source current = area•(Idrain-lgs)

\section*{Equation for Idrain}
```

For: Vds \geq0 (normal mode)
and: Vgs-vTO }\leq0\quad\mathrm{ (cutoff region)
Idrain = 0
and: Vds \leq Vgs-VTO (linear region)
Idrain = BETA\cdot(1+LAMBDA\cdotVds)\cdotVds.(2.(Vgs-VTO)-Vds)
and: 0 < Vgs-VTO < Vds (saturation region)

```

```

For: Vds < 0 (inverted mode)
Switch the source and drain in equations (above).

```

\section*{Capacitance}

Note All capacitances are between terminals of the intrinsic JFET (that is, to the inside of the ohmic drain and source resistances).

Cgs = gate-source depletion capacitance
For: Vgs \(\leq\) FC.PB
\[
\text { Cgs }=\text { area } \cdot \mathbf{C G S} \cdot(1-\mathrm{Vgs} / \mathrm{PB})^{-\mathrm{M}}
\]

For: Vgs > FC•PB
\[
\text { Cgs }=\text { area } \cdot \mathbf{C G S} \cdot(1-\mathbf{F C})^{-(1+\mathbf{M})} \cdot(1-\mathbf{F C} \cdot(1+\mathbf{M})+\mathbf{M} \cdot \mathrm{Vgs} / \mathbf{P B})
\]

Cgd = gate-drain depletion capacitance
For: Vgd \(\leq\) FC.PB
\[
\mathbf{C g d}=\operatorname{area} \cdot \mathbf{C G D} \cdot(1-\mathrm{Vgd} / \mathbf{P B})^{-\mathrm{M}}
\]

For: Vgd > FC.PB
\[
\mathbf{C g d}=\operatorname{area} \cdot \mathbf{C G D} \cdot(1-\mathbf{F C})^{-(1+\mathbf{M})} \cdot(1-\mathbf{F C} \cdot(1+\mathbf{M})+\mathbf{M} \cdot \mathrm{Vgd} / \mathbf{P B})
\]

\section*{Temperature Effects}
```

VTO(T) = VTO+VTOTC.(T-Tnom)
BETA(T) = BETA·1.01 BETATCE.(T-Tnom)
IS(T) = IS }\cdot\mp@subsup{\textrm{e}}{}{(\textrm{T}/Tnom-1)\cdotEG/(N\cdotVt)}\cdot(\textrm{T}/\textrm{Tnom}\mp@subsup{)}{}{\textrm{XTI}/\textrm{N}
where EG = 1.11

```

```

 where EG=1.11
 PB(T) = PB\cdotT/Tnom - 3.Vt/In(T/Tnom) - Eg(Tnom)}\cdot\textrm{T}/\textrm{Tnom}+\textrm{Eg}(\textrm{T}
where Eg(T) = silicon bandgap energy = 1.16-.000702\cdotT T }/(T+1108
CGS(T) = CGS·(1+M·(.0004.(T-Tnom)+(1-PB(T)/PB)))
CGD(T) = CGD.(1+M·(.0004.(T-Tnom)+(1-PB(T)/PB)))

```

The drain and source ohmic (parasitic) resistances have no temperature dependence.

\section*{Noise}

Noise is calculated assuming a one hertz bandwidth, using the following spectral power densities (per unit bandwidth):
the parasitic resistances, Rs and Rd, generate thermal noise ...
\[
\begin{aligned}
& \text { Is }^{2}=4 \cdot k \cdot T /(\text { RS/area }) \\
& \text { Id }^{2}=4 \cdot k \cdot T /(\text { RD/area })
\end{aligned}
\]
the intrinsic JFET generates shot and flicker noise ..
Idrain \(2=4 \cdot k \cdot T \cdot g m \cdot 2 / 3+K F \cdot\) Idrain \({ }^{\text {AF }}\) /FREQUENCY where \(\mathrm{gm}=d \mathrm{ldrain} / d \mathrm{Vgs} \quad\) (at the DC bias point)

\section*{Inductor Coupling (transformer core)}
```

General Form K<name> L<inductor name> < L<inductor name> >*
+ <coupling value>
K<name> < L<inductor name> >* <coupling value>
+ <model name> [size value]
Examples KTUNED L3OUT L4IN .8
KTRNSFRM LPRIMARY LSECNDRY .99
KXFRM L1 L2 L3 L4 .98 KPOT_3C8
Model Form \quad MODEL < model name> CORE [model parameters]

```

This device can be used to define coupling between inductors (transformers). This device also refers to a nonlinear magnetic core (CORE) model to include magnetic hysteresis effects in the behavior of a single inductor (winding), or in multiple coupled windings.

Table 2-11 Inductor Coupling Model Parameters
\begin{tabular}{llll}
\hline \begin{tabular}{l} 
Model \\
Parameters*
\end{tabular} & Description & Units & Default \\
\hline A & Thermal energy parameter & \(\mathrm{amp} /\) meter & \(1 \mathrm{E}+3\) \\
AREA & Mean magnetic cross-section & \(\mathrm{cm}^{2}\) & 0.1 \\
C & Domain flexing parameter & & 0.2 \\
GAP & Effective air-gap length & cm & 0 \\
K & Domain anisotropy parameter & \(\mathrm{amp} /\) meter & 500 \\
MS & Magnetization saturation & \(\mathrm{amp} /\) meter & \(1 \mathrm{E}+6\) \\
PACK & Pack (stacking) factor & & 1.0 \\
PATH & Mean magnetic path length & cm & 1.0 \\
\hline
\end{tabular}
*See .MODEL statement.

\section*{Inductor Coupling}

K<name> couples two, or more, inductors. Using the "dot" convention, place a "dot" on the first node of each inductor. In other words, given:
\begin{tabular}{lllll} 
I1 & 1 & 0 & AC & 1 mA \\
L1 & 1 & 0 & 10 uH \\
L2 & 2 & 0 & 10 uH \\
R2 & 2 & 0 & .1 \\
K12 & L1 & L2 & .9999
\end{tabular}
the current through L2 is in the opposite direction as the current through L1. The polarity is determined by the order of the nodes in the \(L\) device(s) and not by the order of inductors in the K statement.
<coupling value>
This is the "coefficient of mutual coupling" which must be between 0 and 1.
Note that iron-core transformers have a very high coefficient of coupling, greater than .999 in many cases.
For U.C. Berkeley SPICE2: if there are several coils on a transformer, then there must be K statements coupling all combinations of inductor pairs. For instance, a transformer using a center-tapped primary and two secondaries would be written:
* PRIMARY

L1 12 10uH
L2 23 10uH
* SECONDARY

L3 1112 10uH
L4 \(13 \quad 14\) 10uH
* MAGNETIC COUPLING

K12 L1 L2 1
K13 L1 L3 1
K14 L1 L4 1
K23 L2 L3 1
K24 L2 L4 1
K34 L3 L4 1
This "older" technique is still supported, but not required, for simulation. The same transformer can now be written:
```

* PRIMARY
L1 12 10uH
L2 2 3 10uH
* SECONDARY
L3 11 12 10uH
L4 13 14 10uH
* MAGNETIC COUPLING
KALL L1 L2 L3 L4 1

```

\section*{Note Do not mix the two techniques.}

\section*{<model name>}

If < model name> is present, four things change:
1 The mutual coupling inductor becomes a nonlinear, magnetic core device. The magnetic core's B-H characteristics are analyzed using the Jiles-Atherton model (see Reference [1] below).

2 The inductors become "windings," so the number specifying inductance now specifies the "number of turns."
3 The list of coupled inductors could be just one inductor.
4 A model statement is required to specify the model parameters.
[size value]
Defaults to one and scales the magnetic cross-section. It is intended to represent the number of lamination layers, so only one model statement is needed for each lamination type. For example

L1 5920 ; inductor having 20 turns
K1 L1 .9999 K528T500_3C8 ; Ferroxcube toroid core
L2 3815 ; primary winding having 15 turns
L3 4645 ; secondary winding having 45 turns
K2 L2 L3 .9999 K528T500_3C8 ; another core (not the same as K1)

The Jiles-Atherton model is based on existing ideas of domain wall motion, including flexing and translation. The model derives an anhysteric magnetization curve using a mean field technique in which any domain is coupled to the magnetic field \((H)\) and the bulk magnetization (M). This anhysteric value is the magnetization which would be reached in the absence of domain wall pinning. Hysteresis is modeled by the effects of pinning of domain walls on material defect sites. This
impedance to motion and flexing due to the differential field exhibits all of the main features of real, nonlinear magnetic devices, such as: the initial magnetization curve (initial permeability), saturation of magnetization, coercivity, remanence, and hysteresis loss.

These features are shown in Figure 2-4.
Figure 2-4 Probe B-H display of 3C8 ferrite (Ferroxcube)


The simulator uses the Jiles-Atherton model to analyze the B-H curve of the magnetic core, and calculate values for inductance and flux for each of the "windings."

The state of the nonlinear core can be viewed in Probe by specifying \(\mathrm{B}(\mathrm{Kxxx})\), for the magnetization, or \(\mathrm{H}(\mathrm{Kxxx})\), for the magnetizing influence. These values are not available for .PRINT or .PLOT output.

\section*{Reference}

For a description of the Jiles-Atherton model, refer to:
[1] D.C. Jiles, and D.L. Atherton, "Theory of ferromagnetic hysteresis," Journal of Magnetism and Magnetic Materials, 61, 48 (1986).

\section*{Inductor}

General Form

Examples

Model Form
(+) and (-)
[model name] If [model name] is left out, then the effective value is <value>. If [model name] is specified, then the effective value is given by the formula
\[
\left\langle\text { value }>\cdot \mathbf{L} \cdot\left(1+\mathrm{IL} 1 \cdot \mathrm{I}+\mathrm{IL} 2 \cdot \mathrm{I}^{2}\right) \cdot\left(1+\mathrm{TC} 1 \cdot(\mathrm{~T}-\mathrm{Tnom})+\mathrm{TC} 2 \cdot(\mathrm{~T}-\text { Tnom })^{2}\right)\right.
\]
where <value> is normally positive (though it can be negative, but not zero). "Tnom" is the nominal temperature (set using TNOM option).
<initial value> The initial current through the inductor during the bias point calculation.

Noise \(\quad\) The inductor does not have a noise model.

\section*{MOSFET}


Figure 2-5 MOSFET Model


As shown in Figure Model Form, the MOSFET is modeled as an intrinsic MOSFET using ohmic resistances in series with the drain, source, gate, and bulk (substrate). There is also a shunt resistance (RDS) in parallel with the drain-source channel.

The simulator provides four MOSFET device models, which differ in the formulation of the I-V characteristic. The LEVEL parameter selects between different models:

Table 2-13 MOSFET Levels
\begin{tabular}{ll}
\hline MOSFET LEVELS & Model Definition \\
\hline LEVEL=1 & Shichman-Hodges model (see reference \\
& [1]) \\
LEVEL=2 & geometry-based, analytic model (see \\
& reference [2]) \\
LEVEL=3 & semi-empirical, short-channel model (see \\
LEVEL=4 & reference [2]) \\
\hline
\end{tabular}

L and W These are the channel length and width, and are decreased to get the effective channel length and width.

L and W can be specified in the device, model, or .OPTIONS statements. The value in the device statement supersedes the value in the model statement, which supersedes the value in the .OPTIONS statement.
\(A D\) and AS These are the drain and source diffusion areas.

PD and PS These are the drain and source diffusion perimeters.

The drain-bulk and source-bulk saturation currents can be specified either by JS, which is multiplied by AD and AS, or by IS, which is an absolute value. The zero-bias depletion capacitances can be specified by CJ, which is multiplied by AD and AS, and by CJSW, which is multiplied by PD and PS. Or they can be set by CBD and CBS, which are absolute values.

NRD, NRS, NRG, and NRB These are the relative resistivities of the drain, source, gate, and substrate in squares. These parasitic (ohmic) resistances can be specified either by RSH, which is multiplied by NRD, NRS, NRG, and NRB respectively or by RD, RS, RG, and RB, which are absolute values.

PD and PS default to 0 , NRD and NRS default to 1 , and NRG and NRB default to 0 . Defaults for \(\mathrm{L}, \mathrm{W}, \mathrm{AD}\), and AS can be set in the .OPTIONS statement. If AD or AS defaults are not set, they also default to 0 . If L or W defaults are not set, they default to 100 u .

Device "multiplier" (default = 1), which simulates the effect of multiple devices in parallel.

The effective width, overlap and junction capacitances, and junction currents of the MOSFET are multiplied by M. The parasitic resistance values (e.g., RD and Rs) are divided by M. Note the third example showing a device twice the size of the second example.

\section*{Model Levels 1, 2, and 3}

The DC characteristics of the first three model levels are defined by the parameters VTO, KP, LAMBDA, PHI, and GAMMA. These are computed by the simulator if process parameters (e.g., TOX, and NSUB) are given, but the user-specified values always override (Note: The default value for TOX is \(0.1 \mu\) for model levels two and three, but is unspecified for level one which "turns off" the use of process parameters). vTO is positive (negative) for enhancement mode and negative (positive) for depletion mode of N -channel (P-channel) devices.

Table 2-14 MOSFET Level 1, 2, and 3 Model Parameters
\begin{tabular}{|c|c|c|c|}
\hline Model Parameters* & Description & Units & Default \\
\hline DELTA & Width effect on threshold & & 0 \\
\hline ETA & Static feedback (LEVEL=3) & & 0 \\
\hline GAMMA & Bulk threshold parameter & volt \({ }^{1 / 2}\) & calculated \\
\hline KP & Transconductance coefficient & amp/volt \({ }^{2}\) & 2E-5 \\
\hline KAPPA & Saturation field factor (LEVEL=3) & & 0.2 \\
\hline LAMBDA & Channel-length modulation (LEVEL=1 or 2) & volt \({ }^{-1}\) & 0 \\
\hline LD & Lateral diffusion (length) & meter & 0 \\
\hline NEFF & Channel charge coefficient (LEVEL=2) & & 1.0 \\
\hline NFS & Fast surface state density & \(1 / \mathrm{cm}^{2}\) & 0 \\
\hline NSS & Surface state density & \(1 / \mathrm{cm}^{2}\) & none \\
\hline NSUB & Substrate doping density & \(1 / \mathrm{cm}^{3}\) & none \\
\hline PHI & Surface potential & volt & 0.6 \\
\hline THETA & Mobility modulation (LEVEL=3) & volt \({ }^{-1}\) & 0 \\
\hline TOX & Oxide thickness & meter & see above \\
\hline TPG & \[
\begin{aligned}
& \text { Gate material type: } \\
& \begin{array}{l}
+1=\text { opposite of substrate } \\
-1=\text { same as substrate } \\
0=\text { aluminum }+1
\end{array}
\end{aligned}
\] & & +1 \\
\hline UCRIT & Mobility degradation critical field (LEVEL=2) & volt/cm & 1E4 \\
\hline UEXP & Mobility degradation exponent (LEVEL=2) & & 0 \\
\hline UTRA & (not used) Mobility degradation transverse field coefficient & & 0 \\
\hline UO & Surface mobility. (The second character is the letter O , not the numeral zero.) & \[
\begin{aligned}
& \mathrm{cm}^{2} / \text { volt } \\
& \mathrm{sec}
\end{aligned}
\] & 600 \\
\hline VMAX & Maximum drift velocity & meter/sec & 0 \\
\hline VTO & Zero-bias threshold voltage & volt & 0 \\
\hline WD & Lateral diffusion (width) & meter & 0 \\
\hline XJ & Metallurgical junction depth (LEVEL=2 or 3 ) & meter & 0 \\
\hline XQC & Fraction of channel charge attributed to drain & & 1.0 \\
\hline
\end{tabular}

\footnotetext{
* See .MODEL statement.
}

\section*{Model Level 4}

The LEVEL=4 (BSIM1) model parameters are all values obtained from process characterization, and can be generated automatically. Reference [4] describes a means of generating a "process" file, which mut then be converted into .MODEL statements for inclusion in the Model Library or circuit file. (The simulator does not read process files.)

In the following list, parameters marked using a " \(\zeta\) " in the L\&W column also have corresponding parameters with a length and width dependency. For example, VFB is a basic parameter using units of volts, and LVFB and WVFB also exist and have units of volt \(\cdot \mu\). The formula
\[
\mathrm{Pi}=\mathrm{P} 0+\mathrm{P} / \mathrm{Le}+\mathrm{P}_{\mathrm{w}} / \mathrm{We}
\]
is used to evaluate the parameter for the actual device, where
\[
\begin{aligned}
& \mathrm{Le}=\text { effective length }=\mathrm{L}-\mathrm{DL} \\
& \mathrm{We}=\text { effective width }=\mathrm{W}-\mathrm{DW}
\end{aligned}
\]

Note Unlike the other models in PSpice, the BSIM model is designed for use with a process characterization system that provides all parameters: there are no defaults specified for the parameters, and leaving one out can cause problems.

Table 2-15 MOSFET Level 4 Model Parameters
\begin{tabular}{llll}
\hline \begin{tabular}{l} 
Model \\
Parameters*
\end{tabular} & Description & Units & L\&W \\
\hline DELL & \begin{tabular}{l} 
Drain, source junction length \\
reduction
\end{tabular} & meter & \\
DL & Channel shortening & \(\mu\) & \\
DW & \begin{tabular}{l} 
Channel narrowing
\end{tabular} & \(\mu\) & \\
ETA & \begin{tabular}{l} 
Zero-bias drain-induced barrier \\
lowering coefficient
\end{tabular} & & \(\zeta\) \\
K1 & \begin{tabular}{ll} 
Body effect coefficient
\end{tabular} & volt \(^{1 / 2}\) & \(\zeta\) \\
K2 & \begin{tabular}{l} 
Drain/source depletion charge \\
sharing coefficient
\end{tabular} & & \(\zeta\) \\
MUS & \begin{tabular}{l} 
Mobility at zero substrate bias and \\
Vds=Vdd
\end{tabular} & \(\mathrm{cm}^{2} / \mathrm{v}^{2} \cdot \mathrm{sec}\) & \(\zeta\)
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline MUZ & Zero-bias mobility & \(\mathrm{cm}^{2} / \mathrm{v} \cdot \mathrm{sec}\) \\
\hline No & Zero-bias subthreshold slope coefficient & \\
\hline NB & Sens. of subthreshold slope to substrate bias & \\
\hline ND & Sens. of subthreshold slope to drain bias & \\
\hline PHI & Surface inversion potential & volt \\
\hline TEMP & Temperature at which parameters were measured & \({ }^{\circ} \mathrm{C}\) \\
\hline TOX & Gate-oxide thickness & \(\mu\) \\
\hline U0 & Zero-bias transverse-field mobility degradation & volt \({ }^{-1}\) \\
\hline U1 & Zero-bias velocity saturation & \(\mu\) /volt \\
\hline VDD & Measurement bias range & volts \\
\hline VFB & Flat-band voltage & volt \\
\hline WDF & Drain, source junction default width & meter \\
\hline X2E & Sens. of drain-induced barrier lowering effect to substrate bias & volt \({ }^{-1}\) \\
\hline X2MS & Sens. of mobility to substrate bias @ \(\mathrm{Vds}=0\) & \(\mathrm{cm}^{2} / \mathrm{v}^{2} \cdot \mathrm{sec}\) \\
\hline X2MZ & Sens. of mobility to substrate bias @ \(\mathrm{Vds}=0\) & \(\mathrm{cm}^{2} / \mathrm{v}^{2} \cdot \mathrm{sec}\) \\
\hline X2U0 & Sens. of transverse-field mobility degradation effect to substrate bias & volt \({ }^{-2}\) \\
\hline X2U1 & Sens. of velocity saturation effect to substrate bias & \(\mu /\) volt \(^{2}\) \\
\hline X3E & Sens. of drain-induced barrier lowering effect to drain bias @ Vds = Vdd & volt \({ }^{-1}\) \\
\hline X3MS & Sens. of mobility to drain bias @ Vds=Vdd & \(\mathrm{cm}^{2} / \mathrm{v}^{2} \cdot \mathrm{sec}\) \\
\hline X3U1 & Sens. of velocity saturation effect on drain & \(\mu /\) volt \(^{2}\) \\
\hline XPART & Gate-oxide capacitance charge model flag. XPART \(=0\) selects a 40/60 drain/source charge partition in saturation, while XPART=1 selects a \(0 / 100\) drain/source charge partition. & \\
\hline
\end{tabular}

\footnotetext{
*See .MODEL statement
\(\zeta\) in L\&W column indicates that parameter may have corresponding parameters exhibiting length and width dependence. See discussion under Model Level 4 on page 2-40.
}

\section*{For All Model Levels}

The following list describes the parameters common to all model levels, which are primarily parasitic element values such as series resistance, overlap and junction capacitance, and so on.

Table 2-16 MOSFET Model Parameters for All Levels
\begin{tabular}{|c|c|c|c|}
\hline Model Parameters* & Description & Units & Default \\
\hline AF & Flicker noise exponent & & 1 \\
\hline CBD & Zero-bias bulk-drain \(p\)-n capacitance & farad & 0 \\
\hline CBS & Zero-bias bulk-source p-n capacitance & farad & 0 \\
\hline CGBO & Gate-bulk overlap capacitance/channel length & farad/meter & 0 \\
\hline CGDO & Gate-drain overlap capacitance/channel width & farad/meter & 0 \\
\hline CGSO & Gate-source overlap capacitance/channel width & farad/meter & 0 \\
\hline CJ & Bulk \(p\)-n zero-bias bottom capacitance/area & farad/meter \({ }^{2}\) & 0 \\
\hline CJSW & Bulk \(p\) - \(n\) zero-bias sidewall capacitance/length & farad/meter & 0 \\
\hline FC & Bulk p-n forward-bias capacitance coefficient & & 0.5 \\
\hline IS & Bulk \(p\)-n saturation current & amp & 1E-14 \\
\hline JS & Bulk \(p\)-n saturation current/area & amp/meter \({ }^{2}\) & 0 \\
\hline JSSW & Bulk \(p\)-n saturation sidewall current/length & amp/meter & 0 \\
\hline KF & Flicker noise coefficient & & 0 \\
\hline L & Channel length & meter & DEFL \\
\hline LEVEL & Model index & & \\
\hline MJ & Bulk \(p\) - \(n\) bottom grading coefficient & & 0.5 \\
\hline MJSW & Bulk \(p-n\) sidewall grading coefficient & & 0.33 \\
\hline N & Bulk \(p\)-n emission coefficient & & 1 \\
\hline PB & Bulk \(p\) - \(n\) bottom potential & volt & 0.8 \\
\hline PBSW & Bulk \(p-n\) sidewall potential & volt & PB \\
\hline RB & Bulk ohmic resistance & ohm & 0 \\
\hline RD & Drain ohmic resistance & ohm & 0 \\
\hline RDS & Drain-source shunt resistance & ohm & infinite \\
\hline RG & Gate ohmic resistance & ohm & 0 \\
\hline RS & Source ohmic resistance & ohm & 0 \\
\hline RSH & Drain, source diffusion sheet resistance & ohm/square & 0 \\
\hline TT & Bulk \(p\) - \(n\) transit time & sec & 0 \\
\hline W & Channel width & meter & DEFW \\
\hline
\end{tabular}

\section*{Equations}

In the following equations:
\begin{tabular}{ll}
Vgs & \(=\) intrinsic gate-intrinsic source voltage \\
Vgd & \(=\) intrinsic gate-intrinsic drain voltage \\
Vds & \(=\) intrinsic drain-intrinsic source voltage \\
Vbs & \(=\) intrinsic substrate-intrinsic source voltage \\
Vbd & \(=\) intrinsic substrate-intrinsic drain voltage \\
Vt & \(=k \cdot \mathrm{~T} / q\) (thermal voltage) \\
\(k\) & \(=\) Boltzmann's constant \\
\(q\) & \(=\) electron charge \\
T & \(=\) analysis temperature \(\left({ }^{\circ} \mathrm{K}\right)\) \\
Tnom & \(=\) nominal temperature (set using TNOM option)
\end{tabular}

Other variables are from the model parameter list. These equations describe an N -channel MOSFET. For P-channel devices, reverse the signs of all voltages and currents. Positive current is current flowing into a terminal (for example, positive drain current flows from the drain through the channel to the source).

\section*{DC Currents \({ }^{1}\)}
\[
\begin{aligned}
& \mathrm{Ig}=\text { gate current }=0 \\
& \mathrm{Ib}=\text { bulk current }=\mathrm{Ibs}+\mathrm{Ibd} \\
& \mathrm{lbs}=\text { bulk-source leakage current }=\mathrm{Iss} \cdot\left(\mathrm{e}^{\mathrm{Vbs} /(\mathrm{N} \cdot \mathrm{Vt})}-1\right) \\
& \mathrm{lbd}=\text { bulk-drain leakage current }=\mathrm{Ids} \cdot\left(\mathrm{e}^{\mathrm{Vbd} /(\mathrm{N} \cdot \mathrm{Vt})}-1\right) \\
& \text { where if: JS }=0 \text {, or } \mathrm{AS}=0, \text { or } \mathrm{AD}=0 \\
& \mathrm{Iss}=\mathrm{IS} \\
& \mathrm{Ids}=\mathrm{IS} \\
& \text { otherwise }: \\
& \mathrm{Iss}=\mathrm{AS} \cdot \mathrm{JS}+\mathrm{PS} \cdot \mathrm{JSSW} \\
& \mathrm{Ids}=\mathrm{AD} \cdot \mathrm{JS}+\mathrm{PD} \cdot \mathrm{JSSW} \\
& \mathrm{Id}=\text { drain current }=-\mathrm{Idrain}+\mathrm{Ibd} \\
& \mathrm{Is}=\text { source current }=\text { Idrain }+\mathrm{Ids}
\end{aligned}
\]

\section*{Equations for Idrain: LEVEL=1}
```

For: Vds $\geq 0 \quad$ (normal mode)
and: $\mathrm{Vgs}-\mathrm{V}_{\text {to }}<0 \quad$ (cutoff region)
Idrain $=0$
and: Vds < Vgs- $\mathrm{V}_{\text {to }} \quad$ (linear region)
Idrain $=(\mathrm{W} / \mathrm{L}) \cdot(\mathrm{KP} / 2) \cdot(1+\mathrm{LAMBDA} \cdot \mathrm{Vds}) \cdot \mathrm{Vds} \cdot\left(2 \cdot\left(\mathrm{Vgs}-\mathrm{V}_{\mathrm{to}}\right)-\mathrm{Vds}\right)$
and: $0 \leq \mathrm{Vgs}-\mathrm{V}_{\text {to }} \leq \mathrm{Vds} \quad$ (saturation region)
Idrain $=(\mathrm{W} / \mathrm{L}) \cdot(\mathrm{KP} / 2) \cdot(1+\mathrm{LAMBDA} \cdot \mathrm{Vds}) \cdot\left(\mathrm{Vgs}-\mathrm{V}_{\mathrm{to}}\right)^{2}$
where $\mathrm{V}_{\text {to }}=$ VTO + GAMMA $\cdot\left((\text { PHI-Vbs) })^{1 / 2}-\right.$ PHI $\left.^{1 / 2}\right)$
For: Vds < $0 \quad$ (inverted mode)
Switch the source and drain in equations (above).

```

For LEVEL=2, or LEVEL=3 MOSFET models, see reference [2] on 2-30 for detailed information.
1. Positive current is current flowing into a terminal.

\section*{Capacitance \({ }^{1}\)}

Cbs \(=\) bulk-source capacitance \(=\) area cap. + sidewall cap. + transit time cap.
Cbd \(=\) bulk-drain capacitance \(=\) area cap. + sidewall cap.+ transit time cap.
For: \(\mathbf{C B S}=0\) and \(\mathbf{C B D}=0\)
Cbs \(=\) AS.CJ.Cbsj + PS.CJsw \(\cdot\) Cbss \(+\mathrm{TT} \cdot \mathrm{Gbs}\)
Cbd \(=\) AD \(\cdot \mathbf{C J} \cdot\) Cbdj + PD.cJsw \(\cdot\) Cbds \(+\mathrm{TT} \cdot G d s\)
otherwise
Cbs \(=\mathbf{C B S} \cdot C b s j+\) PS.cJsw \(\cdot\) Cbss \(+\mathrm{TT} \cdot \mathrm{Gbs}\)
Cbd \(=\mathbf{C B D} \cdot\) Cbdj + PD.CJsw \(\cdot\) Cbds \(+\mathbf{T T} \cdot\) Gds
where
Gbs = DC bulk-source conductance \(=d \mathrm{lbs} / \mathrm{dVbs}\)
\(\mathrm{Gbd}=\mathrm{DC}\) bulk-drain conductance \(=d \mathrm{lbd} / d \mathrm{Vbd}\)
or: \(\mathrm{Vbs} \leq \mathrm{FC} \cdot \mathrm{PB}\)
Cbsj \(=(1-\mathrm{Vbs} / \mathrm{PB}) \cdot \mathrm{m}\)
Cbss \(=(1-\mathrm{Vbs} / \mathrm{PBSW})\)-msw

For: Vbs > FC•PB
```

Cbsj $=(1-\mathrm{FC})^{-(1+\mathrm{MJ})} \cdot(1-\mathrm{FC} \cdot(1+\mathrm{MJ})+\mathrm{MJ} \cdot \mathrm{Vbs} / \mathrm{PB})$
Cbss $=(1-\mathrm{FC})^{-(1+\mathrm{MJSW})} \cdot(1-\mathrm{FC} \cdot(1+$ MJSW $)+$ MJSW \cdot Vbs/PBSW $)$

```

For: Vbd \(\leq\) FC•PB
\[
\begin{aligned}
& \mathrm{Cbdj}=(1-\mathrm{Vbd} / \mathrm{PB})^{-\mathrm{MJ}} \\
& \mathrm{Cbds}=(1-\mathrm{Vbd} / \mathrm{PBSW})^{-\mathrm{MJSW}}
\end{aligned}
\]

For: Vbd > FC•PB
\[
\begin{aligned}
& \mathrm{Cbdj}=(1-\mathrm{FC})^{-(1+\mathrm{MJ})} \cdot(1-\mathrm{FC} \cdot(1+\mathrm{MJ})+\mathrm{MJ} \cdot \mathrm{Vbd} / \mathrm{PB}) \\
& \mathrm{Cbds}=(1-\mathrm{FC})^{-(1+\mathrm{MJSW})} \cdot(1-\mathrm{FC} \cdot(1+\mathrm{MJSW})+\mathrm{MJSW} \cdot \mathrm{Vbd} / \mathrm{PBSW})
\end{aligned}
\]

Cgs = gate-source overlap capacitance = cGso \(\cdot \mathbf{W}\)
Cgd = gate-drain overlap capacitance = CGDO \(\cdot \mathrm{W}\)
Cgb = gate-bulk overlap capacitance \(=\mathbf{C G B O} \cdot \mathrm{L}\)
See reference [2] for the equations describing the capacitances due to the channel charge.
1. All capacitances are between terminals of the intrinsic MOSFET. That is, to the inside of the ohmic drain and source resistances.

\section*{Temperature Effects}

IS \((\mathrm{T})=\mathrm{IS} \cdot \mathrm{e}^{(\mathrm{Eg}(\mathrm{Tnom}) \cdot \mathrm{T} / \text { Tnom }-\mathrm{Eg}(\mathrm{T}) / \mathrm{v} \mathrm{t}}\)
\(\mathbf{J S}(\mathrm{T})=\mathbf{J s} \cdot e^{(\mathrm{Eg}(\mathrm{Tnom}) \cdot \mathrm{T} / \mathrm{Tnom}-\mathrm{Eg}(\mathrm{T}) / \mathrm{V} \mathrm{t}}\)
\(\operatorname{JsSW}(\mathrm{T})=\mathrm{JSSW} \cdot \mathrm{e}^{(\mathrm{Eg}(\mathrm{Tnom}) \cdot \mathrm{T} / \mathrm{Tnom}-\mathrm{Eg}(\mathrm{T}) / \mathrm{V} \mathrm{t}}\)
\(\mathrm{PB}(\mathrm{T})=\mathrm{PB} \cdot \mathrm{T} /\) Tnom \(-3 \cdot \mathrm{Vt} \cdot \ln (\mathrm{T} / \mathrm{Tnom})-\mathrm{Eg}(\) Tnom \() \cdot \mathrm{T} / \mathrm{Tnom}+\mathrm{Eg}(\mathrm{T})\)
\(\operatorname{PBSW}(\mathrm{T})=\operatorname{PBSW} \cdot \mathrm{T} /\) Tnom \(-3 \cdot \mathrm{Vt} \cdot / n(\mathrm{~T} / \mathrm{Tnom})-\mathrm{Eg}(\mathrm{Tnom}) \cdot \mathrm{T} / \mathrm{Tnom}+\mathrm{Eg}(\mathrm{T})\)
\(\operatorname{PHI}(\mathrm{T})=\mathrm{PHI} \cdot \mathrm{T} / \mathrm{Tnom}-3 \cdot \mathrm{Vt} \cdot / \mathrm{ln}(\mathrm{T} / \mathrm{Tnom})-\mathrm{Eg}(\mathrm{Tnom}) \cdot \mathrm{T} / \mathrm{Tnom}+\mathrm{Eg}(\mathrm{T})\)
where \(\mathrm{Eg}(\mathrm{T})=\) silicon bandgap energy \(=1.16-.000702 \cdot \mathrm{~T}^{2} /(\mathrm{T}+1108)\)
\(\operatorname{CBD}(\mathrm{T})=\mathrm{CBD} \cdot(1+\mathrm{MJ} \cdot(.0004 \cdot(\mathrm{~T}-\mathrm{Tnom})+(1-\mathrm{PB}(\mathrm{T}) / \mathrm{PB})))\)
\(\operatorname{CBS}(\mathrm{T})=\) CBS \(\cdot(1+\mathrm{MJ} \cdot(.0004 \cdot(\mathrm{~T}-\mathrm{Tnom})+(1-\mathrm{PB}(\mathrm{T}) / \mathrm{PB})))\)
\(\mathbf{C J}(\mathrm{T})=\mathbf{C J} \cdot(1+\mathrm{MJ} \cdot(.0004 \cdot(\mathrm{~T}-\mathrm{Tnom})+(1-\mathrm{PB}(\mathrm{T}) / \mathrm{PB})))\)
\(\operatorname{cJSW}(\mathrm{T})=\operatorname{CJSW} \cdot(1+\) MJSW•(.0004•(T-Tnom)+(1-PB(T)/PB)))
\(K P(T)=K P \cdot(T / T n o m)^{-3 / 2}\)
\(\mathbf{u O}(\mathrm{T})=\mathbf{U O} \cdot(\mathrm{T} / \text { Tnom })^{-3 / 2}\)
\(\operatorname{Mus}(T)=\) Mus•(T/Tnom \()^{-3 / 2}\)
\[
\begin{aligned}
& \left.\operatorname{MUZ}()=\text { MUZ }^{(T / T n o m}\right)^{-3 / 2} \\
& \operatorname{X3MS}(T)=\operatorname{X3MS} \cdot(T / \text { Tnom })^{-3 / 2}
\end{aligned}
\]

The ohmic (parasitic) resistances have no temperature dependence.

\section*{Noise}

Noise is calculated assuming a one hertz bandwidth, using the following spectral power densities (per unit bandwidth):
the parasitic resistances ( \(\mathrm{Rd}, \mathrm{Rg}\), Rs, and Rb ) generate thermal noise ...
\[
\begin{aligned}
\mathrm{Id}^{2} & =4 \cdot k \cdot \mathrm{~T} / \mathrm{Rd} \\
\mathrm{Ig}^{2} & =4 \cdot k \cdot \mathrm{~T} / \mathrm{Rg} \\
\mathrm{Is}^{2} & =4 \cdot k \cdot \mathrm{~T} / \mathrm{Rs} \\
\mathrm{lb}^{2} & =4 \cdot k \cdot \mathrm{~T} / \mathrm{Rb}
\end{aligned}
\]
the intrinsic MOSFET generates shot and flicker noise ..
\[
\begin{aligned}
& \text { Idrain }^{2}=4 \cdot k \cdot T \cdot \mathrm{gm} \cdot 2 / 3+\mathrm{KF} \cdot \mathrm{Idrain}^{\text {AF }} /(\text { FREQUENCY } \cdot \text { Kchan }) \\
& \text { where } \\
& \quad \mathrm{gm}=d \mathrm{~d} \text { drain } / d \mathrm{Vgs}(\text { at the } \mathrm{DC} \text { bias point }) \\
& \\
& \quad \text { Kchan }=(\text { effective length })^{2} \cdot\left(\text { permittivity of } \mathrm{SiO}_{2}\right) / \text { Tox }
\end{aligned}
\]

\section*{References}

For a more complete description of the MOSFET models, refer to:
[1] H. Shichman and D. A. Hodges, "Modeling and simulation of insulated-gate field-effect transistor switching circuits," IEEE Journal of Solid-State Circuits, SC-3, 285, September 1968.
[2] A. Vladimirescu, and S. Lui, "The Simulation of MOS Integrated Circuits Using SPICE2," Memorandum No. M80/7, February 1980.
[3] B. J. Sheu, D. L. Scharfetter, P.-K. Ko, and M.-C. Jeng, "BSIM: Berkeley Short-Channel IGFET Model for MOS Transistors," IEEE Journal of Solid-State Circuits, SC-22, 558-566, August 1987.
[4] J. R. Pierret, "A MOS Parameter Extraction Program for the BSIM Model," Memorandum No. M84/99 and M84/100, November 1984.

\section*{Digital Input}
\begin{tabular}{|c|c|}
\hline \multirow[t]{6}{*}{General Form} & N<name> <interface node> <low level node> <high level node> \\
\hline & + <model name> \\
\hline & + DGTLNET = <digital net name> \\
\hline & + <digital I/O model name> \\
\hline & + SIGNAME=<digital signal name> \\
\hline & + [IS = initial state] \\
\hline \multirow[t]{2}{*}{Example} & NRESET 71516 FROM_TTL \\
\hline & N12 180100 FROM_CMOS SIGNAME=VCO_GATE IS=0 \\
\hline Model Form & .MODEL < model name> DINPUT [ model parameters] \\
\hline
\end{tabular}

Table 2-17 Digital Input Model Parameters
\begin{tabular}{lllr}
\hline \begin{tabular}{lll} 
Model \\
Parameters*
\end{tabular} & Description & Units & Default \\
\hline CHI & Capacitance to high level node & farad & 0 \\
CLO & Capacitance to low level node & farad & 0 \\
FILE & Digital input file name (Digital Files only) & & \\
FORMAT & Digital input file format (Digital Files only) & & 1 \\
S0NAME & State "0" character abbreviation & & \\
S0TSW & State "0" switching time & sec & \\
S0RLO & State "0" resistance to low level node & ohm & \\
S0RHI & State "0" resistance to high level node & ohm & \\
S1NAME & State "1" character abbreviation & & \\
S1TSW & State "1" switching time & sec & \\
S1RLO & State "1" resistance to low level node & ohm & \\
S1RHI & State "1" resistance to high level node & ohm & \\
S2NAME & State "2" character abbreviation & & \\
S2TSW & State "2" switching time & sec & \\
S2RLO & State "2" resistance to low level node & ohm & \\
S2RHI & State "2" resistance to high level node & ohm & \\
S19NAME & State "19" character abbreviation & & \\
S19TSW & State "19" switching time & & \\
S19RLO & State "19" resistance to low level node & sec & \\
S19RHI & State "19" resistance to high level node & ohm & \\
TIMESTEP & Digital input file step-size (Digital Files only) sec & 1E-91 \\
\hline
\end{tabular}

\footnotetext{
* See .MODEL statement.
}

Note For more information on using the digital input device to simulate mixed analog/digital systems refer to your PSpice user's guide.

As shown in Figure 2-6, the digital input device is modeled as a time varying resistor from <low level node> to <interface node>, and another time varying resistor from <high level node> to <interface node>. Each of these resistors has an optional fixed value capacitor in parallel: CLO and CHI. When the state of the digital signal changes, the values of the resistors change (exponentially) from their present values to the values specified for the new state over the switching time specified by the new state. Normally the low and high level nodes would be attached to voltage sources which would correspond to the highest and lowest logic levels. (Using two resistors and two voltage levels, any voltage between the two levels can be created at any impedance.

Figure 2-6 Digital Input Model


If SIGNAME = <digital signal name> is specified, this is the name of the digital signal in the input file which controls this digutal input device. Otherwise, the portion of the device name after the leading \(N\) identifies the name of the digital signal.

If IS=<initial state name> is specified, then the initial state of the input (for the bias-point calculation, and TIME=0) is not the value specified by the input file (or the digital simulator) but the value specified by <initial state>. The digital input will remain in this state until a value is read, or received, which is different than the state at TIME \(=0\). The value of <initial state> must be one of the state names (S0NAME through S19NAME) specified by the model.
The state of the digital input may be viewed in Probe by specifying \(B(N x x x)\). The value of \(B(N x x x)\) is 0.0 if the current state is SONAME, 1.0 if the current state is S1NAME, and so on through 19.0. For this reason it is convenient to use SONAME for the lowest logic level, and S19NAME for the highest logic level. These values are not available for .PRINT or .PLOT output. If the file name Is DGTLPSPC, and the Parallel Analog/Digital Simulation option in included, then Pspice will obtain the digital input data from the digital simulator (for example, VIEWsimA/D). In this case the digital simulator must be running concurrently with Pspice, and they must both be simulating the same time interval.

The format parameter is ignored if DGTLPSPC is specified for the file.
Any number of digital input models may be specified. Different digital input models may reference the same file, or different files. (If the models reference the same file, the file must be specified in the same way, or unpredictable results will occur: for example, if the default drive is C :, then one model should not have FILE=C:TEST.DAT if another has FILE=TEST.DAT).

\section*{Digital Output}
```

General Form O<name> <interface node> <reference node> <model name>
+ [DGTLNET = <digital I/O model name>]
+ [SIGNAME = <digital signal name>]
Example
OVCO 17 0 TO_TTL
O5 22 100 TO_CMOS SIGNAME=VCO_OUT

```

Table 2-18 Digital Output Model Parameters
\begin{tabular}{|c|c|c|c|}
\hline Model Parameters * & Description & Units & \\
\hline CHGONLY & \begin{tabular}{l}
0 : write each timestep, \\
1: write upon change 0
\end{tabular} & & \\
\hline CLOAD & Output capacitor & farad & 0 \\
\hline FILE & Digital input file name (Digital Files only) & & \\
\hline FORMAT & Digital input file format (Digital Files only) & & 1 \\
\hline RLOAD & Output resistor & ohm & 1000 \\
\hline SONAME & State "0" character abbreviation & & \\
\hline SOVLO & State "0" low level voltage & volt & \\
\hline SOVHI & State " 0 " high level voltage & volt & \\
\hline S1NAME & State "1" character abbreviation & & \\
\hline S1VLO & State "1" low level voltage & volt & \\
\hline S1VHI & State "1" high level voltage & volt & \\
\hline S2NAME & State "2" character abbreviation & & \\
\hline S2VLO & State "2" low level voltage & volt & \\
\hline S2VHI & State "2" high level voltage & volt & \\
\hline - & - & & \\
\hline S19NAME & State "19" character abbreviation & & \\
\hline S19VLO & State "19" low level voltage & volt & \\
\hline S19VHI & State "19" high level voltage & volt & \\
\hline TIMESTEP & Digital input file step-size & sec & 1E-9 \\
\hline TIMESCALE & Scale factor for TIMESTEP (Digital Files only) & & 1 \\
\hline
\end{tabular}
- See .MODEL statement

Note The digital output device is part of the mixed analog/digital simulation options for Pspice. For more information see the "Digital Files" chapter.

As shown in Figure 2-7, the digital output device is modeled as a resistor and capacitor, of the values specified in the model statement, connected between <interface node> and <reference node>. At times which are integer multiples of TIMESTEP, the "state" of the device node is determined and written to the specified file.

Figure 2-7 Digital Output Model


The state of the node is determined by taking the difference in voltage between the <interface node> and the <reference node>, and comparing it (first) to the voltage range for the current state. If it is within the range, then the new state is the same as the old state. If it is not within the range for the current state, then the states are examined starting with SONAME. The new state is the first one which contains the voltage within its range. (If none contain it, then the state is '?' ). This allows the user to specify hysteresis for the state changes.

If SIGNAME = <digital signal name> is specified, this is the name of the digital signal in the output file. Otherwise, the portion of the device name after the leading O identifies the name of the digital signal.

The state of each device will be written to the output file at times which are integer multiples of TIMESTEP. The "time" which is written will be the integer
```

time = TIMESCALE * TIME/TIMESTEP

```

TIMESCALE defaults to 1 , but if the digital simulator is using a very small timestep compared to the Pspice timestep, it can speed up the Pspice simulation to increase the value of both TIMESTEP and TIMESCALE. This is because Pspice must take time-steps no greater than the digital TIMESTEP size when a digital output is about to change, in order to accurately determine the exact time that the state changes. The value of TIMESTEP should therefore be the time resolution required at the analogdigital interface. The value of TIMESCALE is then used to adjust the output time to be in the same units as the digital simulator uses. For example, if you are doing a digital simulation with a timestep of 100ps, but your circuit has a clock rate of 1 us, setting TIMESTEP to 0.1 us should provide enough resolution. Setting TIMESCALE to 1000 will scale the output time to be in 100ps units.
If CHGONLY=1 only those time-steps in which an digital output state changes are written to the file.
The state of the digital output may be viewed in Probe by specifying \(B(O x x x)\). The value of \(B(O x x x)\) is 0.0 if the current state is SONAME, 1.0 if the current state is S1NAME, and so on through 19.0. For this reason it is convenient to use SONAME for the lowest logic level, and S19NAME for the highest logic level. These values are not available for .PRINT or .PLOT output.
If the file name is PSPCDGTL, and the Parallel Analog/Digital Simulation option in included, then Pspice will obtain the digital input data from the digital simulator (for example, VIEWsimA/D ). In this case the digital simulator must be running concurrently with Pspice, and they must both be
simulating the same time interval. The format parameter is ignored if PSPCGTL is specified for the file.

Any number of digital output models may be specified. Different digital input models may reference the same file, or different files. (If the models reference the same file, the file must be specified in the same way, or unpredictable results will occur: for example, if the default drive is C :, then one model should not have FILE=C:TEST.DAT if another has FILE=TEST.DAT).

\section*{Bipolar Transistor}

General Form
Q<name> < collector node> <base node> <emitter node>
\(+\) [substrate node] <model name> [area value]
\begin{tabular}{ll} 
Examples & Q1 14213 PNPNOM \\
& Q13 15301 NPNSTRONG 1.5 \\
Model Form & Q7 VC 512 [SUB] LATPNP \\
& MODEL < model name> NPN [ model parameters] \\
& MODEL < model name> PNP [ model parameters] \\
& .MODEL < model name> LPNP [ model parameters]
\end{tabular}

Figure 2-8 Bipolar Transistor Model (enhanced Gummel-Poon)


As shown, the bipolar transistor is modeled as an intrinsic transistor using ohmic resistances in series with the collector (RC/area), the base (value varies with current, see equations below), and with the emitter (RE/area). Positive current is current flowing into a terminal. The [area value] is the relative device area and defaults to 1 . For those model parameters which have alternate names, such as VAF and VA (the alternate name is shown by using parentheses), either name can be used.

The substrate node is optional, and if not specified it defaults to ground. Because the simulator allows alphanumeric names for nodes, and because there is no easy way to distinguish these from the model names, it makes it necessary to enclose the name (not a number) used for the substrate node using square brackets "[ ]". Otherwise it is interpreted as a model name. See the third example.

For model types NPN and PNP, the isolation junction capacitance is connected between the intrinsic-collector and substrate nodes. This is the same as in SPICE2, or SPICE3, and works well for vertical IC transistor structures. For lateral IC transistor structures there is a third model, LPNP, where the isolation junction capacitance is connected between the intrinsic-base and substrate nodes.

Table 2-19 Bipolar Transistor Model Parameters
\begin{tabular}{lllr}
\hline \begin{tabular}{l} 
Model \\
Parameters
\end{tabular} & \multicolumn{1}{c}{ Description } & Units & Default \\
\hline AF & Flicker noise exponent & & 1 \\
BF & Ideal maximum forward beta & & 100 \\
BR & Ideal maximum reverse beta & & 1 \\
CJC & Base-collector zero-bias \(p\)-n capacitance & farad & 0 \\
CJE & Base-emitter zero-bias \(p-n\) capacitance & farad & 0 \\
CJS(CCS) & Substrate zero-bias \(p\) - \(n\) capacitance & farad & 0 \\
EG & Bandgap voltage (barrier height) & eV & 1.11 \\
FC & Forward-bias depletion capacitor coefficient & & 0.5 \\
IKF (IK) & Corner for forward-beta high-current roll-off & amp & infinite \\
IKR & Corner for reverse-beta high-current roll-off & amp & infinite \\
IRB & Current at which Rb falls halfway to RBM & amp & infinite \\
IS & Transport saturation current & amp & \(1 \mathrm{E}-16\) \\
ISC (C4) & Base-collector leakage saturation current & amp & 0 \\
ISE (C2) & Base-emitter leakage saturation current & amp & 0 \\
ISS & Substrate \(p-n\) saturation current & amp & 0 \\
ITF & Transit time dependency on Ic & amp & 0 \\
KF & Flicker noise coefficient & & 0 \\
MJC (MC) & Base-collector \(p-n\) grading factor & & 0.33 \\
MJE (ME) & Base-emitter p-n grading factor & & 0.33 \\
MJS (MS) & Substrate \(p-n\) grading factor & & 0 \\
NC & Base-collector leakage emission coefficient & & 2 \\
\hline
\end{tabular}

Table 2-19 Bipolar Transistor Model Parameters (continued)
\begin{tabular}{|c|c|c|c|}
\hline Model Parameters & Description & Units & Default \\
\hline NE & Base-emitter leakage emission coefficient & & 1.5 \\
\hline NF & Forward current emission coefficient & & 1 \\
\hline NR & Reverse current emission coefficient & & 1 \\
\hline NS & Substrate \(p\)-n emission coefficient & & 1 \\
\hline PTF & Excess phase @ 1/(2p.TF)Hz & degree & 0 \\
\hline QCO & Epitaxial region charge factor & coulomb & 0 \\
\hline RB & Zero-bias (maximum) base resistance & ohm & 0 \\
\hline RBM & Minimum base resistance & ohm & RB \\
\hline RC & Collector ohmic resistance & ohm & 0 \\
\hline RE & Emitter ohmic resistance & ohm & 0 \\
\hline TF & Ideal forward transit time & sec & 0 \\
\hline TR & Ideal reverse transit time & sec & 0 \\
\hline TRB1 & RB temperature coefficient (linear) & \({ }^{\circ} \mathrm{C} \mathrm{C}^{-1}\) & 0 \\
\hline TRB2 & RB temperature coefficient (quadratic) & \({ }^{\circ} \mathrm{C}{ }^{-2}\) & 0 \\
\hline TRC1 & RC temperature coefficient (linear) & \({ }^{\circ} \mathrm{C}{ }^{-1}\) & 0 \\
\hline TRC2 & RC temperature coefficient (quadratic) & \({ }^{\circ} \mathrm{C}{ }^{-2}\) & 0 \\
\hline TRE1 & RE temperature coefficient (linear) & \({ }^{\circ} \mathrm{C}{ }^{-1}\) & 0 \\
\hline TRE2 & RE temperature coefficient (quadratic) & \({ }^{\circ} \mathrm{C}{ }^{-2}\) & 0 \\
\hline TRM1 & RBM temperature coefficient (linear) & \({ }^{\circ} \mathrm{C}{ }^{-1}\) & 0 \\
\hline TRM2 & RBM temperature coefficient (quadratic) & \({ }^{\circ} \mathrm{C}{ }^{-2}\) & 0 \\
\hline VAF (VA) & Forward Early voltage & volt & infinite \\
\hline VAR (VB) & Reverse Early voltage & volt & infinite \\
\hline VJC (PC) & Base-collector built-in potential & volt & 0.75 \\
\hline VJE (PE) & Base-emitter built-in potential & volt & 0.75 \\
\hline VJS (PS) & Substrate \(p\)-n built-in potential & volt & 0.75 \\
\hline VTF & Transit time dependency on Vbc & volt & infinite \\
\hline XCJC & Fraction of CJC connec. internally to Rb & & 1 \\
\hline XTB & Forward and reverse beta temp coeff. & & 0 \\
\hline XTF & Transit time bias dependence coefficient & & 0 \\
\hline XTI (PT) & IS temperature effect exponent & & 3 \\
\hline
\end{tabular}

The parameters ISE (C2) and ISC (C4) can be set to be greater than one. In this case, they are interpreted as multipliers of IS instead of absolute currents: that is, if ISE is greater than one then it is replaced by ISE•IS. Likewise for ISC.

\section*{Equations}

In the following equations:
Vbe = intrinsic base-intrinsic emitter voltage
Vbc = intrinsic base-intrinsic collector voltage
Vbs = intrinsic base-substrate voltage
Vbx = extrinsic base-intrinsic collector voltage
Vce = intrinsic collector-intrinsic emitter voltage
Vjs \(=(N P N)\) intrinsic collector-substrate voltage
\(=(\) PNP ) intrinsic substrate-collector voltage
\(=(\) LPNP \()\) intrinsic base-substrate voltage
\(\mathrm{Vt} \quad=k \cdot \mathrm{~T} / \mathrm{q}\) (thermal voltage)
\(\mathrm{k}=\) Boltzmann's constant
q = electron charge
\(\mathrm{T}=\) analysis temperature ( \({ }^{\circ} \mathrm{K}\) )
Tnom = nominal temperature (set using TNOM option)
Other variables are from the model parameter list. These equations describe an NPN transistor. For the PNP and LPNP devices, reverse the signs of all voltages and currents.

\section*{DC Currents}

Note: Positive current is current flowing into a terminal.
\[
\begin{aligned}
& \mathrm{lb}=\text { base current }=\text { area. }(\mathrm{lbe} 1 / \mathrm{BF}+\mathrm{lbe} 2+\mathrm{lbc} 1 / \mathrm{BR}+\mathrm{lbc} 2) \\
& \mathrm{Ic}=\text { collector current }=\text { area } \cdot(\mathrm{Ibe} 1 / \mathrm{Kqb}-\mathrm{Ibc} 1 / \mathrm{Kqb}-\mathrm{Ibc} 1 / \mathrm{BR}-\mathrm{Ibc} 2) \\
& \text { lbe1 = forward diffusion current }=\text { Is } \cdot\left(\mathrm{e}^{\mathrm{Vbe} /(\mathrm{NF} \cdot \mathrm{Vt})}-1\right) \\
& \text { lbe2 }=\text { non-ideal base-emitter current }=\text { ISE•( }(\mathrm{Vbe} /(\mathrm{NE} \cdot \mathrm{Vt})-1) \\
& \mathrm{lbc} 1=\text { reverse diffusion current }=\mathrm{Is} \cdot\left(\mathrm{e}^{\mathrm{Vbc} /(\mathrm{NR} \cdot \mathrm{Vt})}-1\right) \\
& \mathrm{lbc} 2=\text { non-ideal base-collector current }=\mathbf{I S C} \cdot\left(\mathrm{e}^{\mathrm{Vbc} /(\mathrm{NC} \cdot \mathrm{Vt})}-1\right) \\
& \mathrm{Kqb}=\text { base charge factor }=\mathrm{Kq1} \cdot\left(1+(1+4 \cdot \mathrm{Kq} 2)^{1 / 2}\right) / 2 \\
& \mathrm{Kq} 1=1 /(1-\mathrm{Vbc} / \mathrm{VAF}-\mathrm{Vbe} / \text { VAR }) \\
& \mathrm{Kq} 2=\mathrm{Ibe} 1 / \mathrm{IKF}+\mathrm{lbc} 1 / / \mathrm{KR} \\
& \text { Is }=\text { substrate current }=\operatorname{area} \cdot \mathrm{Iss} \cdot\left(\mathrm{e}^{\mathrm{Vjs} /(\mathrm{NS} \cdot \mathrm{Vt})}-1\right) \\
& \mathrm{Rb}=\text { actual base parasitic resistance } \\
& \text { For: IRB = infinite (default value) } \\
& R b=(\text { RBM }+(\text { RB-RBM }) / K q b) / a r e a \\
& \text { For: } \operatorname{IRB}>0 \\
& \mathrm{Rb}=\left(\mathbf{R B M}+3 \cdot(\mathbf{R B}-\mathbf{R B M}) \cdot(\tan (x)-x) /\left(x \cdot \tan ^{2}(x)\right)\right) / \text { area } \\
& \text { where } x=\left(\left(1+\left(144 / \pi^{2}\right) \cdot \mathrm{lb} /(\text { area } \cdot \operatorname{IRB})\right)^{1 / 2}-1\right) /\left(\left(24 / \pi^{2}\right) \cdot(\mathrm{Ib} /(\text { area } \cdot \mathrm{IRB}))^{1 / 2}\right)
\end{aligned}
\]

\section*{Capacitances}

Note: All capacitances, except Cbx, are between terminals of the intrinsic transistor which is inside of the col-lector, base, and emitter parasitic resistances. Cbx is between the intrinsic collector and the extrinsic base.

Cbe \(=\) base-emitter capacitance \(=\) area \(\cdot(\) Ctbe + Cjbe \()\)
Ctbe \(=\) transit time capacitance \(=\mathrm{tf} \cdot \mathrm{Gbe}\)
\(\mathrm{tf}=\) effective \(\mathrm{TF}=\mathrm{TF} \cdot\left(1+\mathrm{XTF} \cdot\left(3 \mathrm{x}^{2}-2 \mathrm{x}^{3}\right) \cdot \mathrm{e}^{\mathrm{Vbc} /(1.44 \cdot \mathrm{VTF})}\right)\)
where \(\mathrm{x}=\mathrm{lbe} 1 /(\mathrm{lbe} 1+\mathrm{area} \cdot \mathrm{ITF})\)
Gbe \(=\mathrm{DC}\) base-emitter conductance \(=(d \mathrm{llbe} 1) /(d \mathrm{Vbe})\)
For: Vbe \(\leq \mathrm{FC} \cdot \mathrm{VJE}\)
Cjbe \(=\mathbf{C J E} \cdot(1-\mathrm{Vbe} / \text { VJE })^{-\mathrm{MJE}}\)
For: Vbe > FC-vJE
Cjbe \(=\mathbf{C J E} \cdot(1-\mathrm{FC})^{-(1+\mathrm{MJE})} \cdot(1-\mathrm{FC} \cdot(1+\mathrm{MJE})+\mathrm{MJE} \cdot \mathrm{Vbe} / \mathrm{VJE})\)
\(\mathrm{Cbc}=\) base-collector capacitance \(=\) area \(\cdot(\mathrm{Ctbc}+\) XcJc \(\cdot \mathrm{Cjbc})\)
Ctbc \(=\) transit time capacitance \(=\mathbf{T R} \cdot \mathrm{Gbc}\)
\(\mathrm{Gbc}=\mathrm{DC}\) base-collector conductance \(=(d \mathrm{lbc}) /(d \mathrm{Vbc})\)
For: Vbc \(\leq \mathbf{F C} \cdot\) vJc
\(\mathrm{Cjbc}=\mathbf{c J c} \cdot(1-\mathrm{Vbc} / \mathrm{VJc})^{-\mathrm{MJC}}\)
For: Vbc > FC. VJC
Cjbc = CJC \(\cdot(1-\mathrm{FC})^{-(1+\mathrm{MJC})} \cdot(1-\mathrm{FC} \cdot(1+\mathrm{MJC})+\mathrm{MJC} \cdot \mathrm{Vbc} / \mathrm{VJC})\)
\(\mathrm{Cbx}=\) extrinsic-base to intrinsic-collector capacitance \(=\) area \(\cdot(1-\mathrm{xCJC}) \cdot \mathrm{Cjbx}\)
For: Vbx \(\leq \mathrm{FC} \cdot \mathrm{VJC}\)
\(\mathrm{Cjbx}=\mathbf{c J C} \cdot(1-\mathrm{Vbx} / \mathrm{VJC})^{-\mathrm{MJC}}\)
For: Vbx > FC-vJc
Cjbx \(=\mathbf{C J C} \cdot(1-\mathrm{FC})^{-(1+\mathrm{MJC})} \cdot(1-\mathrm{FC} \cdot(1+\mathrm{MJC})+\mathrm{MJC} \cdot \mathrm{Vbx} / \mathrm{VJC})\)
\(\mathrm{Cjs}=\) substrate junction capacitance \(=\) area \(\cdot \mathrm{Cjjs}\)
For: Vjs \(\leq 0\)
\(\mathrm{Cjjs}=\mathbf{c J s} \cdot(1-\mathrm{Vjs} / \mathrm{VJS})^{-\mathrm{MJS}} \quad\) (assumes \(\left.\mathrm{FC}=0\right)\)
For: Vjs \(>0\)
Cjjs = cus•(1+MJs•Vjs/vjs)

\section*{Temperature Effects}
\[
\begin{aligned}
& \mathrm{IS}(\mathrm{~T})=\mathrm{IS} \cdot \mathrm{e}^{(\mathrm{T} / T \text { nom-1) } \cdot \mathrm{EG} /(\mathrm{N} \cdot \mathrm{Vt})} \cdot(\mathrm{T} / \mathrm{Tnom})^{\mathrm{XT} / \mathrm{N}} \\
& \text { where } \mathrm{N}=1 \\
& \operatorname{ISE}(\mathrm{~T})=\left(\operatorname{ISE} /(\mathrm{T} / \mathrm{Tnom})^{\mathrm{XTB}}\right) \cdot e^{(\mathrm{T} / \mathrm{Tnom}-1) \cdot E G /(\mathrm{NE} \cdot \mathrm{Vt})} \cdot(\mathrm{T} / \text { Tnom })^{\mathrm{XTI} / \mathrm{NE}} \\
& \operatorname{ISC}(\mathrm{~T})=\left(\mathbf{I S C} /(\mathrm{T} / \mathrm{Tnom})^{\mathrm{XTB}}\right) \cdot \mathrm{e}^{(\mathrm{T} / \text { Tnom-1) }) \cdot \mathrm{EG} /(\mathrm{NC} \cdot \mathrm{Vt})} \cdot(\mathrm{T} / \mathrm{Tnom})^{\mathrm{XTI} / \mathrm{NC}} \\
& \operatorname{ISS}(\mathrm{~T})=\left(\mathrm{ISS} /(\mathrm{T} / \mathrm{Tnom})^{\mathrm{XTB}}\right) \cdot \mathrm{e}^{(\mathrm{T} / T n o m-1) \cdot E G /(\mathrm{NS} \cdot \mathrm{Vt})} \cdot(\mathrm{T} / \mathrm{Tnom})^{\mathrm{XT} / \mathrm{NS}} \\
& B F(T)=B F \cdot(T / T n o m)^{X T B} \\
& B R(T)=B R \cdot(T / \text { Tnom })^{X T B} \\
& \operatorname{RE}(\mathrm{~T})=\operatorname{RE} \cdot\left(1+\mathrm{TRE} 1 \cdot(\mathrm{~T}-\mathrm{Tnom})+\text { TRE2 } \cdot(\mathrm{T}-\mathrm{Tnom})^{2}\right) \\
& \mathbf{R B}(\mathbf{T})=\mathbf{R B} \cdot\left(1+\mathbf{T R B} 1 \cdot(\mathrm{~T}-\text { Tnom })+\mathbf{T R B} 2 \cdot(\mathrm{~T}-\text { Tnom })^{2}\right) \\
& \operatorname{RBM}(\mathbf{T})=\operatorname{RBM} \cdot\left(1+\mathbf{T R M 1} \cdot(\mathrm{T}-\mathrm{Tnom})+\mathbf{T R M} \mathbf{2} \cdot(\mathrm{T}-\mathrm{Tnom})^{2}\right) \\
& \mathbf{R C}(\mathbf{T})=\mathbf{R C} \cdot\left(1+\text { TRC } 1 \cdot(\mathrm{~T}-\text { Tnom })+\text { TRC2 } \cdot(\mathrm{T}-\text { Tnom })^{2}\right) \\
& \operatorname{vJE}(T)=v J E \cdot T / T n o m-3 \cdot v t \cdot \ln (T / T n o m)-E g(T n o m) \cdot T / T n o m+E g(T) \\
& \text { vJc }(\mathrm{T})=\mathrm{vJc} \cdot \mathrm{~T} / \mathrm{Tnom}-3 \cdot \mathrm{Vt} \cdot \ln (\mathrm{~T} / \mathrm{Tnom})-\mathrm{Eg}(\text { Tnom }) \cdot \mathrm{T} / \mathrm{Tnom}+\mathrm{Eg}(\mathrm{~T}) \\
& \text { vJs(T) }=\text { vJs } \cdot \mathrm{T} / \mathrm{Tnom}-3 \cdot \mathrm{Vt} \cdot \mathrm{In}(\mathrm{~T} / \mathrm{Tnom})-\mathrm{Eg}(\mathrm{Tnom}) \cdot \mathrm{T} / \mathrm{Tnom}+\mathrm{Eg}(\mathrm{~T}) \\
& \text { where } \mathrm{Eg}(\mathrm{~T})=\text { silicon bandgap energy }=1.16-.000702 \cdot \mathrm{~T}^{2} /(\mathrm{T}+1108) \\
& \operatorname{CJE}(\mathrm{T})=\operatorname{CJE} \cdot(1+\mathrm{MJE} \cdot(.0004 \cdot(\mathrm{~T}-\mathrm{Tnom})+(1-\mathrm{VJE}(\mathrm{~T}) / \mathrm{VJE}))) \\
& \text { CJC(T) }=\text { CJC•(1+MJC•(.0004•(T-Tnom) }+(1-\mathrm{VJC}(\mathrm{~T}) / \mathrm{vJC}))) \\
& \text { cJs(T) }=\text { CJs•(1+MJS•(.0004•(T-Tnom)+(1-VJS(T)/vJS))) }
\end{aligned}
\]

The collector, base, and emitter parasitic resistances have no temperature dependence.

\section*{Noise}

Noise is calculated assuming a one hertz bandwidth, using the following spectral power densities (per unit bandwidth):
the parasitic resistances generate thermal noise ...
\[
\begin{aligned}
& \mathrm{Ic}^{2}=4 \cdot k \cdot \mathrm{~T} /(\mathrm{RC} / \text { area }) \\
& \mathrm{Ib}^{2}=4 \cdot k \cdot \mathrm{~T} / \mathrm{Rb} \\
& \mathrm{Ie}^{2}=4 \cdot k \cdot \mathrm{~T} /(\mathrm{RE} / \text { area })
\end{aligned}
\]
the base and collector currents generate shot and flicker noise ...
\[
\begin{aligned}
& \mathrm{Ib}^{2}=2 \cdot q \cdot \mathrm{lb}+\mathrm{KF} \cdot \mathrm{Ib} \mathrm{AF}^{\mathrm{AF}} / \text { FREQUENCY } \\
& \mathrm{Ic}^{2}=2 \cdot q \cdot \mathrm{Ic}+\mathrm{KF} \cdot \mathrm{Ic}{ }^{\mathrm{AF}} / \text { FREQUENCY }
\end{aligned}
\]

\section*{References}

For a more complete description of bipolar transistor models, refer to
[1] Ian Getreu, Modeling the Bipolar Transistor, Tektronix, Inc. part\# 062-2841-00.

\section*{Resistor}

General Form
Examples

Model Form
(+) and (-) nodes

R<name> <(+) node> <(-) node> [model name] <value>
RLOAD 15 0 2 K
\(\begin{array}{llll}\text { R2 } & 1 & 2.4 \mathrm{E} 4\end{array}\)
.MODEL < model name> RES [ model parameters]

Define the polarity when the resistor has a positive voltage across it. Positive current flows from the (+) node through the resistor to the (-) node.
[model name] If this is included and TCE (in the model) is not specified, then the resistance is given by the formula
<value>•R•(1+TC1•(T-Tnom)+TC2.(T-Tnom) \({ }^{2}\) )
where <value> is normally positive (though it can be negative, but not zero). If [model name] is included and TCE (in the model) is specified, then the resistance is given by the formula
```

<value>.R.1.01 'TE.(T-Tnom)

```
where <value> is normally positive (though it can be negative, but not zero). "Tnom" is the nominal temperature (set using TNOM option).

Table 2-20 Resistor Model Parameters
\begin{tabular}{lllr}
\hline \begin{tabular}{l} 
Model \\
Parameters
\end{tabular} & \multicolumn{1}{c}{ Description } & Units & Default \\
\hline R & Resistance multiplier & & 1 \\
TC1 & Linear temperature coefficient & \({ }^{\circ} \mathrm{C}-1\) & 0 \\
TC2 & Quadratic temperature coefficient & \({ }^{\circ} \mathrm{C}-2\) & 0 \\
TCE & Exponential temperature coefficient & \(\% /{ }^{\circ} \mathrm{C}\) & 0 \\
\hline
\end{tabular}

\section*{Noise}

Noise is calculated assuming a one hertz bandwidth. The resistor generates thermal noise using the following spectral power density (per unit bandwidth)
\[
\mathrm{i}^{2}=4 \cdot k \cdot T / \text { resistance }
\]

\section*{Voltage-Controlled Switch}
```

General Form
S<name> <(+) switch node> <(-) switch node>
+ <(+) controlling node> <(-) controlling node>
+ <model name>
Examples S12 13 17 2 0 SMOD
SESET 5 0 15 3 RELAY
Model Form .MODEL < model name> VSWITCH [model parameters]

```

The voltage-controlled switch is a special kind of voltage-controlled resistor. The resistance between the \(<(+)\) switch node> and \(<(-)\) switch node> depends on the voltage between the \(<(+)\) controlling node> and \(<(-)\) controlling node>. The resistance varies continuously between the RON and ROFF model parameters.

A resistance of \(1 / \mathrm{GMIN}\) is connected between the controlling nodes to keep them from floating. See the .OPTIONS statement (page 1-26) for setting GMIN.

We have chosen this model for a switch to try to minimize numerical problems. However, there are a few things to keep in mind:

With double precision numbers Pspice can handle only a dynamic range of about 12 decades. So, we do not recommend making the ratio of ROFF to RON greater than \(1 \mathrm{E}+12\).

Similary, we do not recommend making the transition region too narrow. Remember that in the transition region the switch has gain. The narrower the region, the higher the gain and the greater the potential for numerical problems.

Although very little computer time is required to evaluate switches, during transient analysis the simulator must step through the transition region using a fine enough step size to get an accurate waveform. Applying many transitions can produce long run times when evaluating the other devices in the circuit at each time step.

RON and ROFF must be greater than zero and less than 1/GMIN.

Table 2-21 Voltage-Controlled Switch Model Parameters
\begin{tabular}{lllr}
\hline \begin{tabular}{l} 
Model \\
Parameters
\end{tabular} & \multicolumn{1}{c}{ Description } & Units & Default \\
\hline ROFF & "Off" resistance & ohm & \(1 \mathrm{E}+6\) \\
RON & "On" resistance & ohm & 1.0 \\
VOFF & Control voltage for "off" state & volt & 0.0 \\
VON & Control voltage for "on" state & volt & 1.0 \\
\hline
\end{tabular}

\section*{Equations}

In the following equations:
\[
\begin{array}{ll}
\text { Vc } & =\text { voltage across control nodes } \\
\mathrm{Lm} & =\log \text {-mean of resistor values }=\ln \left((\text { RON } \cdot \text { ROFF })^{1 / 2}\right) \\
\mathrm{Lr} & =\text { log-ratio of resistor values }=\ln (\text { RON } / \text { ROFF }) \\
\mathrm{Vm} & =\text { mean of control voltages }=(\text { VON }+ \text { VOFF }) / 2 \\
\mathrm{Vd} & =\text { difference of control voltages }=\text { VON-vOFF } \\
k & =\text { Boltzmann's constant } \\
\mathrm{T} & =\text { analysis temperature }\left({ }^{\circ} \mathrm{K}\right)
\end{array}
\]

\section*{Switch Resistance}

Rs = switch resistance
If: VON > VOFF
For: \(\quad \mathrm{Vc} \geq \mathrm{VON}\)
\[
R s=R O N
\]

For: \(\quad\) Vc \(\leq\) VOFF
Rs = ROFF

For: \(\quad \mathrm{VOFF}<\mathrm{Vc}<\mathrm{VON}\)
\(\mathrm{Rs}=\exp \left(\mathrm{Lm}+3 \cdot \mathrm{Lr} \cdot(\mathrm{Vc}-\mathrm{Vm}) /(2 \cdot \mathrm{Vd})-2 \cdot \mathrm{Lr} \cdot(\mathrm{Vc}-\mathrm{Vm})^{3} / \mathrm{Vd}^{3}\right)\)
If: VON < VOFF
For: \(\quad \mathrm{Vc} \leq \mathrm{VON}\)
Rs = RON

For: \(\mathrm{Vc} \geq\) voff
\[
\text { Rs }=\text { ROFF }
\]

For: VOFF \(>\mathrm{Vc}>\) von
\[
\mathrm{Rs}=\exp \left(\mathrm{Lm}-3 \cdot \mathrm{Lr} \cdot(\mathrm{Vc}-\mathrm{Vm}) /(2 \cdot \mathrm{Vd})+2 \cdot \mathrm{Lr} \cdot(\mathrm{Vc}-\mathrm{Vm})^{3} / \mathrm{Vd}^{3}\right)
\]

\section*{Noise}

Noise is calculated assuming a one hertz bandwidth. The voltage-controlled switch generates thermal noise as if it were a resistor having the same resistance that the switch has at the bias point, using the following spectral power density (per unit bandwidth)
\[
i^{2}=4 \cdot k \cdot T / R s
\]

\section*{Transmission Line}


Figure 2-9 Transmission Line Model


Table 2-22 Transmission Line Model Parameters
\begin{tabular}{lllr}
\hline \begin{tabular}{lll} 
Model \\
Parameters
\end{tabular} & \multicolumn{1}{c}{ Description } & Units & Default \\
\hline ZO & Characteristic impedance & ohms & none \\
TD & Transmission delay & seconds & none \\
F & Frequency for NL & Hz & none \\
NL & Relative wavelength & none & .25 \\
\hline
\end{tabular}

As shown in Figure 2-22, the transmission line device is a bidirectional, delay line. It has two ports, A and \(B\). The (+) and (-) nodes define the polarity of a positive voltage at a port. In Figure 2-12, port A's (+) and (-) nodes are one and two, and port B's (+) and (-) nodes are three and four, respectively.

Z0 is the characteristic impedance. The transmission line's length can be specified either by TD, a delay in seconds, or by F and NL, a frequency and a relative wavelength at F. NL defaults to 0.25 ( \(F\) is then the quarter-wave frequency). Although TD and \(F\) are both shown as optional, one of the two must be specified. Examples T1, T2, and T3 all specify the same transmission line.

Note Both Z0 ("zee-zero") and ZO ("zee-oh") are accepted by the simulator.

During transient (.TRAN) analysis, the internal time step is limited to be no more than one-half the smallest transmission delay, so short transmission lines cause long run times.

\section*{Digital Device}


Table 2-23 Digital Device Model Parameters
\begin{tabular}{lllr}
\hline Model & \multicolumn{1}{c}{ Description } & Units & Default \\
Parameters & & & \\
\hline INLD & Input load capacitance & farad & 0 \\
OUTLD & Output load capacitance & farad & 0 \\
DRVH & Output high level resistance & ohm & 0 \\
DRVL & Output low level resistance & ohm & 0 \\
AtoD & Name of AtoD subcircuit & & none \\
DtoA & Name of DtoA subcircuit & & none \\
\hline
\end{tabular}

Note \(\quad\) The digital devices are part of the Digital Simulation option for Pspice. For more information on these devices see the "Digital Simulation" chapter.

\section*{Current-Controlled Switch}

General Form


Model Form
.MODEL < model name> ISWITCH [ model parameters]

Table 2-24 Current-Controlled Switch Model Parameters
\begin{tabular}{lllr}
\hline \begin{tabular}{l} 
Model \\
Parameters
\end{tabular} & \multicolumn{1}{c}{ Description } & Units & Default \\
\hline IOFF & Control current for "off" state & amp & 0.0 \\
ION & Control current for "on" state & amp & \(1 \mathrm{E}-3\) \\
ROFF & "Off" resistance & ohm & \(1 \mathrm{E}+6\) \\
RON & "On" resistance & ohm & 1.0 \\
\hline
\end{tabular}

The current-controlled switch is a special kind of current-controlled resistor. <controlling V device name>

The resistance between the <(+) switch node and <(-) switch node> depends on the current through <controlling \(V\) device name>.
The resistance varies continuously between RON and ROFF.
RON and ROFF Must be greater than zero and less than 1/GMIN.
A resistance of \(1 /\) GMIN is connected between the controlling nodes to keep them from floating. See the .OPTIONS statement (page 1-26) for setting GMIN.

This model was chosen for a switch to try to minimize numerical problems. However, there are a few things that must be evaluated:

Using double precision numbers, the simulator can handle only a dynamic range of about 12 decades. Therefore, it is not recommended making the ratio of ROFF to RON greater than \(1 \mathrm{E}+12\).

Similarly, it is also not recommended making the transition region too narrow. Remembering that in the transition region the switch has gain. The narrower the region, the higher the gain and the greater the potential for numerical problems.

Although very little computer time is required to evaluate switches, during transient analysis the simulator must step through the transition region using a fine enough step size to get an accurate waveform. Having many transitions can produce long run times when evaluating the other devices in the circuit for many times.

In the following equations:
\[
\begin{array}{ll}
\mathrm{Ic} & =\text { controlling current } \\
\mathrm{Lm} & =\text { log-mean of resistor values }=\ln \left((\text { RON } \cdot \text { ROFF })^{1 / 2}\right) \\
\mathrm{Lr} & =\text { log-ratio of resistor values }=\ln (\text { RON } / \text { ROFF }) \\
\mathrm{Im} & =\text { mean of control currents }=(\text { ION }+ \text { IOFF }) / 2 \\
\mathrm{Id} & =\text { difference of control currents }=\text { ION-IOFF } \\
k & =\text { Boltzmann's constant } \\
\mathrm{T} & =\text { analysis temperature }\left({ }^{\circ} \mathrm{K}\right)
\end{array}
\]

\section*{Switch Resistance}

Rs = switch resistance
If: ION > IOFF
For: \(\mathrm{Ic} \geq\) ION
Rs \(=\) RON
For: lc \(\leq\) IOFF
Rs = ROFF
For: IOFF < Ic < ION
\(\mathrm{Rs}=\exp \left(\mathrm{Lm}+3 \cdot \mathrm{Lr} \cdot(\mathrm{Ic}-\mathrm{Im}) /(2 \cdot \mathrm{Id})-2 \cdot \mathrm{Lr} \cdot(\mathrm{Ic}-\mathrm{Im})^{3} / \mathrm{Id}^{3}\right)\)
If: ION < IOFF
For: \(\mathrm{lc} \leq \mathrm{ION}\)
Rs = RON
For: Ic \(\geq\) IOFF
Rs = ROFF
For: IOFF > Ic > ION
\[
\mathrm{Rs}=\exp \left(\mathrm{Lm}-3 \cdot \mathrm{Lr} \cdot(\mathrm{Ic}-\mathrm{Im}) /(2 \cdot \mathrm{Id})+2 \cdot \mathrm{Lr} \cdot(\mathrm{Ic}-\mathrm{Im})^{3} / \mathrm{Id}^{3}\right)
\]

\section*{Noise}

Noise is calculated assuming a one hertz bandwidth. The current-controlled switch generates thermal noise as if it were a resistor using the same resistance as the switch has at the bias point, using the following spectral power density (per unit bandwidth)
\[
\mathrm{i}^{2}=4 \cdot k \cdot \mathrm{~T} / \mathrm{Rs}
\]

\section*{Subcircuit Instantiation}

\author{
General Form \\ Examples \\ \(\begin{array}{lllll}\text { X12 } & 100 & 101 & 200 & 201 \\ \text { DIFFAMP }\end{array}\) \\ XBUFF \(13 \quad 15\) UNITAMP \\ <subcircuit name> \\ The <subcircuit name> is the name of the subcircuit's definition (see .SUBCKT statement). \\ There must be the same number of nodes in the call as in the subcircuit's definition. This statement causes the referenced subcircuit to be inserted into the circuit using the given nodes to replace the argument nodes in the definition. It allows a block of circuitry to be defined once and then used in several places. \\ Subcircuit references can be nested. That is, a call can be given to subcircuit \(A\), whose definition contains a call to subcircuit \(B\). The nesting can be to any level, but must not be circular: for example, if subcircuit A's definition contains a call to subcircuit \(B\), then subcircuit \(B\) 's definition must not contain a call to subcircuit \(A\).
}```


[^0]:    1. All capacitances are between terminals of the intrinsic GaAsFET (that is, to the inside of the ohmic drain, source, and gate resistances).
