

Cell Production Technologies and Perspectives on Cost vs. Volume

C.Lanciotti, S.Saguatti, F.Nanni, J.Dispennette

Joint EC / EPoSS / ERTRAC Expert Workshop 2010 "Electric Vehicle Batteries Made in Europe"

Large Battery Formats

		High manufacturing throughput	
	Wound	High packaging costs	
a de tractée		Low packing density	
R5410 361 361			
CO Pr	Baseline	Continuous feeding of materials	
	Process	Continuous recurry of materials	
	Prismatic	Low manufacturing throughput	
		Low packaging costs	
		High packing density	
	Baseline	Index feeding of materials	
	Process	Index reeding of materials	

Traditional Approach for Prismatic Assembly is Stacking

	Each layer (anode, separator, cathode) pick and placed
Process	Multi-layer precision placement difficulties
	Long cycle time

Improved manufacturing methods required to make product cost effective

Is it possible to combine Winding with Stacking?

TARGET: Integrate the best of both

Approach 1:

Prismatic Winding	Improved manufacturing throughput compared to Stacking
	Similar packaging costs to winding
	Improved packing density compared to winding
Process	Continuous feeding of materials

Main technical concern is stressing of electrodes in corners

What can be done to refine further?

Approach 2:

Z – Folding	Improved manufacturing throughput compared to Stacking
	Utilize same packaging as Stacking
	Same packaging density as Stacking

Process	Alternating electrodes,
	continuous separator

A good solution...can we do better?

An Innovative Solution – Stack Winding

Incorporates continuous process of Winding with volumetric efficiency and energy density of Stacking.

And the result is...

- A stacked electrode construction
- A continuous process method

Benefits include...

- Self supporting structure
- Reduction of wrinkling
- Enhanced safety

Let's take a closer look

Cell Assembly

Assembly

What can be monitored, analyzed, or recorded?

Each electrode is monitored for:

•Width

- Anode tab to Cathode tab placement
- Anode to Cathode side alignment
- Anode to Cathode top alignment
- Distance betweeen each Anode/Cathode pair

100% data collection for analysis on every electrode within the battery cell

Record can be maintained visually for verification

What are typical results achieved?

Inspection analysis

Summary of Key Parameters (Large Format Batteries)

Process	Tolerance (+/-)	LSL (mm)	USL (mm)	STD (mm)	СрК
Anode tab to Cathode tab	0.5	45.00	46.00	0.06	> 2.0
Anode/Cathode (sides)	0.5	3.00	4.00	0.08	> 2.0
Anode/Cathode (bottom)	0.5	1.50	2.50	0.08	> 2.0
Gaps (representative)	0.5	2.50	3.50	0.08	> 2.0

Summary of Processes

Assembly	Ma	aterial Feedi	Quality	Safety	
Method	Method mm/sec Ahr/min		Position	Integrity	
Winding	Cont.	500 – 1000	300	+	+
Stacking	Index	50 – 75	20	-	-
Prismatic Winding	Cont.	250 – 300	120	+	-
Z – Folding	Index	75 – 100	40	-	-
Stack Winding	Cont.	250 – 300	120	+	+

Assumes h = 250 mm

Stack Winding achieves the goals of throughput and quality.

An Innovative Solution – Stack Winding

Stack Winding	Improved manufacturing throughput compared to Z – Folding and Stacking
	Utilize same packaging as Stacking
	Same packaging density as Stacking
Process	Continuous material feeding

Example Product

20 Ahr

73 Wh

Base Cell BOM Structure								
ltem	Description	unit	\$/unit	qty/unit	cost	% annual change		
1	Cathode	m2	30,00	0,500	\$15,00	-5%		
2	Anode	m2	15,00	0,500	\$7,50	-5%		
3	Separator	m2	2,50	0,500	\$1,25	-2%		
4	Electrolyte	kg	18,00	0,160	\$2,88	-3%		
5	Lead tab A (w/adhesive)	each	0,40	1,000	\$0,40			
6	Lead tab B (w/adhesive)	each	0,40	1,000	\$0,40			
7	Packaging, AI/PP laminate	m²	2,00	0,450	\$0,90	-4%		

Common Facility Assumptions for Battery Plant											
Factory utilizatio	n	24	hr/day								
		6	day/week								
		4 0	weeks								
				COGS	Summary	y (Option	n 1)				
		Year 1	Year 2	Year 3	Year 4	Year 5	Year 6	Year 7	Year 8	Year 9	Year 10
Material	€/cell	21,413	20,452	19,536	18,664	1 7,8 33	17,042	16,289	15,571	14,888	14,237
Direct Labor	€/cell	0,265	0,272	0,281	0,289	0,298	0,307	0,316	0,325	0,335	0,345
Indirect	€/cell	0,794	0 ,8 33	0 ,8 33	0 ,8 33	0 ,8 33	0 ,8 33	0 ,8 33	0 ,8 33	0 ,8 33	0 ,8 33
Depreciation	€/cell	0,194	0,262	0,262	0,262	0,262	0,262	0,262	0,262	0,262	0,262
COGS	€/cell	22,665	21,819	20,912	20,048	19,226	18,444	17,700	16,992	16,318	15,677
ASP	€/cell	37,04	35,19	33,43	31,75	30,17	28,66	27,23	25,86	24,57	23,34
Gross Margin	%	39	38	37	37	36	36	35	34	34	33

Thanks for Your attention

Corporate Statistics

Headquarters: Manufacturing: Square feet: Employees: Revenue: Simpsonville, SC 23 facilities worldwide 3 million 10,000 ~\$800 million

ARCOTRONICS ITALIA

Arcotronics Industries (Machinery) Statistics

Headquarters: Manufacturing: Square feet: Employees: Sasso Marconi, Italy Sasso Marconi, Italy 200,000 ~100

Arcotronics Industrial Experience

- 1962 Start of production for film capacitors
- 1972 **Machinery Division established**
- 1986 Entry into battery business industry supplying winding machines
- 1988 **Develops equipment for cylindrical Lithium batteries**
- 1992 Develops monocell & bi cell assembly methods (stacking)
- Bi cell lamination process developed (PVDF separators) Develops equipment for prismatic winding (consumer) 1995
- 1997
- **Develops equipment for double layer supercapacitors** 1998
- 2001 **Develops stack winding process**
- First installation for HEV 2004
- Highest speed winding system released, 18650 battery manufacturing 2005

