

SAMXON BRAND ALUMINUM ELECTROLYTIC CAPACITORS PRODUCT SPECIFICATION 規格書

CUSTOMER:

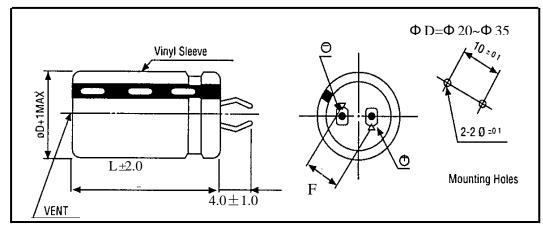
(客戶):

DATE:2022-01-21 (日期):

CATEGORY (品名) DESCRIPTION (型号)		ALUMINUM ELECTROLYTIC CAPACITORS HP $35V5600\mu F(\varphi 25x25)$
VERSION (版本) Customer P/N	:	01
SUPPLIER	:	

SUPPLI	ER		CUSTOMER				
PREPARED (拟定)	CHECKED (审核)	APPRO (批准		SIGNATURE (签名)			
邓文文	付婷婷						

ELECTROLYTIC CAPACITOR **SPECIFICATION** HP SERIES


		SPECIFICAT HP SERIE	ALTERN R	ATION HIST RECORDS	FORY		
Rev.	Date	Mark	Page	Contents	Purpose	Drafter	Approver
	2000		1 480	Contents	1 01 000	2101001	1100001

Name		Specification Sheet – HP				
Version	01		Page	1		
	STANDARD MANUAL					

MAN YUE ELECTRONICS	ELECTROLYTIC CAPACITOR	SAMXON
COMPANY LIMITED	SPECIFICATION HP SERIES	

Table 1 Product Dimensions and Characteristics

Z-TYPE

Table 1

1 EHP568M1VO25SZ 35 5600 -20%~+20% -40~105 0.35 1328 2.23 2000 25X25 10±1.0 PET	No	SAMXON Part No.	WV (Vdc)	Cap. (µF)	Cap. tolerance	Temp. range(°C)	tan δ (120Hz, 20°C)	Leakage Current (µA,5min)	Max Ripple Current at 105°C 120Hz (Arms)	Load lifetime (Hrs)	Dimen (m D×L	nsion m) F	Sleeve
	1	EHP568M1VO25SZ	35	5600	-20%~+20%	-40~105	0.35	1328	2.23	2000	25X25	10 ± 1.0	PET

Issued-date: 2022-01-21		Specification Sheet – HP					
Version	01	Page 2					
	STANDARD MANUAL						

 Part Number System Part Number System Construction Construction Characteristics Characteristics Capacitance (Tolerance) Leakage current List of "Environment-related Substances to be Controlled ('Controlled 12 	C O N T E N T S	Sheet
 3. Construction 5 4. Characteristics 4.1 Rated voltage & Surge voltage 4.2 Capacitance (Tolerance) 4.3 Leakage current 4.4 tanō 4.5 Terminal strength 4.6 Temperature characteristics 4.7 Load life test 4.8 Shelf life test 4.9 Surge test 4.10 Vibration 4.11 Solderability test 4.12 Resistance to solder heat 4.13 Change of temperature 4.14 Damp heat test 4.15 Vent test 4.16 Maximum permissible (ripple current) 5. List of "Environment-related Substances to be Controlled ('Controlled 12) 	1. Application	4
 4. Characteristics 6~13 4.1 Rated voltage & Surge voltage 4.2 Capacitance (Tolerance) 4.3 Leakage current 4.4 tanõ 4.5 Terminal strength 4.6 Temperature characteristics 4.7 Load life test 4.8 Shelf life test 4.9 Surge test 4.10 Vibration 4.11 Solderability test 4.12 Resistance to solder heat 4.13 Change of temperature 4.14 Damp heat test 4.15 Vent test 4.16 Maximum permissible (ripple current) 5. List of "Environment-related Substances to be Controlled ('Controlled 12 	2. Part Number System	4
 b~13 4.1 Rated voltage & Surge voltage 4.2 Capacitance (Tolerance) 4.3 Leakage current 4.4 tanδ 4.5 Terminal strength 4.6 Temperature characteristics 4.7 Load life test 4.8 Shelf life test 4.9 Surge test 4.10 Vibration 4.11 Solderability test 4.12 Resistance to solder heat 4.13 Change of temperature 4.14 Damp heat test 4.15 Vent test 4.16 Maximum permissible (ripple current) 5. List of "Environment-related Substances to be Controlled ('Controlled 12 	3. Construction	5
 4.2 Capacitance (Tolerance) 4.3. Leakage current 4.4 tanδ 4.5 Terminal strength 4.6 Temperature characteristics 4.7 Load life test 4.8 Shelf life test 4.9 Surge test 4.10 Vibration 4.11 Solderability test 4.12 Resistance to solder heat 4.13 Change of temperature 4.14 Damp heat test 4.15 Vent test 4.16 Maximum permissible (ripple current) 5. List of "Environment-related Substances to be Controlled ('Controlled 12 	4. Characteristics	6~13
 4.3. Leakage current 4.4 tanδ 4.5 Terminal strength 4.6 Temperature characteristics 4.7 Load life test 4.8 Shelf life test 4.9 Surge test 4.10 Vibration 4.11 Solderability test 4.12 Resistance to solder heat 4.13 Change of temperature 4.14 Damp heat test 4.15 Vent test 4.16 Maximum permissible (ripple current) 5. List of "Environment-related Substances to be Controlled ('Controlled 12) 	4.1 Rated voltage & Surge voltage	
 4.4 tanδ 4.5 Terminal strength 4.6 Temperature characteristics 4.7 Load life test 4.8 Shelf life test 4.9 Surge test 4.10 Vibration 4.11 Solderability test 4.12 Resistance to solder heat 4.13 Change of temperature 4.14 Damp heat test 4.15 Vent test 4.16 Maximum permissible (ripple current) 5. List of "Environment-related Substances to be Controlled ('Controlled 12 	4.2 Capacitance (Tolerance)	
 4.5 Terminal strength 4.6 Temperature characteristics 4.7 Load life test 4.8 Shelf life test 4.9 Surge test 4.10 Vibration 4.11 Solderability test 4.12 Resistance to solder heat 4.13 Change of temperature 4.14 Damp heat test 4.15 Vent test 4.16 Maximum permissible (ripple current) 5. List of "Environment-related Substances to be Controlled ('Controlled 12 	4.3. Leakage current	
 4.6 Temperature characteristics 4.7 Load life test 4.8 Shelf life test 4.9 Surge test 4.10 Vibration 4.11 Solderability test 4.12 Resistance to solder heat 4.13 Change of temperature 4.14 Damp heat test 4.15 Vent test 4.16 Maximum permissible (ripple current) 5. List of "Environment-related Substances to be Controlled ('Controlled 12 	4.4 tanδ	
 4.7 Load life test 4.8 Shelf life test 4.9 Surge test 4.10 Vibration 4.11 Solderability test 4.12 Resistance to solder heat 4.13 Change of temperature 4.14 Damp heat test 4.15 Vent test 4.16 Maximum permissible (ripple current) 5. List of "Environment-related Substances to be Controlled ('Controlled 12 	4.5 Terminal strength	
 4.8 Shelf life test 4.9 Surge test 4.10 Vibration 4.11 Solderability test 4.12 Resistance to solder heat 4.13 Change of temperature 4.14 Damp heat test 4.15 Vent test 4.16 Maximum permissible (ripple current) 5. List of "Environment-related Substances to be Controlled ('Controlled 12) 	4.6 Temperature characteristics	
 4.9 Surge test 4.10 Vibration 4.11 Solderability test 4.12 Resistance to solder heat 4.13 Change of temperature 4.14 Damp heat test 4.15 Vent test 4.16 Maximum permissible (ripple current) 5. List of "Environment-related Substances to be Controlled ('Controlled 12) 	4.7 Load life test	
 4.10 Vibration 4.11 Solderability test 4.12 Resistance to solder heat 4.13 Change of temperature 4.14 Damp heat test 4.15 Vent test 4.16 Maximum permissible (ripple current) 5. List of "Environment-related Substances to be Controlled ('Controlled 12) 	4.8 Shelf life test	
 4.11 Solderability test 4.12 Resistance to solder heat 4.13 Change of temperature 4.14 Damp heat test 4.15 Vent test 4.16 Maximum permissible (ripple current) 5. List of "Environment-related Substances to be Controlled ('Controlled 12) 	4.9 Surge test	
 4.12 Resistance to solder heat 4.13 Change of temperature 4.14 Damp heat test 4.15 Vent test 4.16 Maximum permissible (ripple current) 5. List of "Environment-related Substances to be Controlled ('Controlled 12) 	4.10 Vibration	
 4.13 Change of temperature 4.14 Damp heat test 4.15 Vent test 4.16 Maximum permissible (ripple current) 5. List of "Environment-related Substances to be Controlled ('Controlled 12 	4.11 Solderability test	
 4.14 Damp heat test 4.15 Vent test 4.16 Maximum permissible (ripple current) 5. List of "Environment-related Substances to be Controlled ('Controlled 12) 	4.12 Resistance to solder heat	
 4.15 Vent test 4.16 Maximum permissible (ripple current) 5. List of "Environment-related Substances to be Controlled ('Controlled 12 		
 4.16 Maximum permissible (ripple current) 5. List of "Environment-related Substances to be Controlled ('Controlled 12 	4.14 Damp heat test	
5. List of "Environment-related Substances to be Controlled ('Controlled 12	4.15 Vent test	
	5. List of "Environment-related Substances to be Controlled ("Controlled Substances')"	12
		13~17
		10 17

Version	01	Page	3
		<u> </u>	

ELECTROLYTIC CAPACITOR **SPECIFICATION** HP SERIES

SAMXON

Application 1.

This specification applies to polar Aluminum electrolytic capacitor (foil type) used in electronic equipment. Designed capacitor's quality meets IEC60384. Part Number System

2.

12	3 4	56	5 7		89	Ē	10 11 12	2 131	4	1516	17
EG	S 1	0 5	5 M		1 H		D11	T (C	SA	Ρ
SERIES	GAPA	CITAN	CE TO		VOLTAGE		CASE SIZE	TYP		SAMXON PRODUCT LINE	
											Ľ
Series	Cap(MFD)	Code	Tolerance (%)	Code			Case Size	Feature (Code	SAMXON Product	Line
ESM EKF	0.1	104	±5	J	2	0D 0E	Diameter(Radial bulk	RR	For internal use on	y
ESS EKS	0.00				4	0G	3.5 1 4 C 5 D	Ammo Tap	ina	(The product lines we have H,A,B,C,D	
EGS EKM	0.22	224	±10	ĸ	6.3	OJ	5 D 6.3 E	Anino iap	"'9	E,M or 0,1,2,3,4,5,9	
EKG	0.33	334		———	8	0K 1A	8 F 10 G	2.0mm Pitch	пΙ		
EZM	0.47	474	±15	L	12.5	1A 1B	12.5 I 13 J	2.5mm Pitch	τυ		
EZS EGF	0.47	474			16	1C	13.5 V	2.01111111011			
ESF EGT	1	105	±20	м	20	1D	14.5 A	3.5mm Pitch	TV	Sleeve Material	Code
EGK EGE		205			25 30	1E 1I	16 K 16.5 7	5.0mm Pitch	тс	PET	P II
EGD	2.2	225	±30	N	32	13	18 L 18.5 8	0.011111001			
ERS	3.3	335	-40	w	35	1V	18.5 8 20 M 22 N	Lead Cut & I	Form		
ERF	47	475	0		40	1G 1M	25 O 30 P	СВ-Туре	СВ		
ERR	4.7	475	-20	A	50	1H	34 W				
ERE	10	106			57	1L	35 Q 40 R	CE-Type	CE		
ERH EBD		226	-20 +10	C	63 71	1J 1S	42 4 45 6 51 S	HE-Type	HE		
ERA	22	220	-20	~	75	13 1 T	63.5 T				
ERB	33	336	+40	×	80	1K	63.5 T 76 U 80 8	KD-Type	KD		
EFA ENP	47	476	-20 +50	s	85 90	1R 19	90 X 100 Z	FD-Type	FD		
ENH	4/	470			100	2A	Len.(mm) Code				
ERY	100	107	-10 0	в	120	20	4.5 45 5 05	ЕН-Туре	EH		
EAP	220	227	-10		125	2B	5.4 54 7 07	PCB Term	ial		
EQP EDP	220	221	+20	V	150 160	2Z 2C	7.7 77 10.2 T2				
ETP	330	337	-10 +30	a	180	2P	11 11 11.5 1A		sw		
EUP EKP	470	477			200	2D	12 12 12.5 1B	Snap-in	sx		
EEP EFP	4/0		-10 +50	T	215 220	22 2N	13 13		67		
ESP	2200	228	-5	E	230	23	13.5 1C 20 20 25 25		sz		
EGP	22000	229	+10	-	250	2E	29.5 2J	Lug	SG		
EWR	22000		-5 +15	F	275 300	2T 2I	30 30		05	L	
EWT	33000	339	-5	G	310	2R	31.5 3A 35 35 35.5 3E				
EWF EWS	47000	479	+20		315	2F	50 50 80 80		06		
EWH			+20	R	330	2U 2V	100 1L		т5		
EWB	100000	10T	0		350 360	2V 2X	105 1K 110 1M	Screw			
VNS	150000	15T	+30	0	375	2Q	120 1N 130 1P		Т6		
VKS VKM			+50		385	2Y	140 1Q 150 1R		D5		
VRL	220000	22T	+5		400	2G 2M	155 1E 160 1S				
VZS VRF	330000	33Т	+15	z	450	2W	165 1F 170 1T		D6		
			+5 +20	D	500	2H	100 411				
	1000000	10M	+10	Y	550 600	25 26	200 2L				
	1500000	15M	+50		630	20 2J	215 2A 210 2M				
			+10 +30	н			220 2N 240 2Q				
	2200000	22M					180 10 190 1V 200 2L 215 2A 210 2M 240 2Q 250 2R 260 2S 270 2T				
	3300000	33M					270 2T				

Version 01	Page	4
------------	------	---

ELECTROLYTIC CAPACITOR SPECIFICATION HP SERIES

SAMXON

3. Construction

Single ended type to be produced to fix the terminals to anode and cathode foil, and wind together with paper, and then wound element to be impregnated with electrolyte will be enclosed in an aluminum case. Finally sealed up tightly with end seal rubber, then finished by putting on the vinyl sleeve.

No	Component	Material
1	Case	Aluminum case
2	Sleeve	PET
3	Terminal	Solder coated copper clad steel
4	Seal	Rubber-laminated bakelite
5	Rivet	Aluminum
6	Washer	Aluminum
7	Tab	Aluminum
8	Element	Aluminum foil & Electrolyte paper

ľ	Version	01		5
L			U	

SAMXON

4. Characteristics

Standard atmospheric conditions

Unless otherwise specified, the standard range of atmospheric conditions for making measurements and tests is as follows:

Ambient temperature	:15°C to 35°C
Relative humidity	: 45% to 85%
Air Pressure	: 86kPa to 106kPa

If there is any doubt about the results, measurement shall be made within the following conditions:Ambient temperature: $20^{\circ}C \pm 2^{\circ}C$ Relative humidity: 60% to 70%Air Pressure: 86kPa to 106kPa

Operating temperature range

The ambient temperature range at which the capacitor can be operated continuously at rated voltage See table 1 temperature range.

As to the detailed information, please refer to table 2

Version	01	Page	6

ELECTROLYTIC CAPACITOR SPECIFICATION HP SERIES

	ITEM					PER	FORM	IANCI	Ξ					
	Rated voltage	WV (V.DC)	10	16	25	35	50	63	80)	100	16	0
	(WV)	SV (V.DC)	13	20	32	44	63	79	10	0	125	20	0
4.1		WV ((V.DC)	180	200	220	250	315	350	400	420) 45	50 50	00
	Surge voltage (SV)	SV (V.DC)	225	250	270	300	365	400	450	470) 5	00 55	50
4.2	Nominal capacitance (Tolerance)	Meas Meas Meas	dition> suring Fro suring Vo suring Te teria> S	ltage mperat	: N ure : 2		re than	0.5Vr		oleran	<u>ce</u>			
4.3	Leakage current	<con Conn minu</con 	dition > necting the tes, and the teria> R	e capao nen, me	citor wi easure I	ith a pi Leakag	rotectiv	ve resi) in :	series f	for 5
4.4	tanδ	See 4	dition> 4.2, Norm t eria> R				asurin	g frequ	ency, v	oltage	and	temp	erature.	•
4.5	Terminal strength	4 a < T	Condition A static lo axial direc Criteria> here shall hechanical	ad of 2 etion av	vay from	m the c ttent co	apacito ntacts,	or body	v for 30 or short	S				
4.5		/ a < T m	A static lo ixial direc Criteria> here shall hechanical	ad of 2 etion av be no i l damag	vay from intermitige such	m the c ttent co as term	apacito ntacts, ninal d	or body	y for 30 or short	S				
4.5		/ a < T m	A static lo ixial direc Criteria > here shall hechanical Condition STEP	ad of 2 etion av be no i l damag	vay from interming ge such	m the c ttent co as term	apacito ntacts, ninal d	or body , open o lamage	y for 30 or short e	circuit	t and	there	shall b	e no
4.5		/ a < T m	A static lo ixial direc Criteria > here shall hechanical Condition STEP 1	ad of 2 etion av be no i l damag	vay from interming ge such ng Tem 20:	m the c ttent co as term perature ± 2	apacito ntacts, ninal d	or body , open o lamage Time Time	y for 30 or short e e to rea	s circuit ch the	t and	there	shall b	e no
4.5		/ a < T m	A static lo ixial direc Criteria> here shall echanical Condition STEP 1 2	ad of 2 etion av be no i l damag	intermitige such ng Tem 20: -40(-2	m the c ttent co as term ± 2 $25)\pm 3$	apacito ntacts, ninal d	or body , open o lamage Time Time	y for 30 or short e e to rea e to rea	circuit ch ther	t and	there equil equil	shall b ibrium ibrium	e no
4.5		/ a < T m	A static lo ixial direc Criteria > here shall hechanical Condition STEP 1 2 3	ad of 2 etion av be no i l damag	interming ge such ng Tem 20: -40(-2 20)	m the c ttent co as term ± 2 $25)\pm 3$ ± 2	apacito ntacts, ninal d	, open o lamage Time Time Time Time	v for 30 or short e e to rea e to rea e to rea	circuit ch ther ch ther ch ther	t and rmal rmal	there equil equil equil	shall b ibrium ibrium ibrium	e no
4.5		/ a < T m	A static lo ixial direc Criteria> here shall echanical Condition STEP 1 2	ad of 2 etion av be no i l damag	vay from intermiting ge such ng Tem 20: -40(-2 20) 105	m the c ttent co as term ± 2 $25)\pm 3$ ± 2 ± 2	apacito ntacts, ninal d	or body , open o lamage Time Time Time Time	y for 30 or short e e to rea e to rea	circuit ch ther ch ther ch ther ch ther ch ther	t and rmal rmal rmal rmal	there equil equil equil equil	shall b ibrium ibrium ibrium ibrium	e no
4.5		/ a T m <(A static lo ixial direc Criteria > here shall nechanical Condition STEP 1 2 3 4 5	ad of 2 tion av be no i l damag > Testii	vay from interming ge such ng Tem 20: -40(-2 20) 105 20	m the c ttent co as term $\frac{\pm 2}{25)\pm 3}$ $\frac{\pm 2}{5\pm 2}$ $\frac{\pm 2}{25}$	apaciton ntacts, ninal d re(°C)	, open o lamage Time Time Time Time Time Time	v for 30 or short e e to rea e to rea e to rea e to rea e to rea e to rea	circuit ch ther ch ther ch ther ch ther ch ther ch ther	t and rmal rmal rmal rmal rmal	there equil equil equil equil	shall b ibrium ibrium ibrium ibrium	e no
4.5		/ a a T m <() - - - - - - - - - - - - - - - - - - -	A static lo ixial direc Criteria > here shall nechanical Condition STEP 1 2 3 4 5 Ciriteria > ciriteria> cirita>	ad of 2 tion av be no i l damag Testin In step curren 5, tan δ kage cu At-40 °C	vay from intermining ge such ng Tem 20: -40(-2) -40(-2) 20: 105 20: $4, \tan \delta$ t measu shall t urrent s \mathbb{C} (-25°C	m the c ttent co as term ± 2 ± 2 ± 2 ± 2 ± 2 shall b ured shape with shall no	apacito ntacts, ninal d $re(^{\circ}C)$ we with all not in the 1 t more	r body , open of lamage Time Time Time Time Time in the l more t limit of than th	v for 30 or short e e to rea e to rea e to rea e to rea imit of han 8 ti T tem 4 ne spec	circuit ch ther ch the	t and rmal rmal rmal rmal 4.4 f its s alue	there equil equil equil equil specif	shall b ibrium ibrium ibrium ibrium	ue.
	strength	/ a a T m <() - - - - - - - - - - - - - - - - - - -	A static lo ixial direc Criteria> here shall nechanical Condition STEP 1 2 3 4 5 criteria> condition STEP 1 2 3 4 5 criteria> condition STEP 1 2 3 4 5 criteria> condition STEP 1 2 3 4 5 criteria> condition STEP 1 2 3 4 5 criteria> condition STEP 1 2 3 4 5 criteria> condition STEP 1 condition STEP STEP STEP STEP STEP STEP STEP STEP	ad of 2 tion av be no i l damag Testin In step curren 5, tanδ kage ct At-40°C	vay from interming ge such ng Tem 20: -40(-2 20) 105 20) 4,tanδ t measu shall t urrent s C (-25°C	m the c ttent co as term ± 2 ± 2 ± 2 ± 2 ± 2 ± 2 shall b ured shape with thall no C), imp	apacito ntacts, ninal d $re(^{\circ}C)$ we with all not in the l t more edance	Time Time Time Time Time Time Time Time	y for 30 or short e e to rea e to rea e to rea e to rea imit of han 8 ti T tem 4 he spec tio shal	circuit ch ther ch the	t and rmal rmal rmal f its s alue xceec	there equil equil equil equil equil specif	shall b ibrium ibrium ibrium ibrium ibrium ibrium	ue.
	strength	/ a a T m <() - - - - - - - - - - - - - - - - - - -	A static lo ixial direc Criteria> here shall nechanical Condition STEP 1 2 3 4 5 Criteria> 1 e leakage In step 2,4 followin Working	ad of 2 tion av be no i l damag Testin In step curren 5, tanδ kage ct At-40°C	vay from interming ge such ng Tem 20: -40(-2) 20: 105 20: 10	m the c ttent co as term ± 2 ± 2 ± 2 ± 2 ± 2 shall b ured shape with shall no	apacito ntacts, ninal d $re(^{\circ}C)$ we with all not in the l t more edance	r body , open of lamage Time Time Time Time Time in the l more t limit of than th	v for 30 or short e e to rea e to rea e to rea e to rea imit of han 8 ti T tem 4 ne spec	circuit ch ther ch the	t and rmal rmal rmal rmal 4.4 f its s alue	there equil equil equil equil equil specif	shall b ibrium ibrium ibrium ibrium	ue.
	strength	/ a a T m <() - - - - - - - - - - - - - - - - - - -	A static lo ixial direc Criteria > here shall nechanical Condition STEP 1 2 3 4 5 Ciriteria > e leakage In step 2 The lea In step 2, followin Working Z-25%	ad of 2 tion av be no i l damag > Testin In step curren 5, tanð kage cu At-40°C g table Voltag	vay from intermining ge such ng Tem 20: -40(-2) 20: 105 20: $4, \tan \delta$ t measu shall t urrent s C (-25°C ige (V))°C	m the c ttent co as term ± 2 ± 2 ± 2 ± 2 ± 2 shall b ured shape with shall no C), imp 10-2	apacito ntacts, ninal d $re(^{\circ}C)$ we with all not in the 1 t more edance 5	Time Time Time Time Time Time Time Time	v for 30 or short e e to rea e to rea e to rea e to rea e to rea imit of han 8 ti T tem 4 ne spec tio shal	circuit ch ther ch the	t and rmal rmal rmal rmal 4.4 f its s alue xceec 100	there equil equil equil equil equil specif	shall b ibrium ibrium ibrium ibrium ïed val value o 60~500	ue.
	strength	/ a T T (((C Th a. b.	A static lo ixial direc Criteria > here shall nechanical Condition STEP 1 2 3 4 5 Ciriteria > e leakage In step 2 The lea In step 2, followin Working Z-25%	ad of 2 tion av be no i l damag Testin In step curren 5, tanð kage cu At-40°C g table Voltag C/Z+2C	vay from interming ge such ng Tem 20: -40(-2) 20: 105 20: 105 20: 105 20: 20: 20: 20: 20: 20: 20: 20: 20: 20:	m the c ttent co as term ± 2 ± 2 ± 2 ± 2 ± 2 ± 2 shall b ured shape with hall no C), imp 10-2 6 15	apaciton $\operatorname{re}(^{\circ}\mathbb{C})$	Time Time Time Time Time Time Time Time	or short $\frac{1}{2}$	circuit ch ther ch the	t and rmal rmal rmal f its s alue xceeo 100 3 5	there equil equil equil equil equil specif d the	shall b ibrium ibrium ibrium ibrium ibrium ibrium ibrium 60~500 8	ue.

		<condition:< td=""><td></td><td></td><td></td><td></td></condition:<>				
		According	to IEC60384-4N	0.4.13 methods, The capacit	tor is stored at a	
		temperatu	re of 105 °C ± 2 v	with DC bias voltage plus the	he rated ripple cu	urrent
		for				
		table 1 loa	d life time hours	. (The sum of DC and ripple	peak voltage sha	ll not
		exceed the	rated working v	oltage) Then the product sh	ould be tested af	ter16
. –	Load	hours reco				
4.7	life		nospheric condition	ons. The result should meet t	the following tab	le:
	test	<criteria></criteria>				
				et the following requirement		
		Leakage		Value in 4.3 shall be satisfied		
		Capacitar	nce Change V	Within $\pm 20\%$ of initial valu	ue.	
		tanδ	١	Not more than 200% of the s	specified value.	
		Appearar	псе 7	There shall be no leakage of	electrolyte	
		<condition></condition>		~	-	
				d with no voltage applied a	t a temperature o	f 105
		-	000+48/0 hours.		1	
		Following t	his period the cap	acitors shall be removed from	m the test chambe	er and
				om temperature for 4~8 hou		
				to a series limiting resistor(D.C.
		-		nin. After which the capacito		
	C1 1C		sted the character			
4.8	Shelf	<criteria></criteria>				
4.8	life test	The charac		t the following requirements		
	lest	Leakage	current V	Value in 4.3 shall be satisfied	d	
		Capacita	nce Change	Within $\pm 15\%$ of initial value	ue.	
		tanδ	Ν	Not more than 150% of the sp	pecified value.	
		Appearar		There shall be no leakage of		
				are stored more than 1 year		ent
			-	-	•	ent
		-		ly voltage through about 1 k	112 resistor, 11	
		necessa	<i>.</i>			
		<condition></condition>			(100.0.50)/C (1	\sim
		resistor.	irge voltage to the	e capacitor connected with a	$(100.0\pm 30)/C_R(k$	(32)
			itor shall be subm	itted to 1000 cycles, each co	onsisting of charg	e of
			lowed discharge		insisting of charg	0 01
			nperature shall be			
			al Capacitance (µ			
		<criteria></criteria>				
4.9	Surge	Leakage		Not more than the specifie	ed value.	
1.2	test	-	ice Change	Within $\pm 15\%$ of initial v		
		tanð	iee change	Not more than the specific		
		Appearan		There shall be no leakage	or electrolyte]
		Attention:		tage at abnormal situation -	nd not be	
				tage at abnormal situation, as	nu not be	
		nypouresiz	ing that over volt	age is always applied.		
	Manaia	01			De er	
	Version	01			Page 8	

ELECTROLYTIC CAPACITOR SPECIFICATION HP SERIES

4.10 Vibration test	Condition> The following conditions shall be applied for 2 hours in each 3 mutually perpendicular directions. Vibration frequency range : 10Hz ~ 55Hz Peak to peak amplitude : 1.5mm Sweep rate : 10Hz ~ 55Hz ~ 10Hz in about 1 minute Criteria> After the test, the following items shall be tested: After the test, the following items shall be tested: Inner No mechanical damage in terminal. No leakage of electrolyte or swelling of the case. The markings shall be legible. Inner No intermittent contact, open or short circuit. No damage of tab terminals or electrodes. Mounting method: The capacitor must be fixed in place with a bracket. To be soldered Optimized No be soldered <
Solderabilit 4.11 y test	<condition> The capacitor shall be tested under the following conditions: Sn-Cu solder Soldering temperature : 250±3°C Dipping depth : 2mm Dipping speed : 25±2.5mm/s Dipping time : 3±0.5s <criteria> A minimum of 95% of the surface being immersed</criteria></condition>
4.12 Resistance to solder heat test	
	01 Page 9

ELECTROLYTIC CAPACITOR SPECIFICATION HP SERIES

		<condition> Temperature Cycle: According to IEC60384-4No.4.7 methods, capacitor shall be placed in an oven, the condition according as below:</condition>
		Temperature Time
		$\begin{array}{c c} \hline & & \\ \hline \hline \\ & & \\ \hline \hline \\ \hline & & \\ \hline & & \\ \hline \hline \\ \hline \\$
	Change of	(2)Rated low temperature(-40°C) (-25°C) 30 ± 2 Minutes
4.13	temperature	(2)Rated high temperature (+105 °C) 30 ± 2 Minutes (3)Rated high temperature (+105 °C) 30 ± 2 Minutes
	test	
		(1) to (3)=1 cycle, total 5 cycle Criteria> The characteristic shall meet the following requirement
		Leakage current Not more than the specified value.
		$\tan \delta$ Not more than the specified value.
		Appearance There shall be no leakage of electrolyte
4.14	Damp heat	<condition> Humidity Test: According to IEC60384-4No.4.12methods, capacitor shall be exposed for 500 ± 8 hours in an atmosphere of $90\sim95\%$R H .at 40 ± 2°C, the characteristic change shall meet the following requirement. Criteria></condition>
	test	Leakage current Not more than the specified value.
		Capacitance Change Within $\pm 20\%$ of initial value.
		tan δ Not more than 120% of the specified value.
		AppearanceThere shall be no leakage of electrolyte.
4.15	Vent test	<condition> The following test only apply to those products with vent. D.C. test The capacitor is connected with its polarity reversed to a DC power source Then a current selected from Table 2 is applied. <table 3=""> Diameter (mm) DC Current (A) 22.4 or less 1 Over 22.4 10 Criteria> The vent shall operate with no dangerous conditions such as flames or</table></condition>
		dispersion of pieces of the capacitor and/or case.

Version	01		Page	10
---------	----	--	------	----

ELECTROLYTIC CAPACITOR SPECIFICATION HP SERIES

4.16 Maximum permissible (ripple current.) Frequency Multipliers: Coefficient Freq. Hz) 100 120 1k 10-50k 10-100V 0.90 1.00 1.15 1.25 160-250V 0.80 1.00 1.25 1.47 315-500V 0.80 1.00 1.30 1.47	4.16 $\begin{array}{ c c c c c c } & permissible \\ (ripple \\ current \end{array}$ ($\begin{array}{ c c c } & Freq. \\ (Hz) \\ Voltage (V) \end{array}$ $\begin{array}{ c c } & 60 \\ 120 \\ 10-100V \\ 1.00 \\ 1.00 \\ 1.25 \\ 1.47 \end{array}$ $\begin{array}{ c } & 10-50k \\ 10-50k \\ 10-50k \\ 1.00 \\ 1.25 \\ 1.47 \end{array}$			<condition> The maximum permissible at 120Hz and can be appli Table-1 The combined value of D.0 rated voltage and shall no</condition>	ied at maxim C voltage and	um operatin d the peak A	g temperat	ture
160~250V 0.80 1.00 1.25 1.47	160~250V 0.80 1.00 1.25 1.47	4.16	permissible (ripple	Coefficient Freq. (Hz)	60	120	1k	10~50k
				10~100V	0.90	1.00	1.15	1.25
<u>315~500V</u> 0.80 1.00 1.30 1.47	<u>315~500V</u> 0.80 1.00 1.30 1.47			160~250V	0.80	1.00	1.25	1.47
				315~500V	0.80	1.00	1.30	1.47

Version	01	Page	11
v crsion	01	I age	11

ELECTROLYTIC CAPACITOR SPECIFICATION HP SERIES

SAMXON

5. It refers to the latest document of "Environment-related Substances standard"(WI-HSPM-QA-072).

	Substances			
	Cadmium and cadmium compounds			
Heavy metals	Lead and lead compounds			
Theavy metals	Mercury and mercury compounds			
	Hexavalent chromium compounds			
	Polychlorinated biphenyls (PCB)			
Chloinated	Polychlorinated naphthalenes (PCN)			
organic	Polychlorinated terphenyls (PCT)			
compounds	Short-chain chlorinated paraffins(SCCP)			
	Other chlorinated organic compounds			
	Polybrominated biphenyls (PBB)			
Brominated	Polybrominated diphenylethers(PBDE) (including			
organic	decabromodiphenyl ether[DecaBDE])			
compounds	Other brominated organic compounds			
Tributyltin comp	pounds(TBT)			
Triphenyltin con	npounds(TPT)			
Asbestos				
Specific azo con	npounds			
Formaldehyde				
Polyvinyl chlorid	de (PVC) and PVC blevds			
Beryllium oxide				
Beryllium copp	ber			
Specific phthalat	tes (DEHP,DBP,BBP,DINP,DIDP,DNOP,DNHP)			
Hydrofluorocarb	oon (HFC), Perfluorocarbon (PFC)			
Perfluorooctane	sulfonates (PFOS)			
Specific Benzotr	iazole			

Version 01 Page 12

Attachment: Application Guidelines 1.Circuit Design

- 1.1 Operating Temperature and Frequency Electrolytic capacitor electrical parameters are normally specified at 20°C temperature and 120Hz frequency. These parameters vary with changes in temperature and frequency. Circuit designers should take these changes into consideration.
- (1) Effects of operating temperature on electrical parameters
 - a) At higher temperatures, leakage current and capacitance increase while equivalent series resistance (ESR) decreases.
 - b) At lower temperatures, leakage current and capacitance decrease while equivalent series resistance (ESR) increases.
- (2) Effects of frequency on electrical parameters
 - a) At higher frequencies capacitance and impedance decrease while $tan\delta$ increases.
 - b) At lower frequencies, ripple current generated heat will rise due to an increase in equivalent series resistance (ESR).
- 1.2 Operating Temperature and Life Expectancy See the file: Life calculation of aluminum electrolytic capacitor
- 1.3 Common Application Conditions to Avoid

The following misapplication load conditions will cause rapid deterioration to capacitor electrical parameters. In addition, rapid heating and gas generation within the capacitor can occur causing the pressure relief vent to operate and resultant leakage of electrolyte. Under Leaking electrolyte is combustible and electrically conductive.

(1) Reverse Voltage

DC capacitors have polarity. Verify correct polarity before insertion. For circuits with changing or uncertain polarity, use DC bipolar capacitors. DC bipolar capacitors are not suitable for use in AC circuits.

(2) Charge / Discharge Applications Standard capacitors are not suitable for use in repeating charge / discharge applications. For charge / discharge applications consult us and advise actual conditions.

(3) Over voltage

Do not apply voltages exceeding the maximum specified rated voltage. Voltages up to the surge voltage rating are acceptable for short periods of time. Ensure that the sum of the DC voltage and the superimposed AC ripple voltage does not exceed the rated voltage.

(4) Ripple Current

Do not apply ripple currents exceeding the maximum specified value. For high ripple current applications, use a capacitor designed for high ripple currents or contact us with your requirements.

Ensure that allowable ripple currents superimposed on low DC bias voltages do not cause reverse voltage conditions.

- 1.4 Using Two or More Capacitors in Series or Parallel
- (1) Capacitors Connected in Parallel

The circuit resistance can closely approximate the series resistance of the capacitor causing an imbalance of ripple current loads within the capacitors. Careful design of wiring methods can minimize the possibility of excessive ripple currents applied to a capacitor.

(2) Capacitors Connected in Series

Normal DC leakage current differences among capacitors can cause voltage imbalances. The use of voltage divider shunt resistors with consideration to leakage current can prevent capacitor voltage imbalances.

Version 01 Page	13
-----------------	----

SAMXON

- 1.5 Capacitor Mounting Considerations
- (1) Double Sided Circuit Boards

Avoid wiring pattern runs, which pass between the mounted capacitor and the circuit board. When dipping into a solder bath, excess solder may collect under the capacitor by capillary action and short circuit the anode and cathode terminals.

(2)Circuit Board Hole Positioning

The vinyl sleeve of the capacitor can be damaged if solder passes through a lead hole for subsequently processed parts. Special care when locating hole positions in proximity to capacitors is recommended.

(3)Circuit Board Hole Spacing

The circuit board holes spacing should match the capacitor lead wire spacing within the specified tolerances.
Incorrect spacing can cause excessive lead wire stress during the insertion process. This may result in premature capacitor failure due to short or open circuit, increased leakage current, or electrolyte leakage.
(4) Clearance for Case Mounted Pressure Relief vents

Capacitors with case mounted pressure relief vents require sufficient clearance to allow for proper vent operation. The minimum clearances are dependent on capacitor diameters as proper vent operation. The minimum clearances are dependent on capacitor diameters as follows.

 φ 6.3~ φ 16mm:2mm minimum, φ 18~ φ 35mm:3mm minimum, φ 40mm or greater:5mm minimum.

(5) Clearance for Seal Mounted Pressure Relief Vents

A hole in the circuit board directly under the seal vent location is required to allow proper release of pressure. (6) Wiring Near the Pressure Relief Vent

Avoid locating high voltage or high current wiring or circuit board paths above the pressure relief vent. Flammable, high temperature gas exceeding 100° C may be released which could dissolve the wire insulation and ignite.

(7) Circuit Board patterns Under the Capacitor

Avoid circuit board runs under the capacitor as electrolyte leakage could cause an electrical short.

(8) Screw Terminal Capacitor Mounting

Do not orient the capacitor with the screw terminal side of the capacitor facing downwards.

Tighten the terminal and mounting bracket screws within the torque range specified in the specification.

- 1.6 Electrical Isolation of the Capacitor Completely isolate the capacitor as follows.
- (1) Between the cathode and the case (except for axially leaded B types) and between the anode terminal and other circuit paths
- (3) Between the extra mounting terminals (on T types) and the anode terminal, cathode terminal, and other circuit paths.
- 1.7 The Product characteristic should take the sample as the standard.
- 1.8 Capacitor Sleeve

The vinyl sleeve or laminate coating is intended for marking and identification purposes and is not meant to electrically insulate the capacitor.

The sleeve may split or crack if immersed into solvents such as toluene or xylene, and then exposed to high temperatures.

CAUTION!

Always consider safety when designing equipment and circuits. Plan for worst case failure modes such as short circuits and open circuits which could occur during use.

(1) Provide protection circuits and protection devices to allow safe failure modes.

(2) Design redundant or secondary circuits where possible to assure continued operation in case of main circuit failure.

Version 01	Page	14
------------	------	----

2. Capacitor Handling Techniques

- 2.1 Considerations Before Using
- (1) Capacitors have a finite life. Do not reuse or recycle capacitors from used equipment.
- (2) Transient recovery voltage may be generated in the capacitor due to dielectric absorption. If required, this voltage can be discharged with a resistor with a value of about $1k\Omega$.
- (3) Capacitors stored for long periods of time may exhibit an increase in leakage current. This can be corrected by gradually applying rated voltage in series with a resistor of approximately $1k\Omega$.
- (4) If capacitors are dropped, they can be damaged mechanically or electrically. Avoid using dropped capacitors.
- (5) Dented or crushed capacitors should not be used. The seal integrity can be compromised and loss of electrolyte / shortened life can result.

2.2 Capacitor Insertion

- * (1) Verify the correct capacitance and rated voltage of the capacitor.
- * (2) Verify the correct polarity of the capacitor before inserting.
- * (3) Verify the correct hole spacing before insertion (land pattern size on chip type) to avoid stress on the terminals.
 - (4) Ensure that the auto insertion equipment lead clinching operation does not stress the capacitor leads where they enter the seal of the capacitor.

For chip type capacitors, excessive mounting pressure can cause high leakage current, short circuit, or disconnection.

2.3 Manual Soldering

- (1) Observe temperature and time soldering specifications or do not exceed temperatures of 400 $^{\circ}$ C for 3 seconds or less.
- (2) If lead wires must be formed to meet terminal board hole spacing, avoid stress on the lead wire where it enters the capacitor seal.
- (3) If a soldered capacitor must be removed and reinserted, avoid excessive stress to the capacitor leads.
- (4) Avoid touching the tip of the soldering iron to the capacitor, to prevent melting of the vinyl sleeve.

2.4 Flow Soldering

- (1) Do not immerse the capacitor body into the solder bath as excessive internal pressure could result.
- (2) Observe proper soldering conditions (temperature, time, etc.) Do not exceed the specified limits.
- (3) Do not allow other parts or components to touch the capacitor during soldering.
- 2.5 Other Soldering Considerations

Rapid temperature rises during the preheat operation and resin bonding operation can cause cracking of the capacitor vinyl sleeve.

For heat curing, do not exceed 150°C for a maximum time of 2 minutes.

- 2.6 Capacitor Handling after Solder
 - (1). Avoid movement of the capacitor after soldering to prevent excessive stress on the lead wires where they enter the seal.
 - (2). Do not use capacitor as a handle when moving the circuit board assembly.

(3). Avoid striking the capacitor after assembly to prevent failure due to excessive shock.

Version	01		Page	15
---------	----	--	------	----

2.7 Circuit Board Cleaning

- * (1) Circuit boards can be immersed or ultrasonically cleaned using suitable cleaning solvents for up 5 minutes and up to 60° C maximum temperatures. The boards should be thoroughly rinsed and dried.
- The use of ozone depleting cleaning agents is not recommended in the interest of protecting the environment.
- * (2) Avoid using the following solvent groups unless specifically allowed for in the specification;
- Halogenated cleaning solvents: except for solvent resistant capacitor types, halogenated solvents can permeate the seal and cause internal capacitor corrosion and failure. For solvent resistant capacitors, carefully follow the temperature and time requirements of the specification. 1-1-1 trichloroethane should never be used on any aluminum electrolytic capacitor.
- Alkali solvents : could attack and dissolve the aluminum case.
- Petroleum based solvents: deterioration of the rubber seal could result.
- Xylene : deterioration of the rubber seal could result.
- Acetone : removal of the ink markings on the vinyl sleeve could result.
- * (3) A thorough drying after cleaning is required to remove residual cleaning solvents which may be trapped between the capacitor and the circuit board. Avoid drying temperatures, which exceed the maximum rated temperature of the capacitor.
- * (4) Monitor the contamination levels of the cleaning solvents during use by electrical conductivity, pH, specific gravity, or water content. Chlorine levels can rise with contamination and adversely affect the performance of the capacitor.

Please consult us for additional information about acceptable cleaning solvents or cleaning methods.

2.8 Mounting Adhesives and Coating Agents

When using mounting adhesives or coating agents to control humidity, avoid using materials containing halogenated solvents. Also, avoid the use of chloroprene based polymers. After applying adhesives or coatings, dry thoroughly to prevent residual solvents from being trapped between the capacitor and the circuit board.

3. Precautions for using capacitors

3.1 Environmental Conditions

- Capacitors should not be stored or used in the following environments.
- * (1) Temperature exposure above the maximum rated or below the minimum rated temperature of the capacitor.
- * (2) Direct contact with water, salt water, or oil.
- * (3) High humidity conditions where water could condense on the capacitor.
- * (4) Exposure to toxic gases such as hydrogen sulfide, sulfuric acid, nitric acid chlorine, or ammonia.
- * (5) Exposure to ozone, radiation, or ultraviolet rays.
- * (6) Vibration and shock conditions exceeding specified requirements.

3.2 Electrical Precautions

- (1) Avoid touching the terminals of the capacitor as possible electric shock could result. The exposed aluminum case is not insulated and could also cause electric shock if touched.
- (2) Avoid short circuit the area between the capacitor terminals with conductive materials including liquids such as acids or alkaline solutions.

4. Emergency Procedures

- (1) If the pressure relief vent of the capacitor operates, immediately turn off the equipment and disconnect form the power source. This will minimize additional damage caused by the vaporizing electrolyte.
- (2) Avoid contact with the escaping electrolyte gas which can exceed 100° C temperatures.

If electrolyte or gas enters the eye, immediately flush the eyes with large amounts of water.

- If electrolyte or gas is ingested by month, gargle with water.
- If electrolyte contacts the skin, wash with soap and water.

		1	
Version	01	Page	16

5. Long Term Storage

Leakage current of a capacitor increases with long storage times. The aluminum oxide film deteriorates as a function of temperature and time. If used without reconditioning, an abnormally high current will be required to restore the oxide film. This current surge could cause the circuit or the capacitor to fail. After one year, a capacitor should be reconditioned by applying rated voltage in series with a 1000Ω , current

limiting resistor for a time period of 30 minutes .

5.1 Environmental Conditions

The capacitor shall be not use in the following condition:

- (1) Temperature exposure above the maximum rated or below the minimum rated temperature of the capacitor.
- (2) Direct contact with water, salt water, or oil.
- (3) High humidity conditions where water could condense on the capacitor.
- (4) Exposure to toxic gases such as hydrogen sulfide, sulfuric acid, nitric acid, chlorine, or ammonia.
- (5) Exposure to ozone, radiation, or ultraviolet rays.
- (6) Vibration and shock conditions exceeding specified requirements.

6. Capacitor Disposal

When disposing of capacitors, use one of the following methods.

- * Incinerate after crushing the capacitor or puncturing the can wall (to prevent explosion due to internal pressure rise). Capacitors should be incinerated at high temperatures to prevent the release of toxic gases such as chlorine from the polyvinyl chloride sleeve, etc.
- * Dispose of as solid waste.

NOTE: Local laws may have specific disposal requirements, which must be followed.

Version	01	Page	17