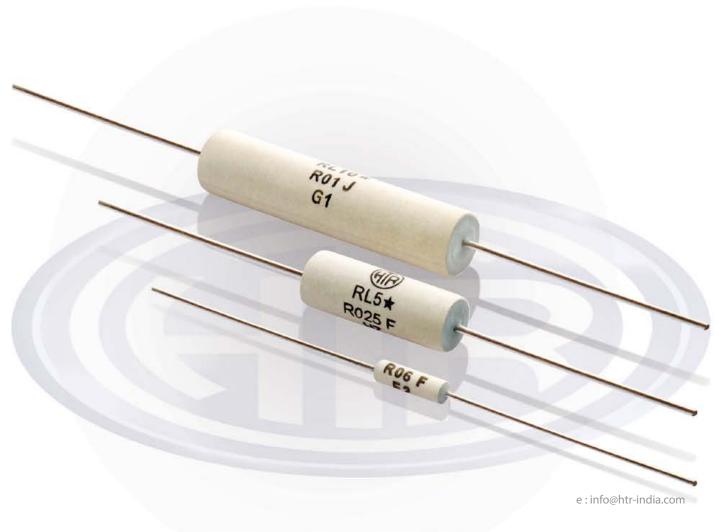


CURRENT SENSE / LOW OHM CERAMIC ENCASED TYPE

KL SERIES

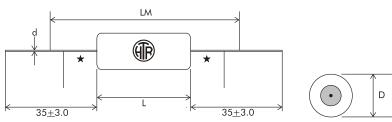
LOW OHM / LOW INDUCTANCE


Power Ceramic Encased Resistors Industrial Applications

Superior alternative
 to replace moulded device of identical size
 Negligible inductance
 Highly thermal efficient power to size ratio
 Any resistance value possible within resistance range given

• 0.5W to 10W

• R0015 to R 80



SENSE / LOW OHM

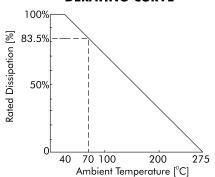
CERAMIC ENCASED TYPE

PHYSICAL CONFIGURATION

★4mm reduced solderability in this area

HTR TYPE	POWER RATING at 40°C (Ambient)	DIMENSIONS (mm)				RESISTANCE RANGE		TYPICAL
		L ±1	LM ±1	D ±1.0	d ±0.05	min	max	WEIGHT PER PC (gms)
RL0.5	0.5W	8	30	3	0.6/0.8	R004	R055	0.5
RL1	1W	10	30	3	0.6/0.8	R004	R10	0.6
RL2	2W	10	30	4	0.8/1.0	R002	R10	0.8
RL3	3W	14	40	5	0.8/1.0	R003	R22	1.1
RL4	4W	18	40	5	0.8/1.0	R003	R30	1.4
RL5	5W	22	45	8	1	R0015	R39	3.2
RL10	10W	42	60	9	1	R003	R80	6.5

[•] Resistance values must be checked using 4½ digit micro-ohm meter with four wire system and insulated clips. The resistance value must be checked at dimension LM as given in the table above.


TEMPERATURE RISE TABLE

(Ambient Temperature 32°C)

HTR	TEMPERATURE AT FULL POWER DISSIPATION / LIMITING VOLTAGE			
TYPE	Actual Temperature on Resistor Body	Actual Temperature on Resistor Termination (10 mm from resistor body)		
RL0.5	70°C	50°C		
RL1	85°C	60° C		
RL2	125°C	75°C		
RL3	130°C	75°C		
RL4	130°C	75°C		
RL5	142°C	78°C		
RL10	220°C	95°C		

[•] As temperature rise varies between different resistance values, if this parameter is required in detail, please provide details to the factory whereupon a suitable graph for that particular resistance value shall be provided.

ELECTRICAL & ENVIRONMENTAL CHARACTERISTICS / DATA

PARAMETER/PERFORMANCE TEST & TEST METHOD	PERFORMANCE REQUIREMENTS	
Power Rating (Rated Ambient Temperature)	Full Power dissipation at 40°C and linearly derated to zero at 275°C (Refer Derating Curve above)	
Resistance Tolerances Available	±10% (K); ±5% (J); ±3% (H); ±2% (G); ±1% (F); ±0.5% (D)	
Temperature Range	-55°C to +275°C with suitable derating as per derating curve	
Voltage Rating / Limiting Voltage / Max. Working Voltage Voltage Proof / Dielectric Withstanding Voltage	V= \sqrt{PxR} $\Delta R \pm [0.2\% + R05]$ - No flashover or mechanical (based on 1000V rms for 60 secs) damage	
Insulation Resistance (MIL STD 202F - Test Method 302)	>1000M (Min)	
Short Time Overload (5 x Rated Power upto 3 watts and 10 x Rated Power 5 watts and above for 5 secs)	$\Delta R \pm [0.5\% + R0005]$ - Average $\Delta R \pm [1\% + R0005]$ - For resistance values near maximum range	
Temperature Co-efficient of Resistance (Measured from -55°C to +125°C referenced to +25°C)	± 60 to 400ppm/°C (Depending on resistance value)	
Thermal Shock (-65°C to +125°C, 5 cycles, 15 mins at each extreme temperature)	ΔR ± [0.2% + R0005] - Average	
Mechanical Shock (Specified Pulse) (MIL STD 202F - Test Method 213B condition 'C')	ΔR ± [0.1% + R0005] - Typical	
Moisture Resistance (MIL STD 202F - Test Method 106E with step 7b eliminated)	$\Delta R \pm [0.2\% + R0005]$	
Damp Heat (Steady State) / Humidity (40°C at 95% R.H for 250 hours)	$\Delta R \pm [0.5\% + R0005]$	
Endurance - Load Life (70°C with limiting voltage - 1.5 hours on / 0.5 hours off)	$\Delta R \pm [1.5\% + R0005]$ Average-2000 hours duration $\Delta R \pm [0.5\% + R0005]$ Typical-1000 hours duration	
Solvent Resistance (IPA for 60 secs ± 10 secs)	No effect on case filling / Marking	

MECHANICAL SPECIFICATIONS

PARAMETER/PERFORMANCE TEST & TEST METHOD	PERFORMANCE REQUIREMENTS
Pull Test / Robustness of Terminations (Direct load 2 to 4.5 kgs depending on size for 15 secs)	No effect
Resistance to Soldering Heat (260°C - 270°C for 4 secs)	$\Delta R \pm [0.1\% + R0005] - Typical$
Solderability (MIL STD 202F – Test Method 208F)	Must meet the requirements laid down (95% satisfactory coverage)
Marking	As per IEC Pub. 60062

TYPICAL APPLICATIONS

- RL series is an innovative method of providing low inductance resistors in a cylindrical ceramic body and is increasingly replacing the moulded version due to its performance superiority and lighter weight.
- The resistive element consists of a flat metal band which is spot welded to the copper terminals before encapsulation.
- The resistors are finding increasing use in industrial applications where pulse rating and ability to absorb high inrush current is required.
- Another important application is Current Sensing in applications which include switching and linear power supplies, instruments and power amplifiers.
- For the effective utilization of these resistors, please refer to "Application/design notes for current sense resistors".

Note : Type RL 0.5 and RL - 1 can be supplied with lead diameter of 0.6mm instead of 0.8mm and RL2 / 3 & 4 can be supplied with lead ϕ of 1 mm instead of 0.8 mm. Please specify at the time of placing the order.

Taping: Types RL 0.5, 1, 2, 3, 4, 5 and 10 can be supplied in taped form. Please refer to tape / ammo pack specifications.

Note: The ceramic cases used may be steatite ceramic, corderite ceramic or high alumina ceramic. Thus, the ceramic cases may be off-white or variations of brown / grey, colours which are inherent to these ceramic material.

ORDERING INFORMATION

Series	Туре	Packing	Resistance Value	Tolerance
RL	RL5 / RL5*	Bulk RL5 / RL5* Tape Ammo RL5T/RL5*T Tape Reel RL5TR/RL5*TR	R005	J

- 1. For RoHS version RL2 *
- 2. For Tape / Reel packing RL2 TR
- 3. For Tape / Ammo packing RL2 T
- 4. If the current required during normal operation exceeds 31 amps on a continuous basis, it is advisable to opt for 2mm terminations. For this RL4 (2), RL5 (2), RL10 (2)
- 5. Specify lead diameter at the time of ordering, RL1 (6) OR RL3 (1)

CURRENT SENSE / LOW OHM CERAMIC ENCASED TYPE