Preliminary Data Sheet PD - 9.1065

International

IRGP450UD2

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE

Features

- Switching-loss rating includes all "tail" losses
- HEXFRED[™] soft ultrafast diodes
- Optimized for high operating frequency (over 5kHz)

UltraFast CoPack IGBT

Description

Co-packaged IGBTs are a natural extension of International Rectifier's well known IGBT line. They provide the convenience of an IGBT and an ultrafast recovery diode in one package, resulting in substantial benefits to a host of high-voltage, high-current, motor control, UPS and power supply applications.

Absolute Maximum Ratings

	Parameter	Max.	Units
V _{CES}	Collector-to-Emitter Voltage	500	V
I _C @ T _C = 25°C	Continuous Collector Current	59	
I _C @ T _C = 100°C	Continuous Collector Current	33	
I _{CM}	Pulsed Collector Current ①	120	А
I _{LM}	Clamped Inductive Load Current ②	120	
I _F @ T _C = 100°C	Diode Continuous Forward Current	29	
I _{FM}	Diode Maximum Forward Current	120	
V _{GE}	Gate-to-Emitter Voltage	± 20	V
P _D @ T _C = 25°C	Maximum Power Dissipation	200	W
P _D @ T _C = 100°C	Maximum Power Dissipation	78	
TJ	Operating Junction and	-55 to +150	
T _{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 sec.	300 (0.063 in. (1.6mm) from case)	
	Mounting Torque, 6-32 or M3 Screw.	10 lbf•in (1.1 N•m)	

Thermal Resistance

	Parameter	Min.	Тур.	Max.	Units
$R_{\theta JC}$	Junction-to-Case - IGBT	—	—	0.64	
$R_{\theta JC}$	Junction-to-Case - Diode	—	—	0.83	°C/W
$R_{\theta CS}$	Case-to-Sink, flat, greased surface	—	0.24	—	
$R_{ extsf{ heta}JA}$	Junction-to-Ambient, typical socket mount	—	—	40	
Wt	Weight	_	6 (0.21)	_	g (oz)

IRGP450UD2

Electrical Characteristics @ $T_J = 25^{\circ}C$ (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions	
V _{(BR)CES}	Collector-to-Emitter Breakdown Voltage 3	500		-	V	$V_{GE} = 0V, I_{C} = 250 \mu A$	
$\Delta V_{\text{(BR)CES}} / \Delta T_J$	Temperature Coeff. of Breakdown Voltage	—	0.41		V/°C	$V_{GE} = 0V, I_C = 1.0mA$	
V _{CE(on)}	Collector-to-Emitter Saturation Voltage	—	2.1	3.2		$I_{\rm C} = 33$ A $V_{\rm GE} = 15$ V	
			2.6	—	V	I _C = 59A	
		_	2.1	—		I _C = 33A, T _J = 150°C	
V _{GE(th)}	Gate Threshold Voltage	3.0	—	5.5		$V_{CE} = V_{GE}, I_C = 250 \mu A$	
$\Delta V_{GE(th)} / \Delta T_J$	Temperature Coeff. of Threshold Voltage		-10		mV/°C	$V_{CE} = V_{GE}$, $I_C = 250 \mu A$	
g fe	Forward Transconductance ④	7.0	22		S	V _{CE} = 100V, I _C = 33A	
I _{CES}	Zero Gate Voltage Collector Current	_		250	μA	$V_{GE} = 0V, V_{CE} = 500V$	
		_	-	6500		$V_{GE} = 0V, V_{CE} = 500V, T_{J} = 150^{\circ}C$	
V _{FM}	Diode Forward Voltage Drop	_	1.3	1.7	V	I _C = 25A	
		_	1.2	1.5		I _C = 25A, T _J = 150°C	
I _{GES}	Gate-to-Emitter Leakage Current		_	±100	nA	$V_{GE} = \pm 20V$	

Switching Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions		
Qg	Total Gate Charge (turn-on)	—	120	180		I _C = 33A		
Q _{ge}	Gate - Emitter Charge (turn-on)	—	22	33	nC	$V_{CC} = 400V$		
Q _{gc}	Gate - Collector Charge (turn-on)	_	41	62				
t _{d(on)}	Turn-On Delay Time	_	33	_		T _J = 25°C		
tr	Rise Time	—	26	—	ns	$I_{C} = 33A, V_{CC} = 400V$		
t _{d(off)}	Turn-Off Delay Time	—	110	170		$V_{GE} = 15V, R_{G} = 5.0\Omega$		
t _f	Fall Time		91	140		Energy losses include '	'tail" and	
Eon	Turn-On Switching Loss	—	0.91	—		diode reverse recovery		
E _{off}	Turn-Off Switching Loss	—	0.25	—	mJ			
E _{ts}	Total Switching Loss	—	1.2	1.7				
t _{d(on)}	Turn-On Delay Time	—	37	—		T _J = 150°C,		
tr	Rise Time	_	29	_	ns	$I_{C} = 33A, V_{CC} = 400V$		
t _{d(off)}	Turn-Off Delay Time	—	160	—		$V_{GE} = 15V, R_G = 5.0\Omega$		
t _f	Fall Time	_	110	_		Energy losses include "tail" and		
E _{ts}	Total Switching Loss	—	1.8	—	mJ	diode reverse recovery.		
LE	Internal Emitter Inductance	—	13	—	nH	Measured 5mm from package		
Cies	Input Capacitance	—	2700	—		$V_{GE} = 0V$		
Coes	Output Capacitance	—	280	—	pF	$V_{CC} = 30V$		
Cres	Reverse Transfer Capacitance	—	34	—		f = 1.0MHz		
t _{rr}	Diode Reverse Recovery Time	—	50	75	ns	T _J = 25°C		
		_	105	160		T _J = 125°C	I _F = 25A	
Irr	Diode Peak Reverse Recovery Current	—	4.5	10	Α	T _J = 25°C		
		_	8.0	15		T _J = 125°C	$V_{R} = 200V$	
Q _{rr}	Diode Reverse Recovery Charge	_	112	375	nC	T _J = 25°C		
		_	420	1200		T _J = 125°C	di/dt = 200A/µs	
di _{(rec)M} /dt	Diode Peak Rate of Fall of Recovery		250		A/µs	T _J = 25°C		
. ,	During t _b	—	160	—	1	T _J = 125°C		

Notes: ① Repetitive rating; V _{GE}=20V, pulse width limited by max. junction temperature. (See fig. 20) 0 V_{CC}=80%(V_{CES}), V_{GE}=20V, L=10\mu H, R_{G}=5.0\Omega, (See fig. 19)

④ Pulse width 5.0µs, single shot.

③ Pulse width \leq 80µs; duty factor \leq 0.1%.

Refer to Section D - page D-13 for Package Outline 3 - JEDEC Outline TO-247AC

Note: For the most current drawings please refer to the IR website at: <u>http://www.irf.com/package/</u>