PART NUMBER

CSM1600/L2S

COMPONENT

ISSUE 2

SPECIFICATION

September 2014

Component Specification For Ceramic Hermetically Sealed, Radiation Hard High Gain Photon Optocoupler

M1077 IECQ

Further copies of this document may be obtained from:

ISOCOM LIMITED WASHINGTON, UK NE38 0AH www.isocom.uk.com

For sales enquiries, or further information, please contact our sales office at:

Isocom Ltd, 48, Hutton Close, Crowther Industrial Estate, Washington, Tyne and Wear, UK, NE38 0AH Tel: +44 0191 4166 546 Fax: +44 0191 4155 055

©2007 Copyright reserved to Isocom Limited

<u>Ceramic Hermetically Sealed, Radiation Hard</u> <u>High Gain Photon Optocoupler</u>

CSM1600 CSM1600/L2 CSM1600/L2S

Features

- Released to European Standard and Complies to Mil Std
- Total Ionizing Dose Tested to 1MRad(si)
- Displacement Damage Tested to 1 MEV x10¹³
- Hermetically Sealed
- High Withstand Test Voltage 1500vdc
- 6 Pin LCC Package
- High Common Mode Rejection
- High Current Transfer Ratio

Applications

- Space Radiation Equipment
- Military, high reliability system
- Medical instruments
- Mos, Cmos Applications
- Logic Interfacing
- Data Transmission
- Power Supply
- Modems

Description

These devices are single, hermetically sealed optically coupled isolators. Each channel is composed of a Gallium Arsenide infra-red emitting diode coupled to an integrated high speed photon detector. The output of the detector is an open collector Schottky clamped transistor. These optocouplers have internal shield providing a guaranteed common mode transient immunity specification of $1000V/\mu$ S. These optocouplers are for Isolation Voltage applications requiring up to 2500vdc. The CSM1600 series are being used in environments encounted by space applications. It is manufactured to meet the JANS standard in conjunction with MIL-PRF-19500 procedures (please see next page for all other applicable specifications). Package styles for this device include 6 Pin LCC Package with solder dip options available.

Therefore absolute maximum ratings, recommended operating conditions, electrical specifications and performance characteristics are identical for all units. Any exceptions, due to packaging variations and limitations, are as noted.

For sales enquiries, or further information, please contact our sales office at:

Standards

The following specifications have been included in the manufacturing of this product:

Military Compliance Specifications

 $\mathsf{MIL}\text{-}\mathsf{PRF}\text{-}19500$ – General Specification for Discrete Semiconductor Devices $\mathsf{IECQ}-\mathsf{M1077}$

Military Compliance Standards

MIL-STD-202 – Test Method Standard Electronic and Electrical Component Parts MIL-STD-883 – Test Method Standard Microcircuits MIL-STD-750 – Test Methods for Semiconductor Devices ISO 9001:2008 – Manufacturing of Optocouplers and Optoelectronic components.

Amendment Record

Issue 1 – Changed Page 3 Single Channel Schematic and removed Electrical Characteristic Diagrams from Pages 7&8

Single Channel Schematic

For sales enquiries, or further information, please contact our sales office at:

Selection Guide Package Styles and Configuration Options

Package	6 pin LCC		
Lead Style			
Channels	1		
Common Channel Wiring			
Isocom Part Number and Options			
Commercial	CSM1600		
Defense Screen Level	CSM1600/L2		
Space Screen Level	CSM1600/L2S		
Standard Gold Plate Finish	Gold Plate		
Solder Dipped	Option 20		

Functional Diagrams

Device Marking

Outline Drawings

For sales enquiries, or further information, please contact our sales office at:

Absolute Maximum Ratings

$T_{A} = 25^{\circ}C U.O.S.$			
Storage Temperature	-65°C to +150°C		
Operating Temperature	-55°C to +125°C		
Lead Soldering Temperature	260°C 1.6mm from	m case for 10S	
Input-to-Output Isolation Voltage	①1500VDC		
Input Diode			
Peak Forward Current	40mA	≤ 1 mS duration, 500pps	
Average Forward Current	20mA	(see note 3)	
Reverse Voltage	5V		
Power Dissipation	35mW		
Output Detector			
Supply Voltage	7V	Vcc (1 minute maximum)	
Current	25mA		
Collector Power Dissipation	40mW		
Voltage	7V	Vo (see note 1)	

Electrical Characteristics $T_{A} = -55^{\circ}C$ to $+125^{\circ}C$ U O S

Parameter	Symbol	Test Conditions	Min	Туре	Max	Units
Current Transfer Ratio (see note 1)	CTR	Vcc =5.5V, Vo=0.6V, I⊧ = 10mA	100	-	-	%
Lower Level output voltage (see notes 1 & 9)	V _{OL}	Vcc =5.5V, I _F = 10mA, I₀∟(sinking) 10mA	-	0.4	0.6	V
High level output current (see note 1)	I _{он}	I _F =250µA, Vo= Vcc=5.5V	-	20	250	μA
High level supply current	Іссн	$V_{cc}=5.5V$, $I_{F1} = I_{F2} = 0$	-	15	30	mA
Low level supply current	ICCL	$V_{cc}=5.5V$, $I_{F1} = I_{F2} = 13mA$	-	-	36	mA
Input forward voltage	VF	$I_F = 10 \text{mA}, T_A = 25^{\circ}\text{C}$	-	1.5	1.9	V
(see note 1)		I _F = 20mA	-	-	1.9	V
Input-Output Insulation Leakage Current (see notes 2 & 10)	li-o	RH=45%, t=5S, T _A = 25°C, V _{I-O} = 1500vdc	-	-	1.0	μA
Input reverse breakdown (see note 1)	VBR	I _R = 10μA, T _A = 25°C	5	-	-	V

For sales enquiries, or further information, please contact our sales office at:

Typical Characteristics

 $T_A = 25^{\circ}C$, Vcc = 5V each channel were appropriate

Parameter	Symbol	Test Conditions	Notes	Min	Туре	Max	Units
Resistance	Rio	V ₁₀ = 500Vdc	3	-	10 ¹²	-	Ω
Capacitance	CIO	f = 1MHz	3	-	1.9	-	pF
Input Capacitance	CIN	f = 1MHz, V _F = 0	1	-	60	I	pF
Input Diode Temperature Coefficient	$\frac{\Delta VF}{\Delta TA}$	I _F = 20mA	1	-	-1.9	-	mV/°C
Input-Input Insulation Leakage Current	I _{I-1}	45% Relative Humidity V⊫ = 500Vdc, t = 5S,	4	-	0.5	-	nA
Resistance	R⊦I	$V_{II} = 500 V dc$	4	-	10 ¹²	I	Ω
Capacitance	CI-I	f = 1MHz	4	-	0.6	-	pF
Output Rise (10-90%)	tr	R _L = 510Ω, V _{CC} = 5V,I _F = 13mA T _A = 25°C, C _L = 15pF	1	-	35	-	ns
Output Fall Time (90-10%)	tf	R _L = 510Ω, V _{CC} = 5V,I _F = 13mA T _A = 25°C, C _L = 15pF	1	-	35	-	ns
Common Mode Transient Immunity at Logic High Output Level	СМн	Vo (min) =2V, I⊧ = 0mA, Vcm =10V (peak), R∟ = 510Ω	1&7	-	-1000	-	V/µS
Common Mode Transient Immunity at Logic Low Output Level	CML	Vo (max) =0.8V, I _F = 10mA, Vcm =10V (peak), R _L = 510Ω	1&7	-	-1000	-	V/µS

Notes: (Apply typically to 16 pin package)

1. Each channel, where appropriate.

2. Measured between pins 1 through 4 shorted together, and pins 9 through 16 shorted together.

3. Measured between pins 1 and 2, or 5 and 6 shorted together, and pins 9 through 16 shorted together.

4. Measured between pins 1 and 2 shorted together, and pins 5 and 6 shorted together.

5. The t_{PLH} propagation delay is measured from the 6.5mA point on the trailing edge of the input pulse to the 1.5V point on the trailing edge of the output pulse.

6. The t_{PHL} propagation delay is measured from the 6.5mA point on the leading edge of the input pulse to the 1.5V point on the leading edge of the output pulse.

7. CM_H is the maximum tolerable common mode transient to assure that the output will remain in a high logic state (i.e., $V_O > 2.0V$).

8. CM_L is the maximum tolerable common mode transient to assure that the output will remain in the logic low state (i.e., $V_0 < 2.0V$).

9. It is essential that a bypass capacitor (0.1 to 0.1μ F, ceramic) be connected from pin 10 to pin 15. Total lead length between both ends of the capacitor and the isolator pins should not exceed 20mm.

10. This is a momentary withstand test, not an operating condition.

For sales enquiries, or further information, please contact our sales office at:

GROUP TESTING to MIL-STD 750

GROUP	TEST	MIL-STD-750	READ AND
GROOT			RECORD
Group A			
SG1	Visual inspection & mechanical	Method 2071	
	dimensions		
SG2	DC static test at 25°C		yes
SG3	DC static test at 125°C and -55°C		yes
SG4	Dynamic test at 25°C		yes
Group B		14.1.10044	
SGI	Physical dimensions	Method 2066	
SG 2	Solderability	Method 2026	
SC 2	The must be all	Method 1022	
30.3	I nermai Snock	25 guales	
	Temperature evaling	25 Cycles Mothod 1051 100	
	Temperature cycling	$\frac{100}{\text{cycles}} = \frac{55}{+}125^{\circ}\text{C}$	
	Hermetic seal fine and gross leak	Method 1071 Cond H	
	fiermette seur mie und gross ieux	(fine) Cond C (gross)	
	Electrical measurement	pre and post	ves
	Decap internal visual inspection	2075	<i>J</i> = ~
	Bond strength	Method 2037, Cond. D	ves
	Die shear	Method 2017	ves
SG 4	Intermittent operation life	Method 1037, 1042,	
	*	Cond D, Tab.5-5	
	Hermetic seal fine and gross leak	Method 1071, Cond. H	
	_	(fine), Cond. C (gross)	
	Electrical measurement	pre and post	yes
	Bond strength	Method 2037, Cond. D	yes
SG 5	Acc. steady-state operation life	Method 1027	
	Electrical measurement	pre and post	yes
	Bond strength	Method 2037, Cond. D	yes
Group C			
SG 2	Thermal Shock	Method 1056, Cond. B,	
	-	25 shocks	
	Temperature cycling	Method 1051, Cond. C,	
		-55/+125°C, 25 cycles	
		(total 45 cycles	
	Harmatic seal fine and gross leak	Mathad 1071 Cand H	
	fiermene sear fine and gross leak	(fine) Cond C (gross)	
	Moisture resistance	Method 1021	
	Electrical measurement	pre and post	ves
SG 3	Mechanical shock	Method 2016.	<i>J</i> = ~
		non-operating, 1500 G.	
		0.5 ms, 5 blows in each	
		orientation (X1,Y1,Z1)	
	Vibration	Method 2056	
	Constant acceleration	Method 2006, at a peak	
		level of 5000 G	
	Electrical measurement	pre and post	yes
SG 6	Steady state operating life Not		
	required as B5 is available on same		
	lot		

For sales enquiries, or further information, please contact our sales office at:

100% SCREENING to MIL-STD 750

TEST	MIL-STD-750	READ AND RECORD?
Internal Visual	2072	
Sealing		
(Fine Leak)	1071, Condition H1	
(Gross Leak)	1071, Condition C	
Temp Cycling	1051, Condition	
	B-55/+125°C, 20 Cycles.	
Const. Acceler	2006, 5000G, Y1 only.	
PIND	2052, Condition A	
Radiography	2076	
Initial Electrical	125°C, -55°C, 25°C	R & R
HTRB	1039	
Interim Electrical	25°C only	R & R
Burn-In	1039	
Final Electrical	125°C, -55°C, 25°C	R & R
PDA	Max. 5%, pre/post B1	Calculate & R
	electrical and delta at RT	
	only	
(Fine Leak)	1071, Condition H1	
(Gross Leak)	1071, Condition C	
Solder Dip		
Fine Leak	1071, Condition H1	
Gross Leak	1071, Condition C	

For sales enquiries, or further information, please contact our sales office at:

Space Qualification PROCESS FLOW CHART FOR PACKAGED DEVICES

QA INSPECTION 100% DC PROBE WAFER SCRIBE & BREAK BOND PULL TEST **DIE SHEAR TEST** HIGH TEMPERATURE BAKE WAFER SELECTION VISUAL INSPECTION ANALYSIS MIL QA VISUAL INSPECTION & SPACE ONLY SERIALISATION ASSEMBLE 100% RTH MEASUREMENT 100% PRE-CAP VISUAL INSPECTION PACKAGE SEAL MARKING 100% TEMP CYCLE - 20 CYCLES 100% CONSTANT ACCELERATION 5000G HERMETIC SEAL TEST 100% FINE & GROSS 100% GROUP A ELECTRICAL TEST R&R

100% HTRB

100% GROUP A ELECTRICAL TEST R&R

100% DC POWER BURN-IN: 240hr @ Tch=125°C

100% ELECTRICAL DELTA EVALUATION

PDA ONLY SAMPLES

100% QA FINAL INSPECTION

SHIP

For sales enquiries, or further information, please contact our sales office at.

Space Qualification PROCESS FLOW CHART FOR PACKAGED DEVICES

Group B Testing	*MIL-STD-883	*MIL-STD-750
Physical Dimensions	Method 2016	Method 2066
Solderability	Method 2003	Method 2023
Resistance to Solvents	Method 2015	Method 1022
Temperature Cycling	Method 1010	Method 1051
Military Grade	25 cycles	25 cycles
Space Grade	50 cycles	50 cycles
Steady State Life (Tch 175°C / 340hr minimum)	Method 1005	Method 1027
DPA	*MIL-STD-1580A	*MIL-STD-1580A
	*Unless otherwise indicated	*Unless otherwise indicated

Environmental & Mechanical Testing Specifications					
	*MIL-STD-883	*MIL-STD-750			
Hermetic Seal Test	Method 1014	Method 1071			
Fine Leak	Condition A1	Condition G or H			
Gross Leak	Condition C	Method 1051			
Temperature Cycle (Standard Military Level)	Method 1010, Condition C	Method 1051, Condition C			
Temperature Cycle (Standard Space Level)	Method 1010, Condition C	Method 1051, Condition C			
Constant Acceleration	Method 2001	Method 2006			
PIND Test	Method 2020	Method 2052, Condition A			
RTH Measurement	Method 1012				
HTRB (High Temperature Reverse Bias)	Method 1015, Condition A	Method 1042, Condition B			
DPA	*MIL-STD-1580A	*MIL-STD-1580A			
	*Unless otherwise indicated	*Unless otherwise indicated			

Inspection Table		
COMMERCIAL	MILITARY	HI-REL / SPACE
AQL Sampling Plan	MIL-STD-883, Method 2010, Class Level B	MIL-STD-883, Method 2010, Class Level S
Isocom Internal Specifications	MIL-STD-750, Method 2070, 2071,2072	MIL-STD-750, Method 2070, 2071,2072

For sales enquiries, or further information, please contact our sales office at: