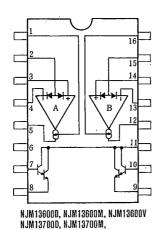

DUAL OPERATIONAL TRANSCONDUCTANCE AMPLIFIER

GENERAL DESCRIPTION

The NJM13600/13700 consist of two current controlled transconductance amplifiers each with differential inputs and a push pull output. The two amplifiers share common supplies but otherwise operate independently. Linearizing diodes are provided at the inputs to reduce distortion and allow higher input levels. The results is a 10 dB signal-to-noise improvement referenced to 0.5 percent THD. Controlled impedance buffers are provided which are especially designed to complement the dynamic range of the amplifiers.

DIP16, DMP16, (SSOP16)

■ PACKAGE OUTLINE

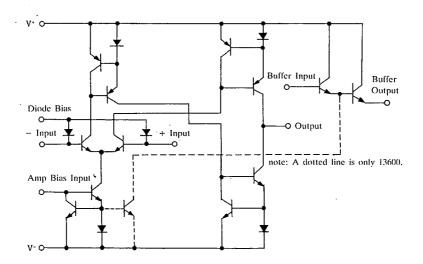


NJM13600V

FEATURES

- Package Outline
- Bipolar Technology

PIN CONFIGURATION



PIN FUNCTION

- 1. Amp Bias Input A
- 2. Diode Bias A
- + Input
- Input
- Output A
- V-6.
- Buffer Input A
- 8. Buffer Output A

- 9. Buffer Output B
- 10. Buffer Input B
- 11. V*
- 12. Output B
- 13. Input B
- 14. + Input B
- 15. Diode Bias B
- 16. Amp Bias Input B

EQUIVALENT CIRCUIT

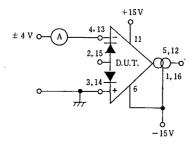
■ ABSOLUTE MAXIMUM RATINGS

(Ta=25°C)

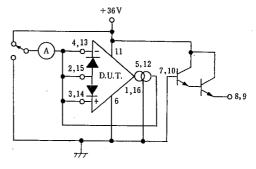
PARAMETER	SYMBOL	RATINGS	UNIT	
Supply Voltage	V*/V-	36 or ±18		
Differential Input Voltage	V _{ID}	±5	V	
Diode Bias Current	In	2	mA	
Amp Bias Current	IABC	вс 2		
Buffer Output Current	Io	20	mA	
	P _D	(DIP16) 570	mW	
Power Dissipation		(DMP16) 700	mW	
DC Input Voltage	Vin	V+~V-		
Operating Temperature Range	Topr	-40~+85	°C	
Storage Temperature Range	Tstg	-40~+125	r	

(note) At on a ceramic PCB ($10 \times 20 \times 0.635$ mm)

■ ELECTRICAL CHARACTERISTICS

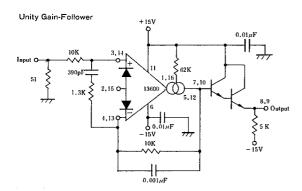

 $(V^{+}/V^{-}=\pm 15V, Ta=25^{\circ}C, I_{ABC}=500 \mu A)$

PARAMETER SY	SYMBOL	MBÖL TEST CONDITION	13600			13700			UNIT
	21MDOF		MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	ONII .
Input Offset Voltage (Vos)	Vio		_	0.4	5		0.4	4	mV
Input Offset Voltage		$l_{ABC}=5\mu A$	l —	0.3	5		0.3	4	mV
Vos Including Diodes		Diode Bias Current, I _D =500μA	—	0.5	5	_	0.5	5	mV
Input Offset Change		5 _μ A≤I _{ABC} ≤500 _μ A	l —	0.1	—	_	0.1	3	mV
Input Bias Current	I _B			0.4	5	_	0.4	5	μΑ
Input Bias Current		(−20~+75°C)	—	1	8	_	1	8	μΑ
Forward Transconductance(gm)	gm		6,700	9,600	13,000	6,700	9,600	13,000	$\mu\Omega$
		(−20∼+75℃)	5,400	—	—	5,400			$\mu\Omega$
gm Tracking		$R_L = 0, I_{ABC} = 5\mu A$		0.3		-	0.3	:	dB
Peak Output Current	lop	$R_L = 0, I_{ABC} 5 \mu A$	-	5		_	0	_	μA
Peak Output Current		$R_L = 0.1_{ABC} = 500 \mu A$	350	500	650	350	500	650	μА
Peak Oputput Current]	$R_L = 0, -20 \sim +75^{\circ}C$	300		<u> </u>	300	—	—	μA
Peak Output Voltage Positive	Vop	$R_L = \infty$, $5\mu A \le I_{ABC} \le 500\mu A$	+12	+14.2		+12	+14.2	l — . i	V
Peak Output Voltage Negative		$R_1 = \infty$, $5\mu A \leq ABC \leq 500\mu A$	-12	-14.4	_	-12	-14.4	_	V
Operating Current	Icc	$I_{ABC} = 500 \mu A$, two circuit	-	2.6			2.6	_	mΑ
Vos Sensitivity Positive	SVR	$\Delta V_{OS}/\Delta V^{+}$	76.5	94	l —	76.5	94	-	dB
Vos Sensitivity Negative	İ	$\Delta V_{OS}/\Delta V^{-}$	76.5	94	—	76.5	94	- '	dB
Input Offset Curent	Ito		_	1.0	0.6	_	0.1	0.6	μA
CMRR	CMR		80	110	—	80	110		dB
Common Mode Range	V _{ICM}		±12	±13.5	<u> </u>	±12	±13.5	—	٧
Cross talk	CT	20Hz <f<20khz (note="" 2)<="" td=""><td>_</td><td>-100</td><td> —</td><td>_</td><td>-100</td><td><u> </u></td><td>dB</td></f<20khz>	_	-100	—	_	-100	<u> </u>	dB
Differential Input Current	1 _{ID}	$I_{ABC}=0$, Input = $\pm 4V$	_	0.02	100	_	0.02	100	nΑ
Leakage Curent	ILEAK	IABC=0 (Refer to Test Circuit)	_	0.2	100	—	0.2	100	nΑ
Input Resistance	R _{IN}		10	26 -		10	26	_	kΩ
Open Loop Bandwidh				2			2		MHz
Slew Rate	SR		-	50	—	—	50	—	V/µS
Buffer Input Current		(note 2)		0.4	5	l —	0.4	5	μA
Peak Buffer Output Voltage		(note 2)	10	-	_	.10	_	_	٧


⁽note 1) Open unless otherwise specified. The inputs to the buffers are grounded and outputs are open.

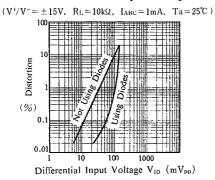
⁽note 2) $R_{OUT} = 5k\Omega$ connected from the buffer output to V^- and the input of buffer is connected to the transconductance amplifier output. $I_{ABC} = 500 \mu A$

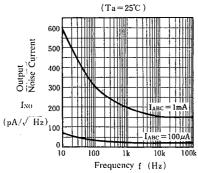
■ TEST CIRCUIT



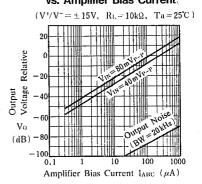
Differential Input Current

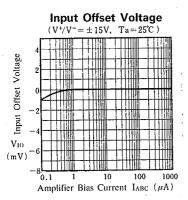
Leakage Current

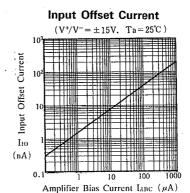

■ TYPICAL APPLICATIONS

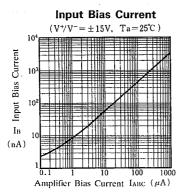

Λ

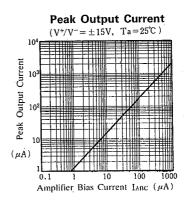
■ TYPICAL CHARACTERISTICS

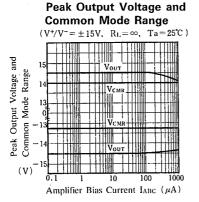

Distortion vs. Differential Input Voltage

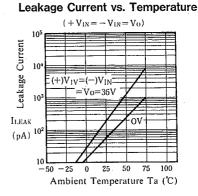

Output Noise Current vs. Frequency

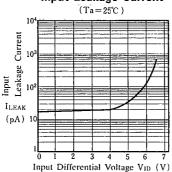


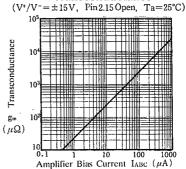

Voltage vs. Amplifier Bias Current:




■ TYPICAL CHARACTERISTICS

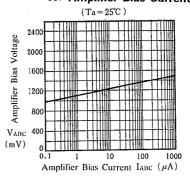


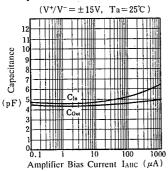


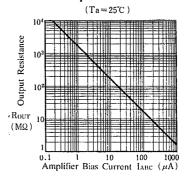


■ TYPICAL CHARACTERISTICS

Input Leakage Current


Transconductance


Input Resistance


Amplifier Bias Voltage vs. Amplifier Bias Current

Input and Output Capacitance

Output Resistance

NJM13600/13700

MEMO

[CAUTION]
The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.