Slotted Interrupter Version 1.3

SFH 9540

Features:

- Suitable for surface mounting (SMT)
- · Compact housing out of black LCP
- GaAs infrared emitter (950 nm)
- · Silicon phototransistor with daylight-cutoff filter
- · With positioning pin
- · Suitable for pick and place
- · High sensing accuracy (slit width: 0.5 mm)
- Wide gap between emitter and detector (5 mm)
- High stability on pcb due to large width of device (6.8 mm)

Applications

- Speed control
- Motor control
- · Monitoring of paper feed in printers, copiers, facsimiles
- · Control of print head in printers
- Coin detection
- Optoelectronic switches

Ordering Information

Туре:	Collector-emitter current	Ordering Code
	I _{PCE} [μA]	
	I _F = 20 mA, V _{CE} = 5 V	
SFH 9540	≥ 1000	Q65111A6122

Maximum Ratings ($T_A = 25~^{\circ}C$)

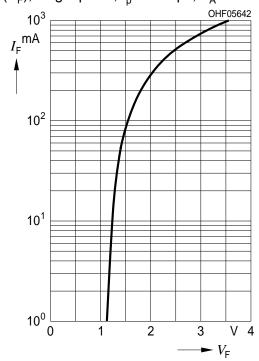
Parameter	Symbol	Values	Unit	
Emitter				
Reverse voltage	V _R	5	V	
Forward current	I _F	60	mA	
Power consumption	P _{tot}	100	mW	
Thermal resistance junction - ambient 1) page 10	R _{thJA}	350	K/W	
	, ,		'	
Detector				
Collector-emitter voltage	V _{CE}	30	V	
Collector-emitter voltage	V _{CE}	70	V	
(t ≤ 2 min)				
Emitter-collector voltage	V _{EC}	7	V	
Collector current	I _C	50	mA	
Total Power dissipation	P _{tot}	150	mW	
Thermal resistance junction - ambient 1) page 10	R _{thJA}	350	K/W	
Slotted Interrupter				
Operation temperature range	T _{op}	-40 85	°C	
Storage temperature range	T _{stg}	-40 85	°C	
Electrostatic discharge	V _{ESD}	2	kV	
Thermal resistance junction - ambient	R _{thJA}	350	K/W	

Characteristics ($T_A = 25 \, ^{\circ}\text{C}$)

Parameter		Symbol	Values	Unit
Emitter				
Peak wavelength (I _F = 20 mA, t _p = 20 ms)	(typ)	λ_{peak}	950	nm
Forward voltage ($I_F = 20 \text{ mA}$, $I_P = 20 \text{ ms}$)	(typ (max))	V _F	1.3 (≤ 1.6)	V
Reverse current (V _R = 5 V)		I _R	not designed for reverse operation	μΑ
Detector				
Wavelength of max. sensitivity	(typ)	$\lambda_{\text{S max}}$	920	nm

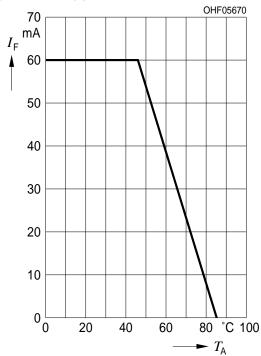
Parameter		Symbol	Values	Unit
Spectral range of sensitivity	(typ)	λ _{10%}	(typ) 840 1080	nm
Capacitance (V _{CE} = 0 V, f = 1 MHz, E = 0)	(typ)	C _{CE}	6.5	pF
Dark current (V _{CE} = 20 V)	(typ (max))	I _{CE0}	2 (≤ 50)	nA

Interrupter

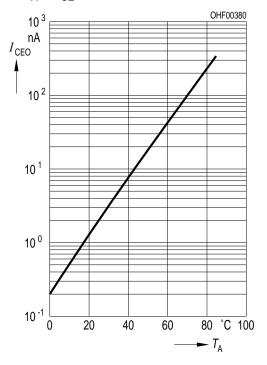

Collector-emitter current (I _F = 20 mA, V _{CE} = 5 V)	(min)	I _{PCE}	1000	μΑ
Collector-emitter saturation voltage $(I_F = 20 \text{ mA}, I_C = 0.3 \text{ mA})$		V _{CEsat}	≤ 400	mV

Switching Times

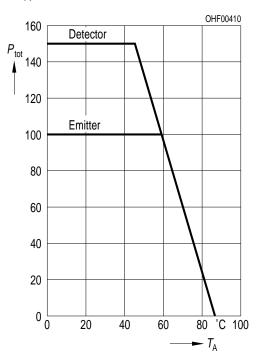
Rise time $(V_{CC} = 5 \text{ V}, I_C = 1 \text{ mA}, R_L = 1 \text{ k}\Omega)$	(typ)	t _r	13	μs
Fall time $(V_{CC} = 5 \text{ V}, I_C = 1 \text{ mA}, R_L = 1 \text{ k}\Omega)$	(typ)	t _f	17	μs


Forward Current 2) page 10

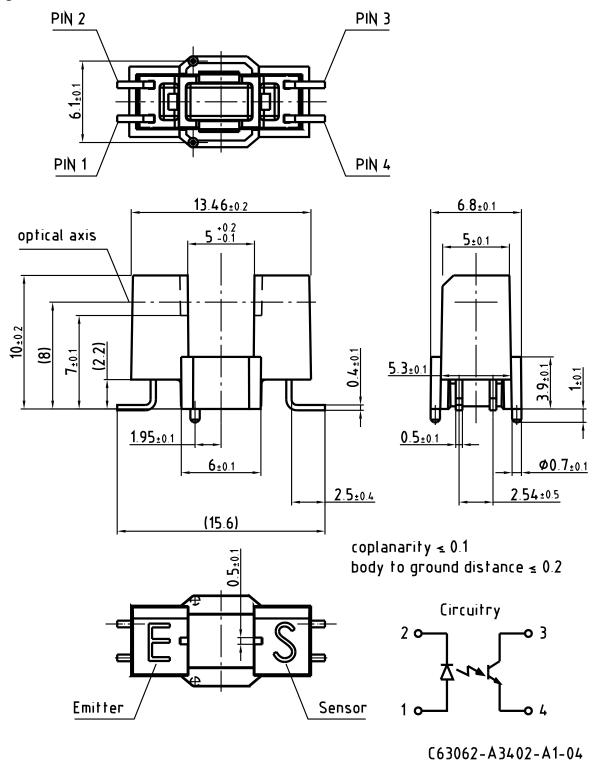
 I_F = f(V_F), single pulse, t_p = 100 μ s, T_A = 25°C


Max. Permissible Forward Current

 $I_{F, \text{max}} = f(T_A), R_{thJA} = 350 \text{ K} / \text{W}$


Dark Current 2) page 10

$$I_{CEO} = f(T_A), V_{CE} = 20 \text{ V}, E = 0$$



Power Consumption

$$P_{tot} = f(T_A)$$

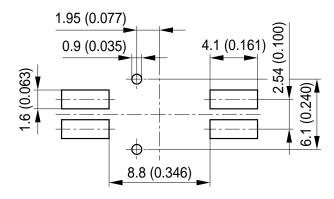
Package Outline

Dimensions in mm.

Pinning

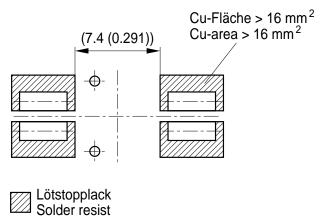
Pin	Description
1	Emitter - Anode
2	Emitter - Cathode
3	Sensor - Collector
4	Sensor - Emitter

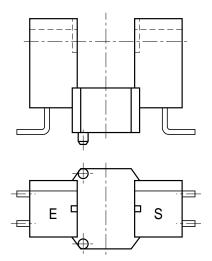
Package

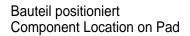

Slotted Interrupter

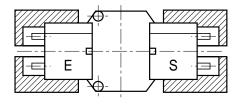
Approximate Weight:

0.6 g

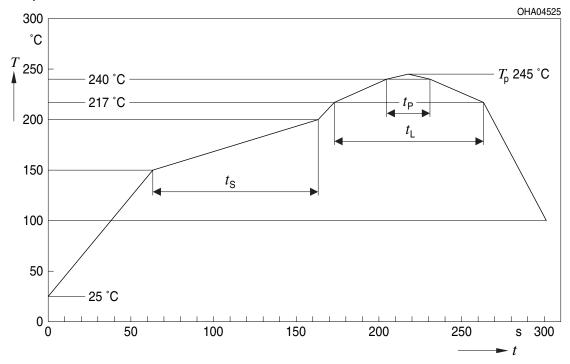



Recommended Solder Pad




Padgeometrie für verbesserte Wärmeableitung

Paddesign for improved heat dissipation



OHFY1950

Dimensions in mm (inch).

Reflow Soldering Profile

Product complies to MSL Level 1 acc. to JEDEC J-STD-020D.01

Profil-Charakteristik Profile Feature	Symbol	Pb-Fi	Einheit		
	Symbol	Minimum	Recommendation	Maximum	Unit
Ramp-up Rate to Preheat*) 25 °C to 150 °C			2	3	K/s
Time t _S T _{Smin} to T _{Smax}	t _S	60	100	120	s
Ramp-up Rate to Peak*) T _{Smax} to T _P			2	3	K/s
Liquidus Temperature	T _L		217		°C
Time above Liquidus temperature	t _L		80	100	s
Peak Temperature	T _P		245	250	°C
Time within 5 °C of the specified peak temperature T _P - 5 K	t _P	10	20	30	s
Ramp-down Rate* T _P to 100 °C			3	4	K/s
Time 25 °C to T _P				480	S

All temperatures refer to the center of the package, measured on the top of the component

^{*} slope calculation DT/Dt: Dt max. 5 s; fulfillment for the whole T-range

Disclaimer

Language english will prevail in case of any discrepancies or deviations between the two language wordings.

Attention please!

The information describes the type of component and shall not be considered as assured characteristics.

Terms of delivery and rights to change design reserved. Due to technical requirements components may contain dangerous substances.

For information on the types in question please contact our Sales Organization.

If printed or downloaded, please find the latest version in the Internet.

Packing

Please use the recycling operators known to you. We can also help you – get in touch with your nearest sales office. By agreement we will take packing material back, if it is sorted. You must bear the costs of transport. For packing material that is returned to us unsorted or which we are not obliged to accept, we shall have to invoice you for any costs incurred.

Components used in life-support devices or systems must be expressly authorized for such purpose! Critical components* may only be used in life-support devices** or systems with the express written approval of OSRAM OS.

- *) A critical component is a component used in a life-support device or system whose failure can reasonably be expected to cause the failure of that life-support device or system, or to affect its safety or the effectiveness of that device or system.
- **) Life support devices or systems are intended (a) to be implanted in the human body, or (b) to support and/or maintain and sustain human life. If they fail, it is reasonable to assume that the health and the life of the user may be endangered.

9

Glossary

- 1) Thermal resistance: Mounting on PC-board with > 5 mm² pad size
- Typical Values: Due to the special conditions of the manufacturing processes of LED, the typical data or calculated correlations of technical parameters can only reflect statistical figures. These do not necessarily correspond to the actual parameters of each single product, which could differ from the typical data and calculated correlations or the typical characteristic line. If requested, e.g. because of technical improvements, these typ. data will be changed without any further notice.

Published by OSRAM Opto Semiconductors GmbH Leibnizstraße 4, D-93055 Regensburg www.osram-os.com © All Rights Reserved.

EU RoHS and China RoHS compliant product 此产品符合欧盟 RoHS 指令的要求; 按照中国的相关法规和标准,不含有毒有害物质或元素。

OSRAMOpto Semiconductors