Naos™ NXA025: SIP Non-Isolated DC-DC Power Module

10Vdc - 14Vdc input; 0.8Vdc to 5.5Vdc output; 25A Output Current

RoHS Compliant

Applications

- Distributed power architectures
- Intermediate bus voltage applications
- Telecommunications equipment
- Servers and storage applications
- Networking equipment
- Enterprise Networks
- Latest generation IC's (DSP, FPGA, ASIC) and Microprocessor powered applications

Features

- Compliant to RoHS EU Directive 2011/65/EU (-Z versions)
- Compliant to RoHS EU Directive 2011/65/EU under exemption 7b (Lead solder exemption). Exemption 7b will expire after June 1, 2016 at which time this product will no longer be RoHS compliant (non-Z versions)
- Delivers up to 25A output current
- High efficiency 93% at 3.3V full load
- Small size and low profile:

31.7 mm \times 50.8 mm \times 8.50 mm (1.25 in \times 2.00 in \times 0.335 in)

- Low output ripple and noise
- Constant switching frequency (500 kHz)
- Output voltage programmable from 0.8 Vdc to 5.5Vdc via external resistor
- Remote On/Off
- Remote Sense
- Parallel operation with current sharing (-P option)
- Output voltage sequencing (multiple modules)
- Output overvoltage protection
- Overtemperature protection
- Output overcurrent protection (non-latching)
- Wide operating temperature range (-40°C to 85°C)
- UL* 60950-1Recognized, CSA[†] C22.2 No. 60950-1-03
 Certified, and VDE[‡] 0805:2001-12 (EN60950-1) Licensed
- ISO** 9001 and ISO 14001 certified manufacturing facilities

Description

The NXA025 series SIP (single-in line package) power modules are non-isolated dc-dc converters that can deliver up to 25A of output current with full load efficiency of 93% at 3.3Vdc output voltage. These modules provide a precisely regulated output voltage from 0.8Vdc to 5.5Vdc, programmable via an external resistor. The open-frame construction and small footprint enable designers to develop cost- and space-efficient solutions. Standard features include remote On/Off, adjustable output voltage, remote sense, output voltage sequencing of multiple modules, over current, over voltage, and over temperature protection.

- * UL is a registered trademark of Underwriters Laboratories, Inc.
- † CSA is a registered trademark of Canadian Standards Association.
- VDE is a trademark of Verband Deutscher Elektrotechniker e.V.
- $\ensuremath{^{**}}$ ISO is a registered trademark of the International Organization of Standards

Naos™ NXA025: SIP Non-Isolated DC-DC Power Module

10Vdc - 14Vdc input; 0.8Vdc to 5.5Vdc output; 25A Output Current

Absolute Maximum Ratings

Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. These are absolute stress ratings only, functional operation of the device is not implied at these or any other conditions in excess of those given in the operations sections of the data sheet. Exposure to absolute maximum ratings for extended periods can adversely affect the device reliability.

Parameter	Device	Symbol	Min	Max	Unit
Input Voltage	All	V _{IN}	-0.3	14	Vdc
Continuous					
Operating Ambient Temperature	All	TA	-40	85	°C
(see Thermal Considerations section)					
Storage Temperature	All	T _{stg}	-55	125	°C

Electrical Specifications

Unless otherwise indicated, specifications apply over all operating input voltage, resistive load, and temperature conditions.

Parameter	Device	Symbol	Min	Тур	Max	Unit
Operating Input Voltage	All	V _{IN}	10.0	12.0	14.0	Vdc
Maximum Input Current $(V_{IN}=10.0V \text{ to } 14.0V, I_0=I_{0, max})$	All	I _{IN,max}			14	Adc
Inrush Transient	All	l²t			1	A ² s
Input Reflected Ripple Current, peak-to-peak (5Hz to 20MHz, 1µH source impedance; V _{IN, min} to V _{IN, max} , Io= I _{Omax} ; See Test configuration section)	All			60		mAp-p
Input Ripple Rejection (120Hz)	All			50		dB

CAUTION: This power module is not internally fused. An input line fuse must always be used.

This power module can be used in a wide variety of applications, ranging from simple standalone operation to being part of a complex power architecture. To preserve maximum flexibility, internal fusing is not included, however, to achieve maximum safety and system protection, always use an input line fuse. The safety agencies require a fast-acting fuse with a maximum rating of 30A (see Safety Considerations section). Based on the information provided in this data sheet on inrush energy and maximum dc input current, the same type of fuse with a lower rating can be used. Refer to the fuse manufacturer's data sheet for further information.

Naos™ NXA025: SIP Non-Isolated DC-DC Power Module

10Vdc – 14Vdc input; 0.8Vdc to 5.5Vdc output; 25A Output Current

Electrical Specifications (continued)

Parameter	Device	Symbol	Min	Тур	Max	Unit
Output Voltage Set-point	All	V _{O, set}	-1.2		+1.2	% V _{O, set}
(V _{IN} =V _{N, min} , I _O =I _{O, max} , T _A =25°C)						
Output Voltage	All	V _{O, set}	-3.0	_	+3.0	% V _{O, set}
(Over all operating input voltage, resistive load, and temperature conditions until end of life)						
Adjustment Range Selected by an external resistor	All	Vo	0.7887		5.5	Vdc
Output Regulation						
Line ($V_{IN}=V_{IN, min}$ to $V_{IN, max}$)	All		_	0.01	0.1	% V _{O, set}
Load ($I_0=I_{0, min}$ to $I_{0, max}$)	All		_	0.1	0.2	% V _{O, set}
Temperature (T _{ref} =T _{A, min} to T _{A, max})	All		_	0.5	1	% V _{O, set}
Output Ripple and Noise on nominal output						
$(V_{IN}=V_{IN, nom} \text{ and } I_O=I_{O, min} \text{ to } I_{O, max}$						
Cout = $2 \times 0.47 \mu F$ ceramic capacitors)						
RMS (5Hz to 20MHz bandwidth)	All		_	5	15	mV _{rms}
Peak-to-Peak (5Hz to 20MHz bandwidth)	All		_	15	50	mV_{pk-pk}
External Capacitance						
ESR ≥ 1 mΩ	All	C _{O, max}	_	_	1000	μF
ESR ≥ 10 mΩ	All	C _{O, max}	_	_	10,000	μF
Output Current	All	lo	0		25	Adc
Output Current Limit Inception (Hiccup Mode)	All	I _{O, lim}	_	125	150	% l _o
Output Short-Circuit Current	All	I _{O, s/c}	_	1	_	Adc
(V ₀ ≤250mV) (Hiccup Mode)						
Efficiency	V _{O,set} = 0.8Vdc	η		79.0		%
V _{IN} = V _{IN, nom} , T _A =25°C	V _{O, set} = 1.2Vdc	η		84.7		%
$I_0 = I_{0, max}, V_0 = V_{0, set}$	$V_{O,set} = 1.5 Vdc$	η		87.3		%
	V _{O,set} = 1.8Vdc	η		88.9		%
	$V_{O,set} = 2.0Vdc$	η		89.7		%
	$V_{O,set} = 2.5Vdc$	η		91.4		%
	$V_{O,set} = 3.3Vdc$	η		93.1		%
	$V_{O,set} = 5.5Vdc$	η		95.1		%
Switching Frequency	All	f _{sw}	_	500	_	kHz
Dynamic Load Response						
$(dIo/dt=5A/\mu s; V_{IN}=V_{IN,nom}; T_A=25^{\circ}C)$	All	V_{pk}	_		150	mV
Load Change from Io= 50% to 100% of Io,max; No external output capacitors						
Peak Deviation						
Settling Time (Vo<10% peak deviation)	All	ts	_	25	_	μs
(dIo/dt=5A/ μ s; $V_{IN} = V_{IN, nom}$; T_A =25°C)	All	V_{pk}	_		150	mV
Load Change from Io= 100% to 50%of Io,max: No external output capacitors						
Peak Deviation						
Settling Time (Vo<10% peak deviation)	All	ts		25	_	μS

Naos™ NXA025: SIP Non-Isolated DC-DC Power Module

10Vdc - 14Vdc input; 0.8Vdc to 5.5Vdc output; 25A Output Current

General Specifications

Parameter	Min	Тур	Max	Unit
Calculated MTBF (I_0 =80% of $I_{0, max}$, T_A =25°C)		2,150,000		Hours
Weight	_	15.5 (0.55)		g (oz.)

Feature Specifications

Unless otherwise indicated, specifications apply over all operating input voltage, resistive load, and temperature conditions. See Feature Descriptions for additional information.

Parameter	Device	Symbol	Min	Тур	Max	Unit
SEQ/ENA Signal Interface						
$(V_{IN}\!\!=\!\!V_{IN,min}$ to $V_{IN,max}$; open collector or equivalent,						
Signal referenced to GND)						
Logic High (SEQ/ENA pin open – Module Off)						
SEQ/ENA Current	All	I _{SEQ/ENA}	0.5	_	2.33	mA
SEQ/ENA Voltage:	All	V _{SEQ/ENA}	3.5	_	14	V
Logic Low (Module ON)						
SEQ/ENA Current:	All	I _{SEQ/ENA}	_	_	200	μΑ
SEQ/ENA Voltage:	All	V _{SEQ/ENA}	_	_	1.2	V
Turn-On Delay and Rise Times	All	Tdelay	_	1	_	msec
(I ₀ =I _{0, max} , V ₀ to within $\pm 1\%$ of steady state)	All	Trise	_	5	_	msec
Output voltage overshoot – Startup				0.1	0.5	% V _{O, set}
I_0 =80% of $I_{0, max}$; V_{IN} = 12Vdc, T_A = 25 °C						
Ouptut Overvoltage Protection (Latching)	All		5.7	6.0	6.3	V
Input Undervoltage Lockout						
Turn-on Threshold	All				9.9	V
Turn-off Threshold	All		8.1			V
Remote Sense Range			_	_	0.5	V
Overtemperature Protection	All	T_{ref}	—	125	_	°C
(See Thermal Consideration section)						
Forced Load Share Accuracy	All		_	10		% lo
Number of units in Parallel					3	

Naos™ NXA025: SIP Non-Isolated DC-DC Power Module

10Vdc - 14Vdc input; 0.8Vdc to 5.5Vdc output; 25A Output Current

Characteristic Curves

The following figures provide typical characteristics for the NXA025A0X at 25°C.

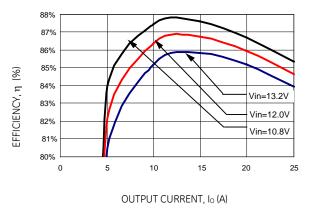


Figure 1. Converter Efficiency versus Output Current (Vout = 1.2Vdc).

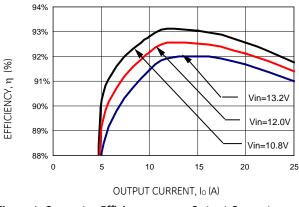


Figure 4. Converter Efficiency versus Output Current (Vout = 2.5Vdc).

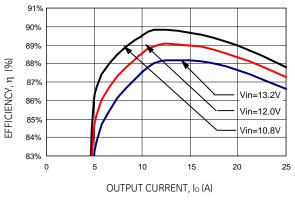


Figure 2. Converter Efficiency versus Output Current (Vout = 1.5Vdc).

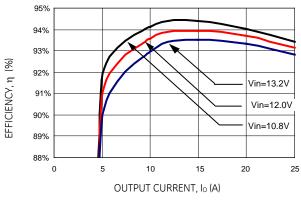


Figure 5. Converter Efficiency versus Output Current (Vout = 3.3Vdc).

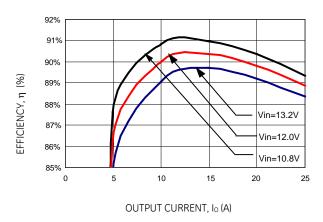
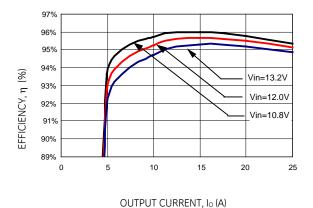
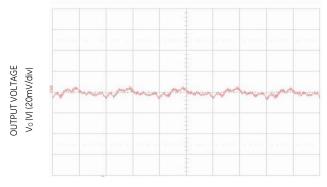
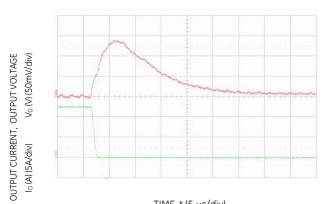


Figure 3. Converter Efficiency versus Output Current (Vout = 1.8Vdc).




Figure 6. Converter Efficiency versus Output Current (Vout = 5.0Vdc).

Naos™ NXA025: SIP Non-Isolated DC-DC Power Module


10Vdc - 14Vdc input; 0.8Vdc to 5.5Vdc output; 25A Output Current

Characteristic Curves (continued)

The following figures provide typical characteristics for the NXA025A0X at 25°C.

TIME, t $(1\mu s/div)$ Figure 7. Typical Output Ripple and Noise (Vin = 12V dc, Vo = 3.3 Vdc, Cout = 2x 0.47uF ceramic capacitor).

TIME, t (5 µs/div)

Figure 10. Transient Response to Dynamic Load Change from 100% to 50% of full load (Vo = 3.3Vdc).

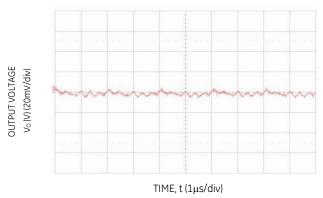


Figure 8. Typical Output Ripple and Noise (Vin = 12V dc, Vo = 1.2Vdc, Cout = 2×0.47 uF ceramic capacitor).

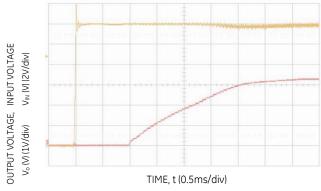


Figure 11. Typical Start-Up with application of Vin (Vo = 3.3Vdc).

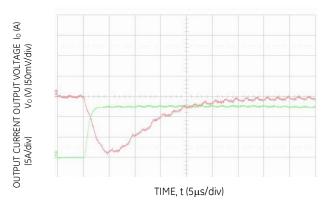


Figure 9. Transient Response to Dynamic Load Change from 50% to 100% of full load (Vo = 3.3Vdc).

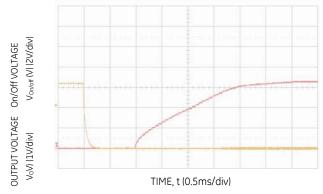


Figure 12. Typical Start-Up Using Enable (Vo = 3.3Vdc).

Naos™ NXA025: SIP Non-Isolated DC-DC Power Module

10Vdc - 14Vdc input; 0.8Vdc to 5.5Vdc output; 25A Output Current

Characteristic Curves (continued)

The following figures provide typical characteristics for the NXA025A0X at 25°C.

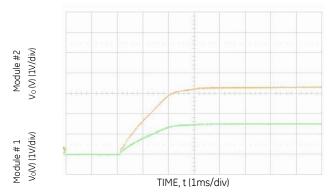


Figure 13. Synchronized Start-up of Output Voltage when SEQ/ENA pins are tied together (Module #1 = 1.5Vdc, Module #2 = 3.3Vdc).

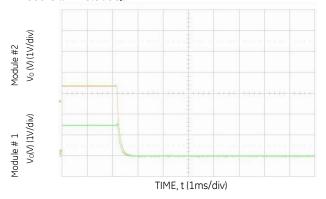


Figure 14. Synchronized Shut-down of Output Voltage when SEQ/ENA pins are tied together (Module #1 = 1.5Vdc, Module #2 = 3.3Vdc).

Naos™ NXA025: SIP Non-Isolated DC-DC Power Module

10Vdc - 14Vdc input; 0.8Vdc to 5.5Vdc output; 25A Output Current

Characteristic Curves (continued)

The following figures provide typical thermal derating curves for NXA025A0X (Figures 19 and 20 show derating curves with base plate).

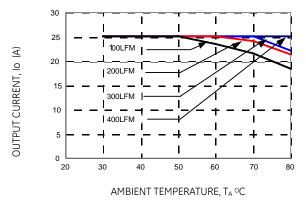


Figure 15. Derating Output Current versus Local Ambient Temperature and Airflow (Vin = 12Vdc, Vo=1.2Vdc).

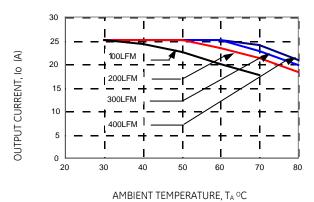


Figure 18. Derating Output Current versus Local Ambient Temperature and Airflow (Vin = 12Vdc, Vo=5.0 Vdc).

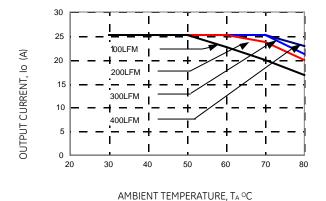


Figure 16. Derating Output Current versus Local Ambient Temperature and Airflow (Vin = 12Vdc, Vo=1.8 Vdc).

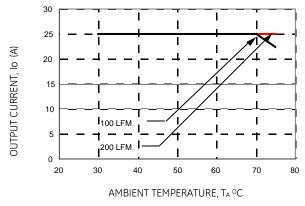


Figure 19. Derating Output Current versus Local Ambient Temperature and Airflow (Vin = 12Vdc, Vo=3.3 Vdc) with baseplate.

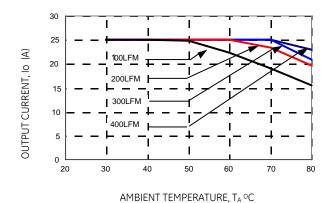


Figure 17. Derating Output Current versus Local Ambient Temperature and Airflow (Vin = 12Vdc, Vo=3.3 Vdc).

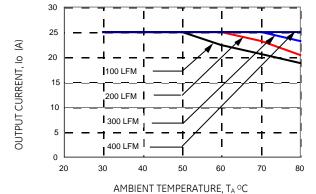
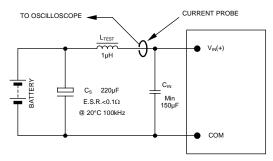
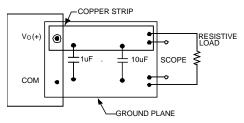



Figure 20. Derating Output Current versus Local Ambient Temperature and Airflow (Vin = 12Vdc, Vo=5.0 Vdc) with baseplate.

Naos™ NXA025: SIP Non-Isolated DC-DC Power Module


10Vdc - 14Vdc input; 0.8Vdc to 5.5Vdc output; 25A Output Current

Test Configurations

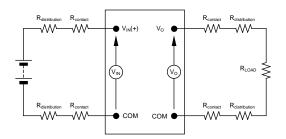

NOTE: Measure input reflected ripple current with a simulated source inductance (L_{TEST}) of 1µH. Capacitor C_S offsets possible battery impedance. Measure current as shown

Figure 21. Input Reflected Ripple Current Test Setup.

NOTE: All voltage measurements to be taken at the module terminals, as shown above. If sockets are used then Kelvin connections are required at the module terminals to avoid measurement errors due to socket contact

Figure 22. Output Ripple and Noise Test Setup.

NOTE: All voltage measurements to be taken at the module terminals, as shown above. If sockets are used then Kelvin connections are required at the module terminals to avoid measurement errors due to socket contact resistance.

Figure 23. Output Voltage and Efficiency Test Setup.

Efficiency
$$\eta = \frac{V_0. I_0}{V_{IN}. I_{IN}} \times 100 \%$$

Typical Application Circuit

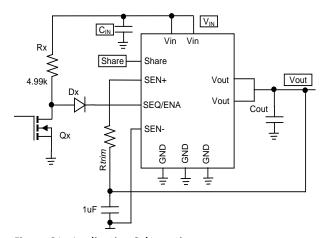


Figure 24. Application Schematic

Design Considerations

Input Source Impedance

The power module should be connected to a low ac-impedance source. Highly inductive source impedance can affect the stability of the power module. The input capacitor CIN should be located equal distance from the two input pins of the module. CIN is recommended to be $150\mu F$ minimum. The ripple voltage is 50mV RMS at 1MHz and the capacitor should be chosen with an ESR and an RMS Current Rating for this amount of ripple voltage. When using multiple modules in parallel, a small inductor (0.2 –0.5 μH) is recommended at the input of each module to prevent interaction between modules. Consult the factory for further application guidelines.

Safety Considerations

For safety agency approval the power module must be installed in compliance with the spacing and separation requirements of the end-use safety agency standards, i.e., UL 60950-1, CSA C22.2 No. 60950-1-03, and VDE 0850:2001-12 (EN60950-1) Licensed.

For the converter output to be considered meeting the requirements of safety extra-low voltage (SELV), the input must meet SELV requirements. The power module has extra-low voltage (ELV) outputs when all inputs are ELV.

The input to these units is to be provided with a maximum of 30 A fast-acting fuse in the ungrounded lead.

Naos™ NXA025: SIP Non-Isolated DC-DC Power Module

10Vdc - 14Vdc input; 0.8Vdc to 5.5Vdc output; 25A Output Current

Feature Description

Remote On/Off using SEQ/ENA Pin

The NXA025A0X SIP power modules feature an SEQ/ENA pin for remote On/Off operation. If not using the remote On/Off pin, leave the pin open (module will be on). The SEQ/ENA signal (VSEQ/ENA) is referenced to ground. Circuit configuration for remote On/Off operation of the module using SEQ/ENA pin is shown in Figure 25.

During Logic High on the SEQ/ENA pin (transistor Qx is OFF), the module remains OFF. The external resistor Rx should be chosen to maintain 3.5V minimum on the SEQ/ENA pin to insure that the unit is OFF when transistor Qx is in the OFF state. During Logic-Low when Qx is turned ON, the module is turned ON. Note that the external diode is required to make sure the internal thermal shutdown (THERMAI_SD) and undervoltage (UVLO) circuits are not disabled when Qx is turned ON

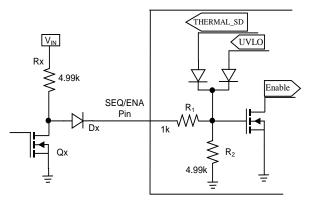


Figure 25. Remote On/Off Implementation.

The SEQ/ENA pin can also be used to synchronize the output voltage start-up and shutdown of multiple modules in parallel. By connecting SEQ/ENA pins of multiple modules, the output start-up can be synchronized (please refer to characterization curves). When SEQ/ENA pins are connected together, all modules will shutdown if any one of the modules gets disabled due to undervoltage lockout or overtemperature protection.

Remote Sense

Remote sense feature minimizes the effects of distribution losses by regulating the voltage at the remote sense pins. The voltage between the remote sense pins and the output terminals must not exceed the remote sense range given in the Feature Specification table, i.e.:

[Vo(+) - Vo(GND)] - [SENSE(+) - SENSE(-)] < 0.5V

Remote sense configuration is shown in Figure 26. If not using the remote sense feature to regulate the output voltage at the point of load, connect SENSE (+) to Vo(+) and Sense (-) to ground. The amount of power delivered by the module is defined as the voltage at the output terminals multiplied by the output current. When using the remote sense, the output voltage of the module can be increased, which at the same output current would increase the power output of the module.

Ensure that the maximum output power of the module remains at or

below the maximum rated power (Po, $max = Io, max \times Vo, max$).

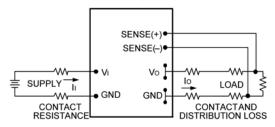


Figure 26. Effective Circuit Configuration for Remote sense operation

Overcurrent Protection

To provide protection in a fault (output overload) condition, the unit is equipped with internal current-limiting circuitry and can endure current limiting continuously. At the point of current-limit inception, the unit enters hiccup mode. The unit operates normally once the output current is brought back into its specified range. The average output current during hiccup is 10% lo, max.

Input Undervoltage Lockout

At input voltages below the input undervoltage lockout limit, module operation is disabled. The module will begin to operate at an input voltage above the undervoltage lockout turn-on threshold.

Overtemperature Protection

To provide protection in a fault condition, the unit is equipped with a thermal shutdown circuit. The unit will shutdown if the thermal reference point T_{ref} , exceeds 125°C (typical), but the thermal shutdown is not intended as a guarantee that the unit will survive temperatures beyond its rating. The module will automatically restarts after it cools down.

Output Voltage Programming

The output voltage of the NXA025A0X can be programmed to any voltage from 0.8Vdc to 5.5Vdc by inserting a series resistor (shown as Rtrim in figure 27) in the Sense(+) pin of the module. Without an external resistor in the Sense(+) pin (Sense (+) pin is shorted to Vo(+)), the output voltage of the module will be 0.7887V. With Sense(+) not connected to Vo(+), the output of the module will reach overvoltage shutdown. A 1 μ F multi-layer ceramic capacitor is required from Rtrim to Sense(-) pin to minimize noise. To calculate the value of the

Feature Descriptions (continued)

Output Voltage Programming (continued)

resistor *Rtrim* for a particular desired voltage *Vo*, use the following equation:

$$Rtrim = 775 * \left[\frac{Vo}{0.7887} - 1 \right] \Omega$$

Where Vo is the desired output voltage and Rtrim is the external resistor in ohms

Naos™ NXA025: SIP Non-Isolated DC-DC Power Module

10Vdc - 14Vdc input; 0.8Vdc to 5.5Vdc output; 25A Output Current

For example, to program the output voltage of the NXA025A0X-S module to 2.5Vdc, *Rtrim* is calculated as follows:

$$Rtrim = 775 * \left[\frac{2.5}{0.7887} - 1 \right]$$

 $Rtrim = 1682\Omega$

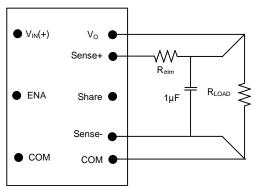


Figure 27. Circuit Configuration for Programming Output voltage

Table 1 provides Rtrim values required for most common output voltages. To achieve the output voltage tolerance as specified in the electrical specifications over all operating input voltage, resistive load and temperature conditions, use 0.1% thick metal film resistor.

Table 1

Vo,set	Rtrim
(V)	Ω
0.8	11
1.0	208
1.2	404
1.5	699
1.8	994
2.0	1190
2.5	1682
3.3	2468
5.0	4138
Overvoltage Shutdown	Open

Forced Load sharing (Parallel Operation)

For additional power requirements, the power module can be configured for parallel operation with forced load sharing (See Figure 28). Good layout techniques should be observed for noise immunity when using multiple units in parallel. To implement forced load sharing, the following connections should be made:

- The share pins of all units in parallel must be connected together. The path of these connections should be as direct as possible.
- All remote-sense pins should be connected to the power bus at the same point, i.e., connect all the SENSE(+) pins to the (+) side of the bus and all the SENSE(-) pins to the GROUND of the power bus at the same point. Close

proximity and directness are necessary for good noise immunity

The share bus is not designed for redundant operation and the system will be non-functional upon failure of one of the unit when multiple units are in parallel. The maximum number of modules tied to share bus is 3. When not using the parallel feature, leave the share pin open.

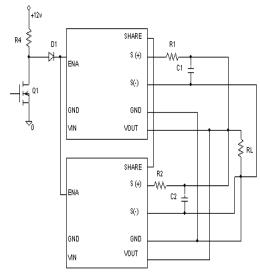


Figure 28. Circuit Configuration for modules in parallel.

Naos™ NXA025: SIP Non-Isolated DC-DC Power Module

10Vdc - 14Vdc input; 0.8Vdc to 5.5Vdc output; 25A Output Current

Thermal Considerations

The power modules operate in a variety of thermal environments; however, sufficient cooling should be provided to help ensure reliable operation.

Considerations include ambient temperature, airflow, module power dissipation, and the need for increased reliability. A reduction in the operating temperature of the module will result in an increase in reliability. The thermal data presented here is based on physical measurements taken in a wind tunnel

The thermal reference point, $T_{\rm ref}$ used in the specifications is shown in Figure 29. For reliable operation this temperature should not exceed 110° C.

Please refer to the Application Note "Thermal Characterization Process For Open-Frame Board-Mounted Power Modules" for a detailed discussion of thermal aspects including maximum device temperatures.

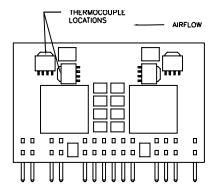


Figure 29. Tref Temperature measurement location.

Heat Transfer via Convection

Increased airflow over the module enhances the heat transfer via convection. Derating figures showing the maximum output current that can be delivered by various module versus local ambient temperature (T_A) for natural convection and up to 2m/s (400 ft./min) are shown in the respective Characteristics Curves section.

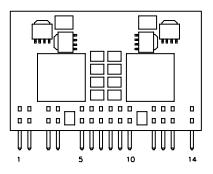
Layout Considerations

The input capacitors should be located equal distance from the two input pins of the module. Recommended layout is shown in the mechanical section. In addition to the input and output planes, a ground plane beneath the module is recommended.

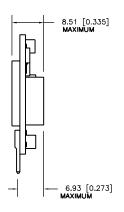
GE

Naos™ NXA025: SIP Non-Isolated DC-DC Power Module

10Vdc - 14Vdc input; 0.8Vdc to 5.5Vdc output; 25A Output Current

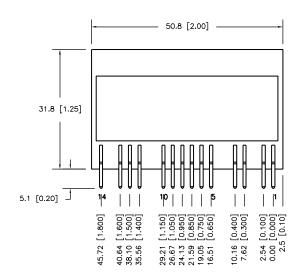

Mechanical Outline

Dimensions are in millimeters and (inches).


Tolerances: x.x mm \pm 0.5 mm (x.xx in. \pm 0.02 in.) [unless otherwise indicated]

x.xx mm \pm 0.25 mm (x.xxx in \pm 0.010 in.)

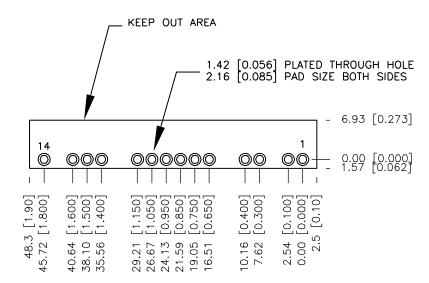
Top View



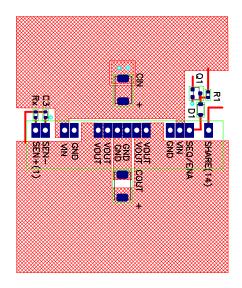
Side View

Bottom View

Pin #	Function			
1	Sen+			
2	Sen-			
3	Vin			
4	Ground			
5	Vout			
6	Vout			
7	Ground			
8	Ground			
9	Vout			
10	Vout			
11	Ground			
12	Vin			
13	SEQ/ENA			
14	SHARE			
7 8 9 10 11 12 13	Ground Vout Vout Ground Vin SEQ/ENA			


Naos™ NXA025: SIP Non-Isolated DC-DC Power Module

10Vdc - 14Vdc input; 0.8Vdc to 5.5Vdc output; 25A Output Current


Recommended Pad Layout

Dimensions are in millimeters and (inches).

Tolerances: x.x mm \pm 0.5 mm (x.xx in. \pm 0.02 in.) [unless otherwise indicated] x.xx mm \pm 0.25 mm (x.xxx in \pm 0.010 in.)

Layout Guidelines

Naos™ NXA025: SIP Non-Isolated DC-DC Power Module

10Vdc - 14Vdc input; 0.8Vdc to 5.5Vdc output; 25A Output Current

Post solder Cleaning and Drying Considerations

Post solder cleaning is usually the final circuit-board assembly process prior to electrical board testing. The result of inadequate cleaning and drying can affect both the reliability of a power module and the testability of the finished circuit-board assembly. For guidance on appropriate soldering, cleaning and drying procedures, refer to Board Mounted Power Modules: Soldering and Cleaning Application Note.

Through-Hole Lead-Free Soldering Information

The RoHS-compliant through-hole products use the SAC (Sn/Ag/Cu) Pb-free solder and RoHS-compliant components. They are designed to be processed through single or dual wave soldering machines. The pins have an RoHS-compliant finish that is compatible with both Pb and Pb-free wave soldering processes. A maximum preheat rate of 3°C/s is suggested. The wave preheat process should be such that the temperature of the power module board is kept below 210°C. For Pb solder, the recommended pot temperature is 260°C, while the Pb-free solder pot is 270°C max. Not all RoHS-compliant through-hole products can be processed with paste-through-hole Pb or Pb-free reflow process. If additional information is needed, please consult with your GE technical representative for more details.

Naos™ NXA025: SIP Non-Isolated DC-DC Power Module

10Vdc - 14Vdc input; 0.8Vdc to 5.5Vdc output; 25A Output Current

Ordering Information

Please contact your GE Sales Representative for pricing, availability and optional features.

Table 2. Device Codes

Product codes	Input Voltage	Output Voltage	Output Current	Efficiency 3.3V @ 25A	Connector Type	Comcodes
NXA025A0X	10 – 14 Vdc	0.8Vdc - 5.5Vdc	25 A	93 %	SIP	108975095
NXA025A0X-P	10 – 14 Vdc	0.8Vdc - 5.5Vdc	25 A	93 %	SIP	108997565
NXA025A0XZ	10 – 14 Vdc	0.8Vdc - 5.5Vdc	25 A	93 %	SIP	CC109107166
NXA025A0X-PZ	10 – 14 Vdc	0.8Vdc - 5.5Vdc	25 A	93 %	SIP	CC109106754
NXA025A0X6Z	10 – 14 Vdc	0.8Vdc - 5.5Vdc	25 A	93 %	SIP	CC109145736

⁻Z refers to RoHS-compliant versions.

Table 3. Device Options

Option	Suffix
Short Pins 3.6 mm ± 0.25 mm [0.141 ± 0.010 in.]	6

Contact Us

For more information, call us at

USA/Canada:

+1 877 546 3243, or +1 972 244 9288

Asia-Pacific:

+86.021.54279977*808

Europe, Middle-East and Africa:

+49.89.878067-280

www.gecriticalpower.com

GE Critical Power reserves the right to make changes to the product(s) or information contained herein without notice, and no liability is assumed as a result of their use or application. No rights under any patent accompany the sale of any such product(s) or information.

imagination at work