

SN5446A, '47A, '48, 'LS47, 'LS48, 'LS49 SN7446A, '47A, '48, 'LS47, 'LS48, 'LS49

BCD-To-Seven-Segment Decoders/Drivers

The '46A, '47A, and 'LS47 feature active-low outputs designed for driving common-anode LEDs or incandescent indicators directly. The '48, 'LS48, and 'LS49 feature active-high outputs for driving lamp buffers or common-cathode LEDs. All of the circuits except 'LS49 have full ripple-blanking input/ output controls and a lamp test input. The 'LS49 circuit incorporates a direct blanking input. Segment identification and resultant displays are shown below. Display patterns for BCD inputs counts above 9 are unique symbols to authenticate input conditions.

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All recreations are done with the approval of the OCM.

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-38535
 - Class Q Military
 - Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)
 - Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

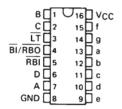
The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OEM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

SN5446A, '47A, '48, SN54LS47, 'LS48, 'LS49, SN7446A, '47A, '48, SN74LS47, 'LS48, 'LS49 **BCD-TO-SEVEN-SEGMENT DECODERS/DRIVERS**

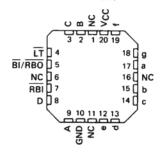
MARCH 1974-REVISED MARCH 1988

1

'46A, '47A, 'LS47 feature

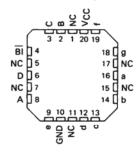

'48, 'LS48 feature

'LS49 feature


- **Open-Collector Outputs Drive Indicators Directly**
- Internal Pull-Ups Eliminate
- Open-Collector Outputs

- Lamp-Test Provision
- Leading/Trailing Zero Suppression
- **Need for External Resistors**
- Lamp-Test Provision Leading/Trailing Zero Suppression
- Blanking Input

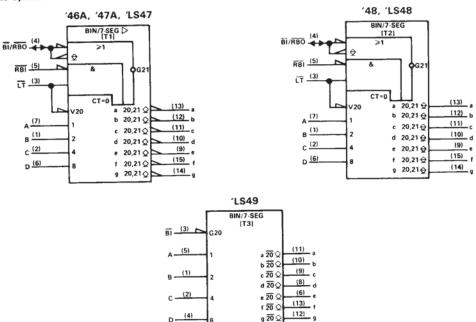
SN5446A, SN5447A, SN54LS47, SN5448, SN54LS48 . . . J PACKAGE SN7446A, SN7447A, SN7448 . . . N PACKAGE SN74LS47, SN74LS48 . . . D OR N PACKAGE (TOP VIEW)


SN54LS47, SN54LS48 . . . FK PACKAGE (TOP VIEW)

SN54LS49 . . . J OR W PACKAGE SN74LS49 . . . D OR N PACKAGE (TOP VIEW)

> в □ U14D VCC C C C 13 f 12 g 11 a D 🛮 4 A 🗆 5 10ДЬ 9 c 8 d e 🛮 6 GND 7

SN54LS49 . . . FK PACKAGE (TOP VIEW)



NC - No internal connection

All Circuit Types Feature Lamp Intensity Modulation Capability

		DRIVER O	UTPUTS		TYPICAL	
TYPE	ACTIVE	OUTPUT	SINK	MAX	POWER	PACKAGES
	LEVEL	CONFIGURATION	CURRENT	VOLTAGE	DISSIPATION	
SN5446A	low	open-collector	40 mA	30 V	320 mW	J, W
SN5447A	low	open-collector	40 mA	15 V	320 mW	J, W
SN5448	high	2-kΩ pull-up	6.4 mA	5.5 V	265 mW	J,W
SN54LS47	low	open-collector	12 mA	15 V	35 mW	J, W
SN54LS48	high	2-kΩ pull-up	2 mA	5.5 V	125 mW	J, W
SN54LS49	high	open-collector	4 mA	5.5 V	40 mW	J, W
SN7446A	low	open-collector	40 mA	30 V	320 mW	J, N
SN7447A	low	open-collector	40 mA	15 V	320 mW	J, N
SN7448	high	2-kΩ pull-up	6.4 mA	5.5 V	265 mW	J, N
SN74LS47	low	open-collector	24 mA	15 V	35 mW	J, N
SN74LS48	high	2-kΩ pull-up	6 mA	5.5 V	125 mW	J, N
SN74LS49	high	open-collector	8 mA	5.5 V	40 mW	J, N

logic symbols†

[†]These symbols are in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12. Pin numbers shown are for D, J, N, and W packages.

SN5446A, '47A, '48, SN54LS47, 'LS48, 'LS49, SN7446A, '47A, '48, SN74LS47, 'LS48, 'LS49 BCD-TO-SEVEN-SEGMENT DECODERS/DRIVERS

description

The '46A, '47A, and 'LS47 feature active-low outputs designed for driving common-anode LEDs or incandescent indicators directly. The '48, 'LS48, and 'LS49 feature active-high outputs for driving lamp buffers or common-cathode LEDs. All of the circuits except 'LS49 have full ripple-blanking input/output controls and a lamp test input. The 'LS49 circuit incorporates a direct blanking input. Segment identification and resultant displays are shown below. Display patterns for BCD input counts above 9 are unique symbols to authenticate input conditions.

The '46A, '47A, '48, 'LS47, and 'LS48 circuits incorporate automatic leading and/or trailing-edge zero-blanking control (RBI and RBO). Lamp test (LT) of these types may be performed at any time when the BI/RBO node is at a high level. All types (including the '49 and 'LS49) contain an overriding blanking input (BI), which can be used to control the lamp intensity by pulsing or to inhibit the outputs. Inputs and outputs are entirely compatible for use with TTL logic

The SN54246/SN74246 and '247 and the SN54LS247/SN74LS247 and 'LS248 compose the 5 and the 9 with tails and were designed to offer the designer a choice between two indicator fonts.

'46A, '47A, 'LS47 FUNCTION TABLE (T1)

					· ·	,,,	I ONO 1101								
DECIMAL OR			INP	UTS			BI/RBO†			0	UTPUT	rs			NOTE
FUNCTION	ΙŦ	RBI	D	С	В	Α		а	ь	c	d		f	g	
0	н	Н	L	L	L	L	н	ON	ON	ON	ON	ON	ON	OFF	
1	н	×	L	L	Ł	н	н	OFF	ON	ON	OFF	OFF	OFF	OFF	
2	н	x	L	L	н	L	н	ON	ON	OFF	ON	ON	OFF	ON	
3	н	х	L	ι	н	н	н	ON	ON	ON	ON	OFF	OFF	ON	
4	н	Х	L	н	L	L	н	OFF	ON	ON	OFF	OFF	ON	ON	
5	н	x	L.	н	L	н	Н	ON	OFF	ON	ON	OFF	ON	ON	
6	н	x	L	н	н	L	н	OFF	OFF	ON	ON	ON	ON	ON	
7	н	×	L	н	н	н	н	ON	ON	ON	OFF	OFF	OFF	OFF	١.
8	н	х	Н	L	L	L	н	ON	ON	ON	ON	ON	ON	ON	1
9	н	х	н	L	L	н	н	ON	ON	ON	OFF	OFF	ON	ON	
10	н	×	н	L	н	L	н	OFF	OFF	OFF	ON	ON	OFF	ON	
11	н	х	н	L	н	н	н	OFF	OFF	ON	ON	OFF	OFF	ON	
12	н	×	н	н	L	L	н	OFF	ON	OFF	OFF	OFF	ON	ON	1
13	н	x	н	Н	L	н	н	ON	OFF	OFF	ON	OFF	ON	ON	-
14	н	x	н	н	н	L	н	OFF	OFF	OFF	ON	ON	ON	ON	
15	н	X	н	н	н	н	н н	OFF	OFF	OFF	OFF	OFF	OFF	OFF	
ВІ	Х	х	х	х	х	×	L	OFF	OFF	OFF	OFF	OFF	OFF	OFF	2
RBI	н	Ł	L	L	L	L	L	OFF	OFF	OFF	OFF	OFF	OFF	OFF	3
LT	L	×	×	×	×	×	н	ON	ON	ON	ON	ON	ON	ON	4

H = high level, L = low level, X = irrelevant

- NOTES: 1. The blanking input (BI) must be open or held at a high logic level when output functions 0 through 15 are desired. The ripple-blanking input (BBI) must be open or high if blanking of a decimal zero is not desired.

 2. When a low logic level is applied directly to the blanking input (BI), all segment outputs are off regardless of the level of any
 - other input.
 - 3. When ripple-blanking input (RBI) and inputs A, B, C, and D are at a low level with the lamp test input high, all segment outputs go off and the ripple-blanking output (RBO) goes to a low level (response condition).

 4. When the blanking input/ripple blanking output (BI/RBO) is open or held high and a low is applied to the lamp-test input, all
 - segment outputs are on.

¹ BI/RBO is wire AND logic serving as blanking input (BI) and/or ripple-blanking output (RBO).

48, LS48 **FUNCTION TABLE (T2)**

PORCHON TABLE (1-7															
DECIMAL			INPL	JTS			BI/RBO†			OL	JTPU	TS			NOTE
FUNCTION	ĹΤ	RBI	D	С	В	Α		а	b	с	d	e	f	g	
0	Н	Н	L	L	L	L	н	н	н	н	Н	н	н	Ł	
1	н	×	L	L	L	н	н	L	Н	н	L	L	L	님	
2	н	×	L	L	н	L	н	н	н	L	н	Н	L	н	
3	н	×	L	L	H_	H.	Н	Н	Н.	_H_	_H_	L	L	Н	
4	Н	X	L	Н	L	Ł	н	L	н	н	L	L	Н	н	
5	н	×	L	н	L	н	Н	н	L	н	н	L	н	н	
6	н	×	L	н	н	L	н	L	L	н	Н	н	Н	Н	
7	н	×	L	н	H	Н	н	Н	н	Н	L	L	L	L	1
8	Н	×	Н	L	L	L	н	Н	н	н	н	Н	Н	н	
9	Н	×	н	L	L	Н	н	н	н	Н	L	L	н	Н	
10	н	×	н	L	Н	L	н	L	L	L	н	Н	L	н	
11	н	×	н	L	Н	H	н	L	L	Н	Н	_ <u>L_</u>		н	
12	Н	×	Н	Н	L	L	н	L	н	L	L	Ł	н	Н	
13	Н	×	Н	н	L	Н	н	Н	L	L	н	L	н	н	
14	н	×	н	н	Н	L	н	L	L.	L	Н	н	н	н	
15	Н	X	H.	Н	Н	Н	Н	L	L_	L	L.	L	_ L		
BI	×	X	×	X	X	Х	L.	L	L	L	L	L	L	L	2
RBI	н	L	L	L	L	L	L	L	L	L	L	L	L	L	3
LT	L	l x	l x	X	X	×	н	Н	Н	н	_н	_н	Н	Н.	4

H high level, L = low level, X = irrelevant

NOTES: 1. The blanking input (BI) must be open or held at a high logic level when output functions 0 through 15 are desired. The ripple-blanking input (RBI) must be open or high, if blanking of a decimal zero is not desired.

2. When a low logic level is applied directly to the blanking input (BI), all segment outputs are low regardless of the level of any

- other input.

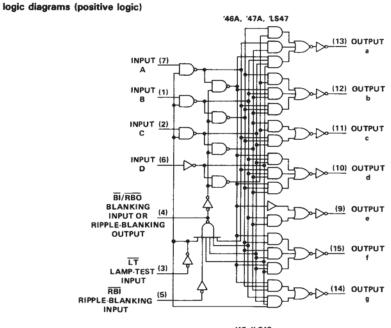
 3. When ripple blanking input (RBI) and inputs A, B, C, and D are at a low level with the lainp test input high, all segment outputs go low and the ripple blanking output (RBO) goes to a low level (response condition).

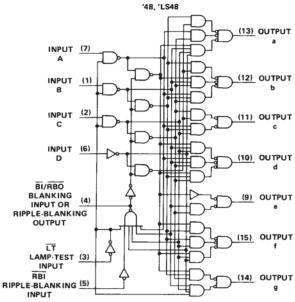
 4. When the blanking input/ripple blanking output (BI/RBO) is open or held high and a low is applied to the lamp-test input, all segment outputs are high.

 †BI/RBO is wire-AND logic serving as blanking input (BI) and/or ripple blanking output (RBO).

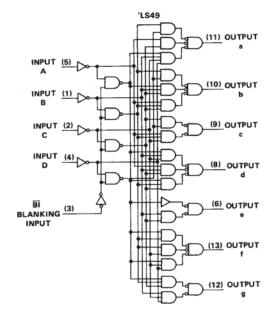
'LS49 EUNCTION TABLE (T3)

				FUN	CHO	NI I A	BLE (131					
DECIMAL		11	IPUT	s				OL	JTPU	TS			NOTE
FUNCTION	D	С	В	Α	BI	а	b	С	d	e_	f	9	
0	L	L	L	£	Н	Н	Н	Н	н	н	н	L	
1 1	Ł	L	L	н	н	L	Н	н	L	L	L	L	
2	L	L	н	L	н	н	н	L	н	н	L	н	
3	L	L	н	н	н	н	н	Н	н	L	_L_	Н	
4	L	Н	Ł	L	Н	L	Н	Н	L	L	н	н	
5	L	н	L	н	н	н	L	н	н	L	н	н	
6	L	н	н	L	н	L	L	Н	н	н	н	Н	
7	L	н	Н	н	н	н	Н	Н	L	L_	L	L	1
8	н	L	L	L	Н	н	Н	Н	н	н	н	н	
9	н	L	L	н	н	н	н	н	L	L	н	н	
10	н	L	н	L	н	L	L	L	Н	Н	Ł	н	
11	н	L	Н	Н	н	L.	L	Н	н	L		н	1
12	Н	Н	L	L	Н	L	H	L	L	L	Н	н	
13	н	н	L	Н	н	н	L	L	Н	L	н	н	
14	н	Н	н	L	н	L	L	L	н	н	н	н	
15	н	н	н	н	н	L	L	L	L	L	L	_ L_	
BI	×	X	×	X	L	L	L	L	L	L	L	L	2

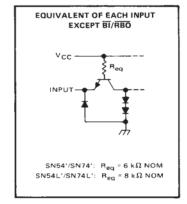

H = high level, L = low level, X - irrelevant

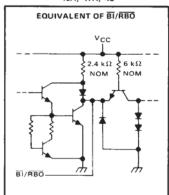

H * high level, L * low level, X - irrelevant

NOTES: 1. The blanking input (B1) must be open or held at a high logic level when output functions 0 through 15 are desired.

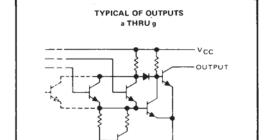

2. When a low logic level is applied directly to the blanking input (B1), all segment outputs are low regardless of the level of any

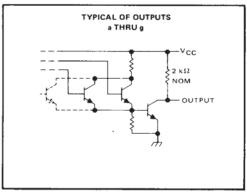
1


Pin numbers shown are for D, J, N, and W packages.

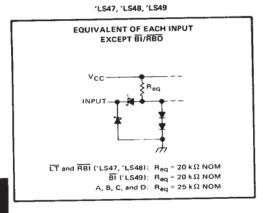

Pin numbers shown are for D, J, N, and W packages.

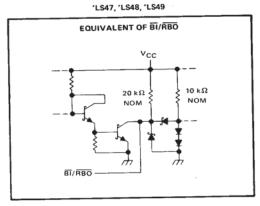
schematics of inputs and outputs


'46A, '47A, '48


'46A, '47A, '48

'46A, '47A

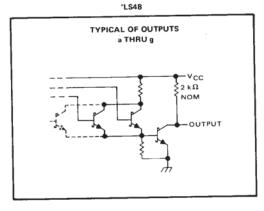

'48



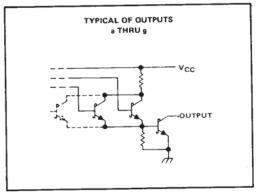
TTL Devices N

SN54LS47, 'LS48, 'LS49, SN74LS47, 'LS48, 'LS49 BCD-TO-SEVEN-SEGMENT DECODERS/DRIVERS

schematics of inputs and outputs



2


TTL Devices

TYPICAL OF OUTPUTS
a THRU g

VCC

'LS49

SN5446A, SN5447A, SN7446A, SN7447A BCD-TO-SEVEN-SEGMENT DECODERS/DRIVERS

absolute maximum ratings over opera	ting free-	air	tem	per	atu	re	raı	nge	e (un	le	SS	ot	he	rw	is	e r	10	tec	d)					
Supply voltage, V _{CC} (see Note 1) .																									7 V
Input voltage																								. 5	.5 V
Current forced into any output in the	off state																							. 1	mΑ
Operating free-air temperature range:	SN5446A	, SN	1544	7A																	-5	55°	C t	o 12	25°C
	SN7446A	, SN	1744	7A																		0)°C	to i	70°C
Storage temperature range				-																	-6	i5°	C t	o 15	50°C
NOTE 1: Voltage values are with respect to netwo	ork ground t	term	inal.																						

recommended operating conditions

		5	N5446	A	S	N5447	A	5	N7446	A		N7447	Α	UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	MIN	NOM	MAX	MIN	NOM	MAX	UNII
Supply voltage, V _{CC}		4.5	5	5.5	4.5	5	5.5	4.75	5	5.25	4.75	5	5.25	V
Off-state output voltage, Vo(off)	a thru g			30			15			30			15	V
On-state output current, IO(on)	a thru g			40			40			40			40	mA
High-level output current, IOH	BI/RBO			-200			-200			-200			-200	μА
Low-level output current, IOL	BI/RBO			8			8			8			8	mA
Operating free-air temperature, Tp	\	-55		125	-55		125	0		70	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER		TEST CONDIT	TIONS†	MIN	TYP‡	MAX	UNIT
VIH.	High-level input voltage				2			V
VIL	Low-level input voltage						0.8	V
VIK	Input clamp voltage		V _{CC} = MIN, I _I =	-12 mA			-1.5	٧
V _{OH}	High-level output voltage	BI/RBO	V _{CC} = MIN, V _{IH}	-	2.4	3.7		v
VOL	Low-level output voltage	BI/RBO	V _{CC} = MIN, V _{IH} V _{IL} = 0.8 V, I _{OL}			0.27	0.4	v
O(off)	Off-state output current	a thru g	V _{CC} = MAX, V _{IH} V _{IL} = 0.8 V, V _O				250	μА
VO(on)	On-state output voltage	a thru g	V _{CC} = MIN, V _{IH} V _{IL} = 0.8 V, I _O (0.3	0.4	٧
I _I	Input current at maximum input voltage	Any input except BI/RBO	VCC = MAX, VI	= 5.5 V			1	mA
чн	High-level input current	Any input except BI/RBO	VCC = MAX, VI	= 2.4 V			40	μА
ЧL	Low-level input current	Any input except BI/RBO BI/RBO	V _{CC} = MAX, V _I	= 0.4 V			-1.6 -4	mA
los	Short-circuit output current	BI/RBO	V _{CC} = MAX				-4	mA
lcc	Supply current		V _{CC} = MAX, See Note 2	SN54' SN74'		64 64	85 103	mA

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

FAll typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25 ^{\circ}\text{C}$. NOTE 2: I_{CC} is measured with all outputs open and all inputs at 4.5 V. switching characteristics, VCC = 5 V, TA = 25°C

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
toff	Turn-off time from A input				100	
ton	Turn-on time from A input	C _L = 15 pF, R _L = 120 Ω,			100	ns
toff	Turn-off time from RBI input	See Note 3			100	
ton	Turn-on time from RBI input				100	ns

TTL Devices

SN5448, SN7448 BCD-TO-SEVEN-SEGMENT DECODERS/DRIVERS

NOTE 1: Voltage values are with respect to network ground terminal.

absolute maximum ratings over opera	ting free-a	air	te	mţ	e	rat	ure	e r	an	ge	(u	nle	988	01	he	rw	/154	e r	101	tec	1)						
Supply voltage, VCC (see Note 1)																										7 V	,
1 1 11																									. ၁	.o v	-
Operating free-air temperature range:	CNEAAR	•		•	•									Ċ								-!	55°	C t	o 12	25°(3
Operating free-air temperature range:	SN7448		•	•	•			•					•		•								()°C	to 7	70°C	0
Storage temperature range	SN/448	•	•	•	•	•		•	-				•	•	•	•	•		•	•			65°	C t	o 15	50°(2
Storage temperature range			•	٠	٠	•		•					•	•		•	•	•	•	•							

recommended operating conditions

			SN544	В		SN744	В	UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	01477
Supply voltage, VCC		4.5	5	5.5	4.75	5	5.25	
Supply vortage, VCC	a thru g			-400			-400	μА
High-level output current, IOH	BI/RBO			-200			-200	, ma
	a thru g			6.4			6.4	mA
Low-level output current, IOL	BÎ/RBÔ			8			8	
Operating free-air temperature, TA		-55		125	0		70	"C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER		TEST CONE	DITIONS†	MIN	TYP‡	MAX	_
VIH	High-level input voltage				2			V
VIL	Low-level input voltage				ļ		0.8	V
VIK	Input clamp voltage		VCC = MIN, I		_		-1.5	V
VOH	High-level output voltage	a thru g	V _{CC} = MIN, V V _{IL} = 0.8 V, Ic		2.4	3.7		\ <u></u>
10	Output current	a thru g	V _{CC} = MIN, V Input conditions	-	-1.3	-2		mA
V _{OL}	Low-level output voltage		V _{CC} = MIN, V V _{IL} = 0.8 V, I _C			0.27	0.4	v
ų	Input current at maximum input voltage	Any input except BI/RBO	V _{CC} = MAX, V	_I = 5.5 V			1	mA
Ίιн	High-level input current	Any input except BI/RBO	V _{CC} = MAX, V	i = 2.4 V			40	μА
li L	Low-level input current	Any input except BI/RBO	V _{CC} = MAX, V	7 ₁ = 0.4 V			-1.6 -4	mA
los	Short-circuit output current	BI/RBÓ	V _{CC} = MAX				-4	
lcc	Supply current		V _{CC} = MAX, See Note 2	SN5448 SN7448	+-	53 53	76 90	-l mA

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. ‡All typical values are at V_{CC} = 5 V, T_{A} = 25°C.

NOTE 2: I_{CC} is measured with all outputs open and all inputs at 4.5 V.

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25 ^{\circ}\text{C}$

TEST CONDITIONS	MIN	TYP !	MAX	UNIT
			100	ns
C _L = 15 pF, R _L = 1 kΩ			100	""3
See Note 3			100	ns
			100	
	$C_L = 15 \text{ pF}, R_L = 1 \text{ k}\Omega$	$C_L = 15 \text{ pF}, R_L = 1 \text{ k}\Omega$	C _L = 15 pF, R _L = 1 kΩ	C _L = 15 pF, R _L = 1 kΩ 100 See Note 3 100

SN54LS47, SN74LS47 **BCD-TO-SEVEN-SEGMENT DECODERS/DRIVERS**

absolute maximum ratings over operating free-air	te	m	per	at	ur	e r	anç	je	(ur	ıle	58	oti	nei	wi	se	n	ot	ed)				
Supply voltage, VCC (see Note 1)																							
Input voltage																							7 V
Peak output current (t _w ≤ 1 ms, duty cycle ≤ 10%))																					200	mA
Current forced into any output in the off state .																						. 1	mΑ
Operating free-air temperature range: SN54L\$47																			-	-55	°C	to 12	25°C
SN74LS47																					0°(C to 7	0°C
Storage temperature range																			-	-65	°C	to 15	o°C
NOTE 1: Voltage values are with respect to network ground term	ina	١.																					

recommended operating conditions

		S	N54LS4	17	s	N74LS	17	UNI
		MIN	NOM	MAX	MIN	NOM	MAX	ואטן
Supply voltage, V _{CC}		4.5	5	5.5	4.75	5	5.25	V
Off-state output voltage, VO(off)	a thru g			15			15	V
On-state output current, IO(on)	a thru g			12			24	mA
High-level output current, IOH	BI/RBO			-50			-50	μА
Low-level output current, IOL	BI/RBO			1.6			3.2	mA
Operating free-air temperature, TA		-55		125	0		70	°c

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER		TEST COA	NDITIONS†	S	N54LS4	17	S	N74LS	47	
	- Anameten		7631 CON	IDITIONS.	MIN	TYP	MAX	MIN	TYP‡	MAX	UNIT
VIH	High-level input voltage				2			2			V
VIL	Low-level input voltage						0.7			0.8	v
VIK	Input clamp voltage		V _{CC} = MIN,	I _I = -18 mA			-1.5			-1.5	V
v _{он}	High-level output voltage	BI/RBO	V _{CC} = MIN, V _{IL} = V _{IL} max,	V _{IH} = 2 V, I _{OH} = -50 μA	2.4	4.2		2.4	4.2		v
VOL	Low-level output voltage	BI/RBO	V _{CC} = MIN, V _{IH} = 2 V,	I _{OL} = 1.6 mA		0.25	0.4		0.25	0.4	V
-01		5,,,,,,,	VIL = VIL max	I _{OL} = 3.2 mA					0.35	0.5	ľ
lO(off)	Off-state output current	a thru g	V _{CC} = MAX, V _{IL} = V _{IL} max,	V _{IH} = 2 V, V _{O(off)} = 15 V			250			250	μА
VO(on)	On-state output voltage	a thru q	V _{CC} = MIN, V _{IH} = 2 V,	IO(on) = 12 mA		0.25	0.4		0.25	0.4	V
			VIL = VIL max	I _{O(on)} = 24 mA				L	0.35	0.5	
11	Input current at maximum	n input voltage	VCC = MAX,	V1 = 7 V			0.1			0.1	mA
Чн	High-level input current		V _{CC} = MAX,	V ₁ = 2.7 V			20			20	μА
lic.	Low-level input current	Any input except BI/RBO	V _{CC} = MAX,	V ₁ = 0.4 V			-0.4			-0.4	mA
		BI/RBO					-1.2			-1.2	L
los	Short-circuit output current	BI/RBO	V _{CC} = MAX		-0.3		-2	-0.3		-2	mA
Icc	Supply current		V _{CC} = MAX,	See Note 2		7	13		7	13	mA

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommanded operating conditions. [‡]All typical values are at V_{CC} = 5 V, T_A = 25°C. NOTE 2: I_{CC} is measured with all outputs open and all inputs at 4.5 V.

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25 ^{\circ}\text{C}$

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
toff	Turn-off time from A input				100	
ton	Turn-on time from A input	$C_L = 15 pF, R_L = 665 \Omega,$			100	ns
toff	Turn-off time from RBI input, outputs (a-f) only	See Note 3			100	
ton	Turn-on time from RBI input, outputs (a-f) only				100	ns

SN54LS48, SN74LS48 BCD-TO-SEVEN-SEGMENT DECODERS/DRIVERS

absolute maximum ratings over opera	ting free-air	ten	npe	era	tuı	e i	ran	ıge	(u	nle	225	01	he	rw	/is	e r	101	ted)				
Supply voltage, VCC (see Note 1)												٠.		•									, v
Operating free-air temperature range:	SN54LS48			•				•.		•		:	:	:			:	:		-55	o°c	to 7	o°C
Storage temperature range	314742340																		-	-65	°C t	o 15	o°C
NOTE 1: Voltage values are with respect to netw recommended operating conditions	ork ground tern	ninal																					
						_		T	_	SI	N54	LS	48			Γ		SN7	4L	\$48		1]

	S	N54LS4	18	s	N74LS4	18	UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	UNIT
-	4.5	5	5.5	4.75	5	5.25	V
a thru g			-100			-100	μА
BI/RBO			-50			-50	μ^
a thru g			2			6	mA
BI/RBO			1.6			3.2	1
	-55		125	0		70	J
	81/RBO a thru g	## ## ## ## ## ## ## ## ## ## ## ## ##	## MIN NOM 4.5 5 a thru g BI/RBO a thru g BI/RBO	4.5 5 5.5 a thru g	MIN NOM MAX MIN 4.5 5 5.5 4.75 a thru g -100	MIN NOM MAX MIN NOM 4.5 5 5.5 4.75 5	MIN NOM MAX MIN NOM MAX

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

					S	N54LS4	8	S	N74LS4	8	UNIT
	PARAMETER		TEST CON	DITIONS	MIN	TYP‡	MAX	MIN	TYP [‡]	MAX	ONT
ViH	High-level input voltage				2			2			V
VIL	Low-level input voltage						0.7			0.8	V
VIK	Input clamp voltage		VCC = MIN,	I _I = -18 mA			-1.5			-1.5	
Voн	High-level output voltage	a thru g and BI/RBO	V _{CC} * MIN, V _{IL} = V _{IL} max,	V _{IH} = 2 V, I _{OH} = MAX	2.4	4.2		2.4	4.2		v
10	Output current	a thru g	V _{CC} = MIN, Input conditions	V _O = 0.85 V,	-1.3	-2		-1.3	-2		mA
			VCC = MIN,	1 _{OL} = 2 mA		0.25	0.4		0.25	0.4	V
		a thru g	V _{IH} = 2 V, V _{IL} = V _{IL} max	IOL = 6 mA					0.35	0.5	
VOL	Low-level output voltage		VCC = MIN,	I _{OL} = 1.6 mA		0.25	0.4		0.25	0.4	\ \
		BI/RBO	V _{IH} = 2 V, V _{IL} ≈ V _{IL} max	IOL = 3.2 mA					0.35	0.5	Ĺ
i _i	Input current at maximum input voltage	Any input except BI/BRO	V _{CC} = MAX,	V _I = 7 V			0.1			0.1	mA
чн	High-level input current	Any input except BI/RBO	V _{CC} = MAX,	V _i = 2.7 V			20			20	μА
IIL.	Low-level input current	Any input except BI/RBO	V _{CC} = MAX,	V ₁ = 0.4 V			-0.4			-0.4	mA
-12		BI/RBO					-1.2	-		-1.2	
los	Short-circuit output current	BI/RBO	V _{CC} = MAX		-0.3		2	-0.3		2	
Icc	Supply current		VCC = MAX,	See Note 2	<u> </u>	25	38		25	38	m/

For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

\$\frac{1}{2}\text{Int} \text{ for is measured with all outputs open and all inputs at 4.5 V.}

\$\frac{1}{2}\text{Int} \text{ for is measured with all outputs open and all inputs at 4.5 V.}

switching characteristics, VCC = 5 V, TA = 25°C

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UN
tPHL Propagation delay time, high-to-low-level output from A input	$C_L = 15 \text{ pF}, R_L = 4 \text{ k}\Omega,$			100	_
and the size less to bigh level output from A input	See Note 3			100	
tout Propagation delay time, high-to-low-level output (1911 × 1910) tout Propagation delay time, high-to-low-level output (a-f only) from RBI input	$C_{L} = 15 pF, R_{L} = 6 k\Omega,$			100	

PLH Propagation delay time, low-to-high-level output (a-f only) from RBI input See Note 3 NOTE 3: Load circuits and voltage waveforms are shown in Section 1.

SN54LS49, SN74LS49 BCD-TO-SEVEN-SEGMENT-DECODERS/DRIVERS

absolute maximum ratings over operating free-air temperature rang	ge (unless otherwise noted)
Supply voltage, VCC (see Note 1)	
Input voltage	
Current forced into any output in the off state	1 mA
Operating free-air temperature range: SN54LS49	
SN74LS49	0°C to 70°C
Storage temperature range	65°C to 150°C
NOTE 1: Voltage values are with respect to network ground terminal.	
recommended operating conditions	
	SN541 S49 SN741 S49

	5	N54LS4	19	S	N74LS4	19	UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	CIVIT
Supply voltage, VCC	4.5	5	5.5	4.75	5	5.25	V
High-level output voltage, VOH			5.5			5.5	٧
Low-level output current, IOL			4			8	mA
Operating free-air temperature, TA	-55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	7557 001	IDITIONS	S	N54LS4	19	S	N74LS4	19	
PARAMETER	TEST CON	IDITIONS'	MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNIT
High-level input voltage			2			2			V
Low-level input voltage					0.7			0.8	V
Input clamp voltage	VCC = MIN,	I _I = -18 mA			-1.5			-1.5	V
High-level output current	V _{CC} = MIN, V _{IL} = V _{IL} max,	V _{IH} = 2 V, V _{OH} = 5.5 V			250			250	μА
Law lovel out mut velteen	V _{CC} = MIN,	I _{OL} = 4 mA		0.25	0.4		0.25	0.4	V
Low-level output voltage	VIH = VIL max	IOL = 8 mA					0.35	0.5	*
Input current at maximum input voltage	VCC = MAX,	V ₁ = 7 V			0.1			0.1	mA
High-level input current	V _{CC} = MAX,	V _I = 2.7 V			20			20	μΑ
Low-level input current	V _{CC} = MAX,	V _I = 0.4 V	1		-0.4			-0.4	mA
Supply current	VCC = MAX,	See Note 2		8	15		8	15	mA
	Low-level input voltage Input clamp voltage High-level output current Low-level output voltage Input current at maximum input voltage High-level input current Low-level input current	High-level input voltage Low-level input voltage	High-level input voltage Low-level input voltage Input clamp voltage High-level output current VCC = MIN, VIH = 2 V, VIL = VIL max, VOH = 5.5 V VCC = MIN, VIH = 2 V, VIH = 0.00 MIN, VIH = 0.	PARAMETER	High-level input voltage VCC = MIN,	High-level input voltage Cov-level input current Cov-level input	TEST CONDITIONST	TEST CONDITIONST	TEST CONDITIONST

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. ‡All typical values are at V_{CC} = 5 V, T_{A} = 25°C. NOTE 2: I_{CC} is measured with all outputs open and all inputs at 4.5 V.

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25 \, ^{\circ}\text{C}$

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
tPHL Propagation delay time, high-to-low-level output from A input	$C_L = 15 pF, R_L = 4 k\Omega,$			100	ns
tpLH Propagation delay time, low-to-high-level output from A input	See Note 3			100	ns
tpHL Propagation delay time, high-to-low-level output (a-f only) from RBI input	$C_L = 15 pF$, $R_L = 6 k\Omega$,			100	ns
tPLH Propagation delay time, low-to-high-level output (a-f only) from RBI input	See Note 3			100	113