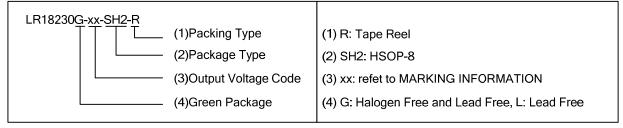

3A ULTRA LOW DROPOUT LINEAR REGULATOR

DESCRIPTION

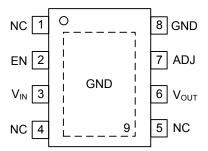
The UTC **LR18230** series of high performance ultra-low dropout linear regulators operates from 2.5V to 6V input supply and provides ultra-low dropout voltage, high output current with low ground current. These ultra-low dropout linear regulators respond fast to step changes in load which makes them suitable for low voltage micro-processor applications. The UTC **LR18230** is CMOS-based positive voltage and a very low dropout regulator IC which allows low quiescent current operation independent of output load current. This CMOS process also allows the UTC **LR18230** to operate under extremely low dropout conditions.


■ FEATURES

- * 400mV Dropout @ 3A, Vo=2.5V
- * Compatible with low ESR MLCC as Input/Output Capacitor
- * Good Line and Load Regulation
- * Guaranteed Output Current of 3A
- * Available in HSOP-8 Package
- * Over-Temperature/Over-Current Protection

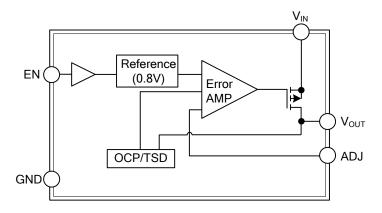
■ ORDERING INFORMATION

Ordering Number		Daakasa	Doolsing	
Lead Free	Halogen Free	Package	Packing	
LR18230L-xx-S08-R	LR18230G-xx-S08-R	SOP-8	Tape Reel	


Note: xx: Output Voltage, refer to Marking Information.

MARKING INFORMATION

PACKAGE	VOLTAGE CODE	MARKING
HSOP-8	AD: ADJ	Voltage Code Voltage Code


■ PIN CONFIGURATION

■ PIN DESCRIPTION

PIN NO.	PIN NAME	DESCRIPTION
1, 4, 5	N.C	No Connect
2	EN	Chip Enable Pin
3	V_{IN}	Input Supply Voltage Pin.
6	V_{OUT}	Voltage Regulator Output Pin
7	ADJ	Feedback Pin
8, 9	GND	Ground Pin

■ BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RATING

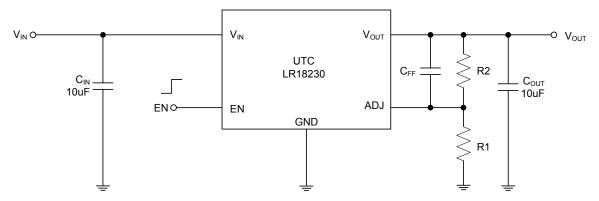
PARAMETER	SYMBOL	RATINGS	UNIT
Input Supply Voltage (Survival)	V_{IN}	6	V
Enable Input Voltage (Survival)	V_{EN}	6	V
Maximum Output Current	I _{MAX}	3	Α
Operating Junction Temperature	TJ	-40 ~ +125	°C
Storage Temperature Range	T _{STG}	-65 ~ +150	°C
Lead Temperature (Soldering, 5 sec)	TL	+260	°C

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ THERMAL DATA

PARAMETER	SYMBOL	RATINGS	UNIT
Junction to Ambient	θ_{JA}	68	°C/W

■ ELECTRICAL CHARACTERISTICS


(Limits in standard typeface are for T_J =25°C, unless otherwise specified.)

 $(V_{IN} (Note 1) = V_{O(NOM)} + 1V, I_I = 10mA, C_{IN} = 10uF, C_{OLIT} = 10uF, V_{EN} = V_{IN} - 0.3V)$

$(V_{IN}(NOIE 1) = V_{O(NOM)} + IV, I_L = IOIIIA, C_{IN} = IOUF, C_{OUT} = IOUF, V_{EN} = V_{IN} - 0.5V)$								
PARAMETER		SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
Output Voltage Tolerance		Vo	V _{OUT} +1V <v<sub>IN<5.5V</v<sub>	-3	0	3	%	
Adjustable Pin Volta	ige	V_{ADJ}	2.5V <v<sub>IN<5.5V</v<sub>	0.776	0.8	0.824	V	
Line Regulation		ΔV_{LINE}	V _{OUT} +1V <v<sub>IN<5.5V</v<sub>		0.15	0.40	%/V	
Load Regulation (No	ote 2)	ΔV_{LOAD}	10mA <i<sub>L<3A</i<sub>		0.20	0.60	%	
D (N-	-4- 0)		I _L =300mA		45	65	>/	
Dropout Voltage (No	ote 3)	V_{DROP}	I _L =3A		400	600	mV	
O	Ground Pin Current		I _L =300mA		0.30	1.0	mA	
Ground Pin Current			I _L =3A		0.30	1.0		
Ground Pin Current		I _{GND OFF}	V _{EN} <0.2V		0.5	2	uA	
Davis - Overally Dais	tion Detic	DODD	f=1kHz		55		-10	
Power Supply Reject	ction Ratio	PSRR	f=1kHz, C _{FF} =1uF		65		dB	
Thermal Shutdown	Temperature	T _{SD}			170		°C	
Cookle through ald	Logic Low	V _{IL}	Output=Low			0.4	V	
Enable threshold	Logic High	V _{IH}	Output=High	2.0			V	
Enable Input Currer	nt	I _{EN}	V _{EN} =V _{IN}	-1	0	1	uA	

- Notes: 1. The minimum operating value for input voltage is equal to either $(V_{OUT, NOM} + V_{DROP})$ or 2.5V, whichever is greater.
 - 2. Regulation is measured at constant junction temperature by using a 10ms current pulse. Devices are tested for load regulation in the load range from 10mA to 3A.
 - 3. Dropout voltage is defined as the minimum input to output differential voltage at which the output drops 2% below the nominal value. Dropout voltage specification applies only to output voltages of 2.5V and above. For output voltages below 2.5V, the dropout voltage is nothing but the input to output differential, since the minimum input voltage is 2.5V.

■ TYPICAL APPLICATION CIRCUIT

Cff option notes: the capacitance of feed-forward capacitor with range of 10pF to 1uF allows to achieve better PSRR performance when required by the application

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.