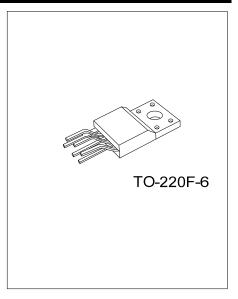


LINEAR INTEGRATED CIRCUIT

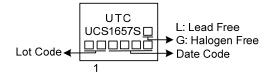
HIGH PERFORMANCE CURRENT MODE POWER SWITCH

DESCRIPTION

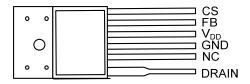
The UTC **UCS1657S** is an integrated PWM controller and Power MOSFET specifically designed for switching operation with minimal external components. The UTC **UCS1657S** is designed to provide several special enhancements to satisfy the needs, for example, Power-Saving mode for low standby power, Frequency Hopping, Constant Output Power Limiting, Slope Compensation ,Over Current Protection (OCP), Over Voltage Protection (OVP), Over Load Protection (OLP), Under Voltage Lock Out (UVLO), Over Temperature Protection (OTP), etc. IC will be shutdown or can auto-restart in situations.



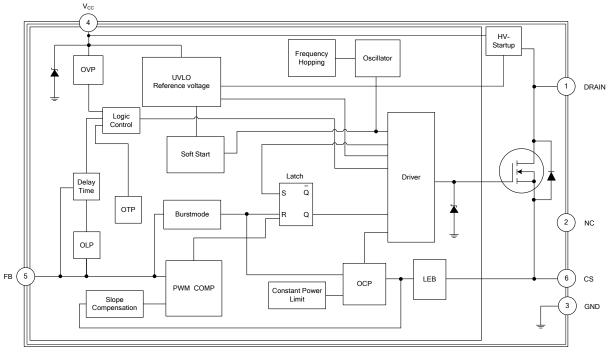
- * Internal Power MOSFET (650V)
- * Programming Gate Driver Capability
- * Frequency hopping for Improved EMI Performance.
- * Lower than 30mW Standby Power Design
- * Linearly decreasing frequency to 20~35KHz during light load
- * Internal Soft start
- * Internal Slope Compensation
- * Constant Power Limiting for universal AC input Range
- * Gate Output Maximum Voltage Clamp (16V)
- * Over temperature protection
- * Overload protection
- * Over voltage protection
- * Leading edge blanking
- * Cycle-by-Cycle current limiting
- * Under Voltage Lock Out


ORDERING INFORMATION

Ordering Number		Deskare	Dealing	
Lead Free	Halogen Free	Package	Packing	
UCS1657SL-TF6-T	UCS1657SG-TF6-T	TO-220F-6	Tube	


UCS1657SG-TF6-T	(1) T: Tube
(2)Package Type	(2) TF6: TO-220F-6
(3)Green Package	(3) G: Halogen Free and Lead Free, L: Lead Free

MARKING


■ PIN CONFIGURATION

PIN DESCRIPTION

PIN NO.	PIN NAME	DESCRIPTION
1	DRAIN	Power MOSFET drain
2	NC	
3	GND	Ground
4	V _{CC}	Supply voltage
5	FB	Feedback input pin. The PWM duty cycle is determined by voltage level into this pin and SENSE pin input.
6	CS	Current sense input pin. Connected to MOSFET current sensing resistor node.

BLOCK DIAGRAM

Notes: OLP (Over Load Protection) OVP (Over Voltage Protection) OTP (Over Temperature Protection) OCP (Over Current Protection) UVLO (Under Voltage Latch-Out) LEB (Led Edge Blanking)

LINEAR INTEGRATED CIRCUIT

■ ABSOLUTE MAXIMUM RATING (T_A=25°C, unless otherwise specified)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V _{cc}	33	V
Input Voltage to FB Pin	V _{FB}	-0.3 ~ 6.5	V
Input Voltage to CS Pin	V _{CS}	-0.3 ~ 6.5	V
Junction Temperature	TJ	+150	°C
Operating Temperature	T _{OPR}	-40 ~ +125	°C
Storage Temperature	T _{STG}	-50 ~ +150	°C

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

OPERATING RANGE

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V _{CC}	10 ~ 24	V
Open Frame Output Power for 85~264VAC	Po_max	100	W

ELECTRICAL CHARACTERISTICS

Supply Section Ist $V_{CC}=V_{THD (ON)^{-1}}V$ 2 15 μA Supply Current With Switch I_{OP} $V_{FB}=3.5V$ 3.8 5.5 mA Supply Current With Switch V_{OLAMP} $V_{PB}=3.5V$ 2.8 5.5 mA Supply Current With Switch V_{OLAMP} $V_{PB}=3.5V$ 2.8 5.5 mA Vog. Zener Clamp Current $V_{DD}=200MA$ 29 31 33 V Under-Voltage Lockout Section Start Threshold Voltage $V_{CC (MN)}$ 6.5 8 9.5 V Control Section Feedback Source Current IFB $V_{FB}=0$ 240 uA VFB Open Loop Voltage Level V_{FB} Open 5.4 V V Burst-Mode Enter FB Voltage $V_{FB}(UT)$ $V_{CS}=0$ 1.42 V Switching Frequency Burst mode Base Frequency $F_{(SW)}$ $V_{CS}=0$ 70 80 90 % Frequency Variation VS V_{CC} Deviation F_{DT} $T=40-110^{\circ}C$ 10 % Soft-Start	PARAMETER		SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				1				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			I _{ST}	V _{CC} =V _{THD (ON)} -1V		2	15	μA
VDD Zener Clamp Current VCLAMP IVDD=20mA 29 31 33 V Under-Voltage Lockout Section Start Threshold Voltage VTHD (ON) 18 20 22 V Min. Operating Voltage VCC (MIN) 6.5 8 9.5 V Control Section Feedback Source Current IFB VFB_OPN 5.4 V Burst-Mode Out FB Voltage VFB_OPN VCS=0 1.42 V Burst-Mode Enter FB Voltage VFB (NU) VCS=0 1.35 V Switching Frequency Normal initial Burst mode Base F(SW) VFB=3.5V, VCS=0 70 80 90 % Prequency Variation VS VCc Deviation FDV VCc=10~20V 10 % % Frequency Variation VS Temperature Deviation FDV VCc=10~20V 10 % Soft Start Time TSOFTS T=-40~110°C 10 % OVP threshold VSE T_GOLP 10 %	Supply Current With Switch		I _{OP}	V _{FB} =3.5V		3.8	5.5	mA
	V _{DD} Zener Clamp Current		V _{CLAMP}		29	31	33	V
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Under-Voltage Lockout Section	n						
Control SectionFeedback Source CurrentIIVVVUUU<	Start Threshold Voltage		V _{THD (ON)}		18	20	22	V
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Min. Operating Voltage		V _{CC (MIN)}		6.5	8	9.5	V
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Control Section		-			-	_	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Feedback Source Current		I _{FB}	V _{FB} =0		240		uA
Burst-Mode Enter FB VoltageNormal initial Burst-Mode Enter FB VoltageNormal initial Burst mode Base FrequencyV _{CS} =01.35VSwitching FrequencyBurst mode Base 	V _{FB} Open Loop Voltage Level		V _{FB} Open			5.4		V
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Burst-Mode Out FB Voltage		V _{FB (OUT)}	V _{CS} =0		1.42		V
Switching FrequencyBurst mode Base Frequency $F_{(SW)}$ 20kHzDuty Cycle D_{MAX} $V_{FB}=3.5V, V_{CS}=0$ 708090%Frequency Hopping $F_{J(SW)}$ -9+9%Frequency Variation VS V _{CC} Deviation F_{DV} $V_{CC}=10\sim20V$ 10%Frequency Variation VS Temperature Deviation F_{DT} $T=-40\sim110^{\circ}C$ 10%Soft-Start Time T_{SOFTS} 5msProtection SectionOVP threshold V_{OVP} $V_{FB}=3.5V$ 252729VOLP Threshold V_{OVP} $V_{FB}=3.5V$ 252729VOLP Threshold T_{DOLP} 6088120msOTP Threshold $T_{(THR)}$ 150°C°CCurrent Limiting SectionLeading Edge Blanking Time t_{LEB} 200450700nSPeak Current Limitation $V_{SENSE H}$ $V_{FB}=3.9V$ 0.92VThreshold Voltage For Valley $V_{SENSE L}$ $V_{FB}=3.9V$ 0.730.790.85VPower Mos-Transistor SectionDrain-Source Breakdown Voltage V_{TH} $V_{DS}=V_{GS}$ $I_{S}=0V$ $I_{S}=250\muA$ 24VDrain-Source Diode Continuous Source Current I_{S} V_{SS} $I_{S}=250\muA$ 24V	Burst-Mode Enter FB Voltage		V _{FB (IN)}	V _{CS} =0		1.35		V
FrequencyDMAX $V_{FB}=3.5V, V_{CS}=0$ 708090%Duty Cycle D_{MAX} $V_{FB}=3.5V, V_{CS}=0$ 708090%Frequency Hopping $F_{J(SW)}$ -9+9%Frequency Variation VS V_{CC} Deviation F_{DV} $V_{CC}=10-20V$ 10%Frequency Variation VS Temperature Deviation F_{DT} $T=-40-110^{\circ}C$ 10%Soft-Start Time T_{SOFTS} 5msProtection Section V_{OVP} $V_{FB}=3.5V$ 252729VOLP Threshold V_{OLP} $V_{CS}=0$ 4.4VDelay Time Of OLP T_{D-OLP} 6088120msOTP Threshold $T_{(THR)}$ 150°CCurrent Limiting SectionLeading Edge Blanking Time t_{LEB} 200450700nSPeak Current Limitation $V_{SENSE H}$ $V_{FB}=3.9V$ 0.92VThreshold Voltage For Valley $V_{SENSE L}$ $V_{FB}=3.9V$ 0.730.790.85VPower Mos-Transistor SectionDrain-Source Breakdown Voltage V_{DS} $V_{GS}=0V, I_D=250\muA$ 650VVTurn-on Voltage Between Gate And Source V_{TH} $V_{DS}=V_{GS}, I_D=250\muA$ 24VDrain-Source Diode Continuous Source Current I_S 8.0A		Normal initial		V _{FB} =3.5V	60	65	70	kHz
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Switching Frequency	Burst mode Base	F _(SW)		20			kH7
Frequency Hopping $F_{J(SW)}$ -9 $+9$ $\%$ Frequency Variation VS V _{CC} Deviation F_{DV} $V_{CC}=10~20V$ 10 $\%$ Frequency Variation VS Temperature Deviation F_{DT} $T=-40~110^{\circ}C$ 10 $\%$ Soft-Start Time T_{SOFTS} 5msProtection SectionOVP threshold V_{OVP} $V_{FB}=3.5V$ 252729 V OLP ThresholdOVP threshold V_{OVP} $V_{FB}=3.5V$ 252729 V Delay Time Of OLP T_{D-OLP} 6088120msOTP Threshold $T_{(THR)}$ 150 $^{\circ}C$ Current Limiting SectionLeading Edge Blanking Time t_{LEB} 200 450 700 nS Power Mos-Transistor SectionDrain-Source Breakdown Voltage V_{DS} $V_{GS}=0V$, $I_D=250\muA$ 650 V Drain-Source Diode Continuous Source Current I_S		Frequency			_			
Frequency Variation VS V_{CC} DeviationF_{DV} $V_{CC}=10\sim20V$ 10%Frequency Variation VS Temperature Deviation F_{DT} T=-40~110°C10%Soft-Start TimeT_{SOFTS}5msProtection SectionOVP threshold V_{OVP} $V_{FB}=3.5V$ 252729VOLP ThresholdOVP threshold V_{OVP} $V_{FB}=3.5V$ 252729VOLP Threshold V_{OVP} $V_{FB}=3.5V$ 252729VOLP Threshold $V_{CC}=0$ 4.4VDelay Time Of OLP T_{D-OLP} 6088120msOTP ThresholdT (THR)150°CCurrent Limiting SectionLeading Edge Blanking Time t_{LEB} 200450700nSPower Mos-Transistor SectionDrain-Source Breakdown Voltage V_{DSS} $V_{GS}=0V$, $I_D=250\mu A$ 650VTurn-on Voltage Between Gate And Source V_{TH} $V_{DS}=V_{GS}$, $I_D=250\mu A$ 24VDrain-Source Diode Continuous Source Current I_S 8.0A	Duty Cycle		D _{MAX}	V _{FB} =3.5V, V _{CS} =0	70	80	90	
Frequency Variation VS Temperature Deviation F_{DT} $T=-40~110^{\circ}C$ 10%Soft-Start Time T_{SOFTS} T_{SOFTS} 5msProtection SectionOVP threshold V_{OVP} $V_{FB}=3.5V$ 252729VOLP Threshold $V_{CS}=0$ 4.4VDelay Time Of OLP T_{D-OLP} 6088120msOTP Threshold $T_{(THR)}$ 150°CCurrent Limiting SectionLeading Edge Blanking Time t_{LEB} 200450700nSPeak Current Limitation $V_{SENSE H}$ $V_{FB}=3.9V$ 0.730.790.85VPower Mos-Transistor SectionDrain-Source Breakdown Voltage V_{DS} $V_{GS}=0V, I_D=250\muA$ 650VTurn-on Voltage Between Gate And Source V_{TH} $V_{DS}=V_{GS}, I_D=250\muA$ 24VDrain-Source Diode Continuous Source Current I_S 8.0A	Frequency Hopping		F _{J (SW)}		-9		+9	
Soft-Start Time T _{SOFTS} 5 ms Protection Section VOVP V _{FB} =3.5V 25 27 29 V OVP threshold VOVP V _{FB} =0.LP VCS=0 4.4 V Delay Time Of OLP T _{D-OLP} 60 88 120 ms OTP Threshold T TODLP 150 °C Current Limiting Section T 150 °C Leading Edge Blanking Time tLEB 200 450 700 nS Peak Current Limitation V _{SENSE H} V _{FB} =3.9V 0.92 V Threshold Voltage For Valley V _{SENSE L} V _{FB} =3.9V 0.73 0.79 0.85 V Power Mos-Transistor Section Drain-Source Breakdown Voltage VDSS VGS=0V, ID=250µA 650 V Turn-on Voltage Between Gate And Source VTH VDS=VGS, ID=250µA 2 4 V Drain-Source Diode Continuous Source Current IS 8.0 A	Frequency Variation VS V _{CC} Dev	iation	F _{DV}	V _{CC} =10~20V			10	%
Protection SectionOVP threshold V_{OVP} $V_{FB}=3.5V$ 252729VOLP Threshold $V_{FB (OLP)}$ $V_{CS}=0$ 4.4VDelay Time Of OLP T_{D-OLP} 6088120msOTP Threshold $T_{(THR)}$ 150°CCurrent Limiting SectionLeading Edge Blanking Time t_{LEB} 200450700nSPeak Current Limitation $V_{SENSE H}$ $V_{FB}=3.9V$ 0.92VThreshold Voltage For Valley $V_{SENSE L}$ $V_{FB}=3.9V$ 0.730.790.85VPower Mos-Transistor SectionDrain-Source Breakdown Voltage V_{DS} $V_{GS}=0V, I_D=250\muA$ 650VTurn-on Voltage Between Gate And Source V_{TH} $V_{DS}=V_{GS}, I_D=250\muA$ 24VDrain-Source Diode Continuous Source Current I_S 8.0A	Frequency Variation VS Tempera	ature Deviation	F _{DT}	T=-40~110°C			10	%
OVP threshold V _{OVP} V _{FB} =3.5V 25 27 29 V OLP Threshold V _{FB (OLP)} V _{CS} =0 4.4 V Delay Time Of OLP T _{D-OLP} 60 88 120 ms OTP Threshold T (THR) 150 °C Current Limiting Section T (THR) 200 450 700 nS Peak Current Limitation V _{SENSE H} V _{FB} =3.9V 0.92 V Threshold Voltage For Valley V _{SENSE L} V _{FB} =3.9V 0.73 0.79 0.85 V Power Mos-Transistor Section V V _{SENSE L} V _{FB} =3.9V 0.73 0.79 0.85 V Drain-Source Breakdown Voltage V _{DSS} V _{GS} =0V, I _D =250µA 650 V Turn-on Voltage Between Gate And Source V _{TH} V _{DS} =V _{GS} , I _D =250µA 2 4 V Drain-Source Diode Continuous Source Current I _S 8.0 A	Soft-Start Time		T _{SOFTS}			5		ms
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Protection Section					-		
Delay Time Of OLPTD-OLPFGS 0NNNNDelay Time Of OLPTD-OLP6088120msOTP ThresholdTT150°CCurrent Limiting SectionLeading Edge Blanking Time t_{LEB} 200450700nSPeak Current Limitation $V_{SENSE H}$ V_{FB} =3.9V0.92VThreshold Voltage For Valley $V_{SENSE L}$ V_{FB} =3.9V0.730.790.85VPower Mos-Transistor SectionDrain-Source Breakdown Voltage V_{DSS} V_{GS} =0V, I_D =250µA650VTurn-on Voltage Between Gate And Source V_{TH} V_{DS} = V_{GS} , I_D =250µA24VDrain-Source Diode Continuous Source Current I_S 8.0A	OVP threshold		V _{OVP}	V _{FB} =3.5V	25	27	29	V
OTP Threshold T (THR) 150 °C Current Limiting Section Eading Edge Blanking Time t_LEB 200 450 700 nS Peak Current Limitation V_SENSE H VFB=3.9V 0.92 V Threshold Voltage For Valley V_SENSE L VFB=3.9V 0.73 0.79 0.85 V Power Mos-Transistor Section Drain-Source Breakdown Voltage VDSS VGS=0V, ID=250µA 650 V Turn-on Voltage Between Gate And Source VTH VDS=VGS, ID=250µA 2 4 V Drain-Source Diode Continuous Source Current IS 8.0 A	OLP Threshold		V _{FB (OLP)}	V _{CS} =0		4.4		V
Current Limiting SectionLeading Edge Blanking Time t_{LEB} 200450700nSPeak Current Limitation $V_{SENSE H}$ V_{FB} =3.9V0.92VThreshold Voltage For Valley $V_{SENSE L}$ V_{FB} =3.9V0.730.790.85VPower Mos-Transistor SectionDrain-Source Breakdown Voltage V_{DSS} V_{GS} =0V, I_D =250µA650VTurn-on Voltage Between Gate And Source V_{TH} V_{DS} = V_{GS} , I_D =250µA24VDrain-Source Diode Continuous Source Current I_S 8.0A	Delay Time Of OLP		T _{D-OLP}		60	88	120	ms
Leading Edge Blanking Time t_LEB 200 450 700 nS Peak Current Limitation V_SENSE H VFB=3.9V 0.92 V Threshold Voltage For Valley V_SENSE L VFB=3.9V 0.73 0.79 0.85 V Power Mos-Transistor Section Drain-Source Breakdown Voltage VDSS VGS=0V, ID=250µA 650 V Turn-on Voltage Between Gate And Source VTH VDS=VGS, ID=250µA 2 4 V Drain-Source Diode Continuous Source Current IS 8.0 A	OTP Threshold		T (THR)			150		°C
Peak Current Limitation $V_{SENSE H}$ $V_{FB}=3.9V$ 0.92VThreshold Voltage For Valley $V_{SENSE L}$ $V_{FB}=3.9V$ 0.730.790.85VPower Mos-Transistor SectionDrain-Source Breakdown Voltage V_{DSS} $V_{GS}=0V, I_D=250\mu A$ 650VTurn-on Voltage Between Gate And Source V_{TH} $V_{DS}=V_{GS}, I_D=250\mu A$ 24VDrain-Source Diode Continuous Source Current I_S 8.0A	Current Limiting Section			•				
Threshold Voltage For Valley V_{SENSE_L} $V_{FB}=3.9V$ 0.730.790.85VPower Mos-Transistor SectionDrain-Source Breakdown Voltage V_{DSS} $V_{GS}=0V$, $I_D=250\mu A$ 650VTurn-on Voltage Between Gate And Source V_{TH} $V_{DS}=V_{GS}$, $I_D=250\mu A$ 24VDrain-Source Diode Continuous Source Current I_S 8.0A	Leading Edge Blanking Time		t _{LEB}		200	450	700	nS
Power Mos-Transistor Section Drain-Source Breakdown Voltage V _{DSS} V _{GS} =0V, I _D =250μA 650 V Turn-on Voltage Between Gate And Source V _{TH} V _{DS} =V _{GS} , I _D =250μA 2 4 V Drain-Source Diode Continuous Source Current I _S 8.0 A	Peak Current Limitation		V _{SENSE H}	V _{FB} =3.9V		0.92		V
Drain-Source Breakdown VoltageVDSSVGS=0V, ID=250µA650VTurn-on Voltage Between Gate And SourceVTHVDS=VGS, ID=250µA24VDrain-Source Diode Continuous Source CurrentIS8.0A	Threshold Voltage For Valley		V _{SENSEL}	V _{FB} =3.9V	0.73	0.79	0.85	V
Turn-on Voltage Between Gate And Source V _{TH} V _{DS} =V _{GS} , I _D =250µA 2 4 V Drain-Source Diode Continuous Source Current I _S 8.0 A	Power Mos-Transistor Section			•				
Drain-Source Diode Continuous Source Current I _S 8.0 A	Drain-Source Breakdown Voltage		V _{DSS}	V _{GS} =0V, I _D =250µA	650			V
	Turn-on Voltage Between Gate And Source		V _{TH}	V _{DS} =V _{GS} , I _D =250µA	2		4	V
Static Drain-Source On-State Resistance $R_{DS(ON)}$ V_{GS} =10V, I_D =0.8A 0.6 Ω	Drain-Source Diode Continuous Source Current		Is				8.0	Α
	Static Drain-Source On-State Resistance		R _{DS (ON)}	V _{GS} =10V, I _D =0.8A			0.6	Ω

Notes: 1. Pulse Test : Pulse width \leq 300µs, Duty cycle \leq 2%.

2. Essentially independent of operating ambient temperature.

FUNCTIONAL DESCRIPTION

The internal reference voltages and bias circuit work at V_{CC}>V_{THD (ON)}, and shutdown at V_{CC}<V_{CC (MIN)}.

(1) Soft-Start

When every IC power on, driver output duty cycle will be decided by inter-slope voltage V_{SOFTS} and V_{CS} on current sense resistor at beginning. After the whole soft-start phase end, and driver duty cycle depend on V_{FB} and V_{CS} . The relation among V_{SOFTS} , V_{FB} and V_{OUT} as followed Fig.3. Furthermore, soft-start phase should end before V_{CC} reach $V_{CC (MIN)}$ during V_{CC} power on. Otherwise, if soft-start phase remain not end before $V_{CC (MIN)}$ during V_{CC} (MIN) during V_{CC} power on, IC will enter auto-restart phase and not set up V_{OUT} .

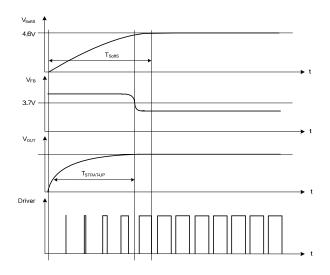


Fig.3 Soft-Start Phase

(2) Switching Frequency Set

The maximum switching frequency is set to 65kHz. Switching frequency is modulated by output power P_{OUT} during IC operating. At no load or light load condition, most of the power dissipation in a switching mode power supply is from switching loss on the MOSFET transistor, the core loss of the transformer and the loss on the snubber circuit. The magnitude of power loss is in proportion to the number of switching events within a fixed period of time. So lower Switching frequency at lower load, which more and more improve IC's efficiency at light load. At from no load to light load condition, The IC will operate at from Burst mode to Reducing Frequency Mode. The relation curve between f_{SW} and P_{OUT} as followed Fig.4.

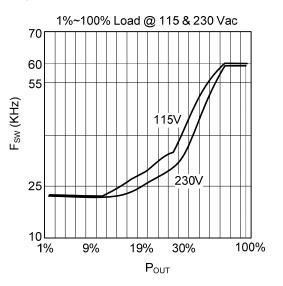


Fig.4 The Relation Curve Between F_{sw} And Relative Output Power P_{OUT}

FUNCTIONAL DESCRIPTION (Cont.)

(3) Internal Synchronized Slope Compensation

Built-in slope compensation circuit adds voltage ramp onto the current sense input voltage for PWM generation, this greatly improves the close loop stability at CCM and prevents the sub-harmonic oscillation and thus reduces the output ripple voltage.

(4) Frequency Hopping For EMI Improvement

The Frequency Hopping is implemented in the IC; there are two oscillators built-in the IC. The first oscillator is to set the normal switching frequency; the switching frequency is modulated with a period signal generated by the 2nd oscillator. The relation between the first oscillator and the 2nd oscillator as followed Fig.5. So the tone energy is evenly spread out, the spread spectrum minimizes the conduction band EMI and therefore eases the system design in meeting stringent EMI requirement.

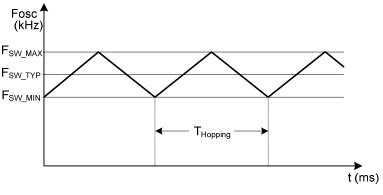


Fig.5 Frequency Hopping

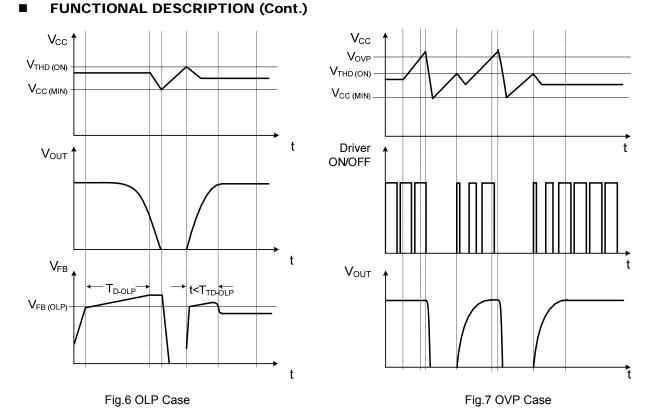
(5) Constant Output Power Limit

When the primary current, across the primary wind of transfer, reaches the limit current, the output GATE drive will be turned off after a small propagation delay t_D . This propagation delay will introduce an additional current proportional to $t_D \times V_{IN}/Lp$. Since the propagation delay is nearly constant regardless of the input line voltage V_{IN} . Higher input line voltage will result in a larger additional current and hence the output power limit is also higher than that under low input line voltage. To compensate for this output power limit variation across a wide AC input range, the threshold voltage is adjusted by adding a positive ramp. This ramp signal rises from V_{SENSE_L} to V_{SENSE_H} , and then flattens out at V_{SENSE_H} . A smaller threshold voltage forces the output GATE drive to terminate earlier. This reduces the total PWM turn-on time and makes the output power equal to that of low line input. This proprietary internal compensation ensures a constant output power limit for a wide AC input voltage range (90VAC~264VAC).

(6) Protection section

The IC takes on more protection functions such as OLP, OVP and OTP etc. In case of those failure modes for continual blanking time, the driver is shut down. At the same time, IC enters auto-restart, V_{CC} power on and driver is reset after V_{CC} power on again.

OLP


After power on, IC will shutdown driver if over load state occurs for continual T_{D-OLP}. OLP case as followed Fig.6.

OVP

OVP will shutdown the switching of the power MOSFET whenever $V_{CC} > V_{OVP}$. The OVP case as followed Fig.7.

LINEAR INTEGRATED CIRCUIT

ΟΤΡ

OTP will shut down driver when junction temperature $T_J > T_{(THR)}$ for continual a blanking time.

(7) Driver Output Section

The driver-stage drives the gate of the MOSFET and is optimized to minimize EMI and to provide high circuit efficiency. This is done by reducing the switch on slope when reaching the MOSFET threshold. This is achieved by a slope control of the rising edge at the driver's output. The output driver is clamped by an internal 15V Zener diode in order to protect power MOSFET transistors against undesirable gate over voltage.

The In addition to the gate drive control scheme mentioned, the gate drive strength can also be adjusted externally by a resistor connected between V_{DD} and V_{DDG} , the falling edge of the Drain output can be well controlled. It provides great flexibility for system EMI design.

(8) Inside power switch MOS transistor

Specific power MOS transistor parameter is as "POWER MOS TRANSISTOR SECTION" in electrical characteristics table.

(9) FB pin

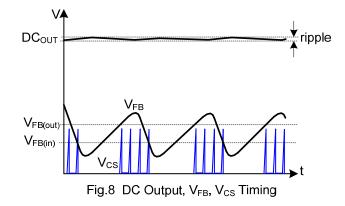
Greenmode and Burstmode is controlled by V_{FB} . Capacitor C_{FB} is connected between FB and GND. V_{FB} control switch frequency Fsw in greenmode.

C_{FB}=0.33~2.2nF

in full load, $V_{FB} > 2.6V$, have Fsw=65kHz.

In green mode,

 $2V~\leq~V_{FB} \leq 2.6V,$ have Fsw=72*V_{FB}-122 ~(kHz) .


 $V_{FB_in}~{}^{\leq}V_{FB}{}^{\leq}~$ 2V, have Fsw=22 (kHz) .

In burst mode, IC shutdown when $V_{FB}{<}V_{FB\ (in)}$, then DC output fall and $V_{FB}\ rise,\quad$ IC on/off work when

 V_{FB} > $V_{FB (out)}$, then DC output rise and V_{FB} fall , IC shutdown when VFB < VFB (in) again. In burstmode, on/off times is related with Lp s fsw Rcs etc. And unrelated with controller IC.

■ FUNCTIONAL DESCRIPTION (Cont.)

(10) CS pin

Current sense input pin. Connected to MOSFET current sensing resistor node. R_{CS} is Current sense resistor. $V_{cspk}=I_{pk}\times R_{CS}=(V_{FB}-V_{be})/3$,

In DCM mode,

Lp is primary inductance, $V_{dc_{min}}$ is minimum DC voltage input, Dmax is maximum duty cycle, Pin is input power, F_{sw} is switch frequency.

In CCM mode,

 $L_{\text{P}}\text{=}~(V_{\text{dc}_\text{min}}\text{x}D_{\text{max}})~\text{x}~(V_{\text{dc}_\text{min}}\text{x}D_{\text{max}})~\textit{/}~(2P_{\text{in}}\text{x}F_{\text{sw}}\text{x}K_{\text{RF}})$

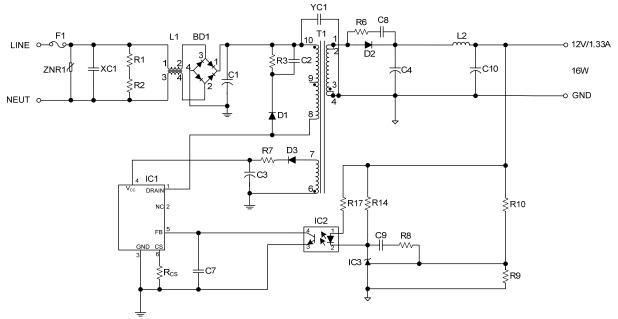
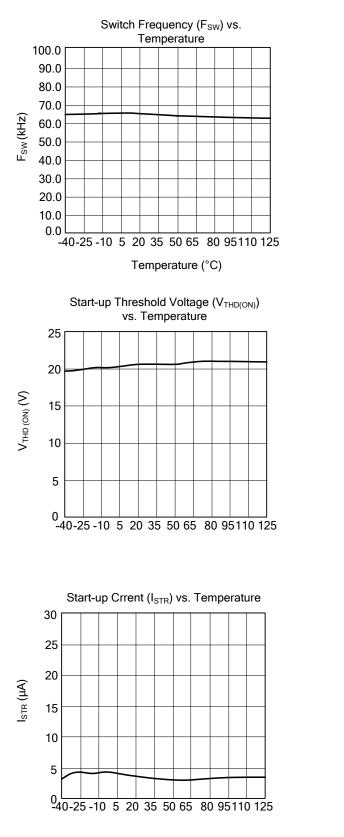
 $K_{\text{RF}}\text{=}0.3\text{-}0.5$ is input voltage ripple coefficient, usually $K_{\text{RF}}\text{=}0.5.$

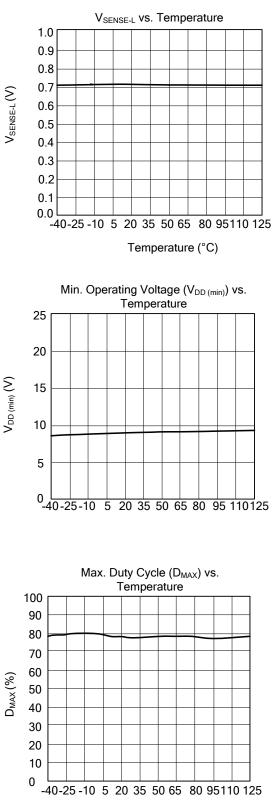
$$Pin = \frac{1}{2} * Lp * Fsw * lpk^2$$

So, wo can Calculate I_{PK} and $R_{\text{CS}}.$

TYPICAL APPLICATION CIRCUIT

LINEAR INTEGRATED CIRCUIT


Fig.9 UTC UCS1657S Typical Application Circuit

LINEAR INTEGRATED CIRCUIT

TYPICAL CHARACTERISTICS

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

