

TNPW e3 Precision Thin Film Flat Chip Resistors are the perfect choice for most fields of modern electronics where highest reliability and stability is of major concern. Typical applications include automotive, telecommunication, industrial, medical equipment, precision test and measuring equipment.

FEATURES

- Lead (Pb)-free solder contacts, RoHS compliant
- AEC-Q200 compliant (sizes 0402 to 1206)
- Low temperature coefficient and tight tolerances (± 0.1 %; ± 10 ppm/K)
- · Waste gas resistant

APPLICATIONS

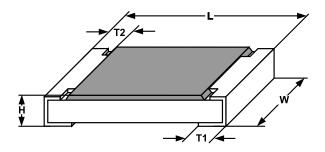
- · Test and measuring equipment
- Telecommunication
- · Medical equipment
- · Industrial equipment
- Instrumentation
- Automotive

STANDARD EL	ECTRICAL S	SPECIFICA	TIONS				
DESCRIPTION	TNPW0402	TNPW0603	TNPW0805	TNPW1206	TNPW1210 ⁽¹⁾	TNPW2010	TNPW2512 (1)
Metric size	RR 1005M	RR 1608M	RR 2012M	RR 3216M	RR 3225M	RR 5025M	RR 6332M
Resistance range	10 Ω to 100 k Ω	10 Ω to 332 k Ω	10 Ω to 1 M Ω	10 Ω to 2 M Ω	10 Ω to 3.01 M Ω	10 Ω to 4.99 M Ω	10 Ω to 8.87 MΩ
Resistance tolerance				± 1 %; ± 0.5 %;	± 0.1 %		
Temperature coefficent	±	50 ppm/K; ± 25	ppm/K; ± 15 p	om/K; ± 10 ppn	n/K	± 50 ppm/K	; ± 25 ppm/K
Climatic category (LCT/UCT/days)	55/125/56	55/125/56	55/125/56	55/125/56	55/125/56	55/125/56	55/125/56
Rated dissipation, $P_{70}^{(2)}$	0.063 W	0.1 W	0.125 W	0.25 W	0.33 W	0.4 W	0.5 W
Operating voltage, $U_{\text{max.}}$ AC/DC	50 V	75 V	150 V	200 V	200 V	300 V	300 V
Maximum permissible film temperature	155 °C	155 °C	155 °C	155 °C	155 °C	155 °C	155 °C
Thermal resistance (3)	870 K/W	550 K/W	440 K/W	220 K/W	170 K/W	140 K/W	110 K/W
Max. resistance change at P_{70} ; $\Delta R/R$	10 Ω to 100 kΩ	10 Ω to 332 kΩ	10 Ω to 1 M Ω	10 Ω to 2 M Ω	10 Ω to 3.01 M Ω	10 Ω to 4.99 M Ω	10 Ω to 8.87 MΩ
1000 h	≤ 0.05 %	≤ 0.05 %	≤ 0.05 %	≤ 0.05 %	≤ 0.05 %	≤ 0.05 %	≤ 0.05 %
8000 h	≤ 0.10 %	≤ 0.10 %	≤ 0.10 %	≤ 0.10 %	≤ 0.10 %	≤ 0.10 %	≤ 0.10 %
225 000 h	≤ 0.30 %	≤ 0.30 %	≤ 0.30 %	≤ 0.30 %	≤ 0.30 %	≤ 0.30 %	≤ 0.30 %
Insulation voltage:							
U _{ins} 1 min	75 V	100 V	200 V	300 V	300 V	300 V	300 V
Continuous	75 V	75 V	75 V	75 V	75 V	75 V	75 V
FITobserved	≤ 0.1 x 10 ⁻⁹ /h	≤ 0.1 x 10 ⁻⁹ /h	$\leq 0.1 \times 10^{-9}/h$	≤ 0.1 x 10 ⁻⁹ /h	≤ 0.1 x 10 ⁻⁹ /h	≤ 0.1 x 10 ⁻⁹ /h	≤ 0.1 x 10 ⁻⁹ /h
Weight/1000 pieces	0.65 g	2 g	5.5 g	10 g	16 g	28 g	39 g

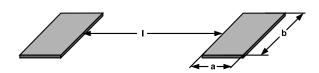
Notes

⁽¹⁾ Size not specified in EN 140401-801

⁽²⁾ Rated voltage $\sqrt{P \times R}$. The power dissipation on the resistor generates a temperature rise against the local ambient, depending on the heat flow support of the printed-circuit board (thermal resistance). Using advanced temperature level may require special considerations towards the choice of circuit board and solder material. The rated dissipation applies only if the permitted film temperature is not exceeded.

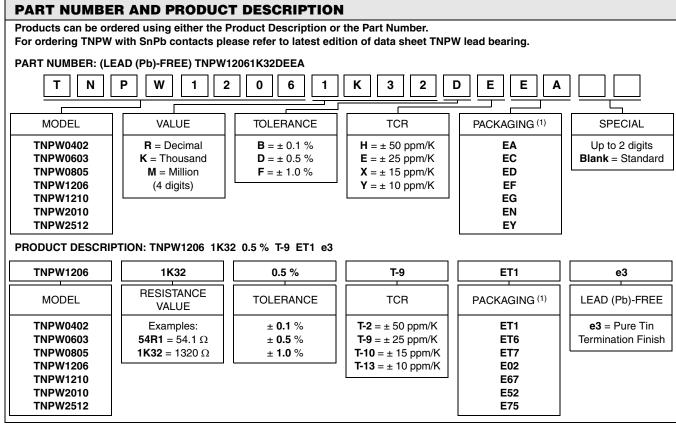

⁽³⁾ Measuring conditions in accordance with EN 140401-801

TNPW 0402 without marking


High Stability Thin Film Flat Chip Resistor \leq 0.05 % (1000 h rated power at 70 °C)

DIMENSIONS

S	IZE	DIMENSIONS in millimeters				
INCH	METRIC	L	W	Н	T1	T2
0402	1005	1.0 ± 0.05	0.5 ± 0.05	0.35 ± 0.05	0.2 ±	0.10
0603	1608	1.6 ± 0.10	0.85 ± 0.10	0.45 ± 0.10	0.3 ±	0.20
0805	2012	2.0 ± 0.15	1.25 ± 0.15	0.45 ± 0.10	0.4 ±	0.20
1206	3216	3.2 ± 0.15	1.6 ± 0.15	0.55 ± 0.10	0.5 ±	0.25
1210	3225	3.2 ± 0.15	2.45 ± 0.15	0.60 ± 0.15	0.5 ±	0.25
2010	5025	5.0 ± 0.15	2.5 ± 0.15	0.60 ± 0.15	0.6 ±	0.25
2512	6332	6.3 ± 0.20	3.1 ± 0.15	0.60 ± 0.15	0.6 ±	0.25


SOLDER PAD DIMENSIONS in millimeters							
5	SIZE	REFLO	WSOLD	ERING	WAVE	SOLDE	RING
INCH	METRIC	а	b	I	а	b	I
0402	1005	0.4	0.6	0.5	-	-	-
0603	1608	0.5	0.9	1.0	0.9	0.9	1.0
0805	2012	0.7	1.3	1.2	0.9	1.3	1.3
1206	3216	0.9	1.7	2.0	1.1	1.7	2.3
1210	3225	0.9	2.5	2.0	1.1	2.5	2.3
2010	5025	1.0	2.5	3.9	1.2	2.5	3.9
2512	6332	1.0	3.2	5.2	1.2	3.2	5.2

TYPE	TCR	TOLERANCE	RESISTANCE VALUE	E-SERIES	
		± 1 %		24 to 96	
	± 50 ppm/K	± 0.5 %	10R to 100K	041-400	
		± 0.1 %	47R to 100K	24 to 192	
TNPW0402		± 1 %	10R to 100K	24 to 96	
	± 25 ppm/K	± 0.5 %	10R to 100K		
		± 0.1 %		24 to 192	
	± 15 ppm/K	± 0.1 %	47R to 100K	24 (0 192	
	± 10 ppm/K	± 0.1 %			
		± 1 %	10R to 332K	24 to 96	
TNPW0603	± 50 ppm/K	± 0.5 %	10R to 332K	24 to 192	
		± 0.1 %	10H to 332K		
		± 1 %	10R to 332K	24 to 96	
	± 25 ppm/K	± 0.5 %	10R to 332K		
		± 0.1 %	1011 to 33210	24 to 192	
	± 15 ppm/K	± 0.1 %	47R to 332K	24 (0 192	
	± 10 ppm/K	± 0.1 %	47 h to 332 k		
		±1%	10R to 1M0	24 to 96	
	± 50 ppm/K	± 0.5 %	10R to 1M0	24 to 192	
		± 0.1 %			
TNPW0805		±1%	10R to 1M0	24 to 96	
TIVE WUOUS	± 25 ppm/K	± 0.5 %	10R to 1M0		
		± 0.1 %	TON TO TIMO	24 to 192	
	± 15 ppm/K	± 0.1 %	47R to 1M0	24 (0 192	
	± 10 ppm/K	± 0.1 %			
		±1%	10R to 2M0	24 to 96	
	± 50 ppm/K	± 0.5 %	10R to 2M0	24 to 192	
		± 0.1 %			
TNPW1206		±1%	10R to 2M0	24 to 96	
1141 44 1200	± 25 ppm/K	± 0.5 %	10R to 2M0		
		± 0.1 %	TON TO ZIVIO	24 to 192	
	± 15 ppm/K	± 0.1 %	47R to 2M0	24 (0 192	
	± 10 ppm/K	± 0.1 %	47 Ft to 21010		

Vishay

TEMPERATURE COEFFICIENT AND RESISTANCE RANGE						
TYPE	TCR	TOLERANCE	RESISTANCE VALUE	E-SERIES		
		± 1 %	10R to 3M01	24 to 96		
	± 50 ppm/K	± 0.5 %	10R to 3M01	04 to 100		
		± 0.1 %	47R to 2M13	24 to 192		
TNPW1210		± 1 %	10R to 3M01	24 to 96		
INPWIZIU	± 25 ppm/K	± 0.5 %	10R to 3M01			
		± 0.1 %		24 to 192		
	± 15 ppm/K	± 0.1 %	47R to 2M13	24 10 192		
	± 10 ppm/K	± 0.1 %				
		± 1 %	10R to 4M99	24 to 96		
	± 50 ppm/K	± 0.5 %	10R to 4M99	24 to 192		
TNPW2010		± 0.1 %	47R to 1M0	24 10 192		
INPWZUIU		± 1 %	10R to 4M99	24 to 96		
	± 25 ppm/K	± 0.5 %	10R to 4M99	04 += 400		
		± 0.1 %	47R to 1M0	24 to 192		
		± 1 %	10R to 8M87	24 to 96		
	± 50 ppm/K	± 0.5 %	10R to 8M87	04 += 400		
TNDW0540		± 0.1 %	47R to 1M0	24 to 192		
TNPW2512		± 1 %	10R to 8M87	24 to 96		
	± 25 ppm/K	± 0.5 %	10R to 8M87	04 to 100		
		± 0.1 %	47R to 1M0	24 to 192		

Note

⁽¹⁾ Please refer to PACKAGING table

High Stability Thin Film Flat Chip Resistor ≤ 0.05 % (1000 h rated power at 70 °C)

PACKAGIN	PACKAGING							
MODEL	TAPE WIDTH [mm]	PITCH [mm]	REEL DIAMETER [mm/inch]	PIECES PER REEL	PACKAGING CODE FOR PRODUCT DESCRIPTION	PACKAGING CODE FOR PART NUMBER	TYPE OF CARRIER TAPE	
TNPW0402	8	2	180/7	10 000	ET7	ED	Paper	
TNPW0603 TNPW0805 TNPW1206 TNPW1210	8	4	180/7	1000	E52 ⁽¹⁾	EN ⁽¹⁾	Paper	
TNPW0603 TNPW0805 TNPW1206 TNPW1210	8	4	180/7	5000	ET1	EA	Paper	
TNPW0603 TNPW0805 TNPW1206 TNPW1210	8	4	330/13	20 000	ET6	EC	Paper	
TNPW2010	12	4	180/7	1000	E75 E02	EY EF	Blister	
				4000 1000	E02 E75	EY	Blister Blister	
TNPW2512	12	4	180/7	2000	E67	EG	Blister	

Note

DESCRIPTION

Production is strictly controlled and follows an extensive set of instructions established for reproducibility. A homogeneous film of metal alloy is deposited on a high grade Al₂O₃ ceramic substrate and conditioned to achieve the desired temperature coefficient. Specially designed inner contacts are deposited on both sides. A special laser is used to achieve the target value by smoothly fine trimming the resistive layer without damaging the ceramics. A further conditioning is applied in order to stabilize the trimming result. The resistor elements are covered by a protective coating designed for electrical, mechanical and climatic protection. The terminations receive a final pure tin on nickel plating. The result of the determined production is verified by an extensive testing procedure on 100 % of the individual chip resistors. This includes pulse load screening for the elimination of products with a potential risk of early life failures according to EN 140401-801, 2.1.2.2. Only accepted products are laid directly into the tape in accordance with EN 60286-3.

ASSEMBLY

The resistors are suitable for processing on automatic SMD assembly systems. They are suitable for automatic soldering using wave, reflow or vapour phase as shown in IEC 61760-1. Excellent solderability is proven, even after extended storage in excess of 10 years. The encapsulation is resistant to all cleaning solvents commonly used in the electronics industry, including alcohols, esters and aqueous solutions. The suitability of conformal coatings, if applied, shall be qualified by appropriate means to ensure the long-term stability of the whole system. The resistors are RoHS compliant, the puretin plating provides compatibility with lead (Pb)-free and lead-containing soldering processes. The immunity of the plating against tin whisker growth has been proven under extensive testing.

All products comply with the **GADSL** ⁽²⁾ and the **CEFIC-EECA-EICTA** ⁽³⁾ list of legal restrictions on hazardous substances. This includes full compliance with the following directives:

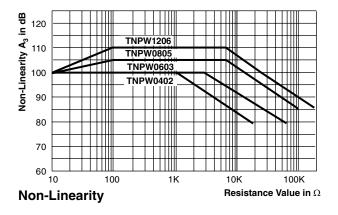
- 2000/53/EC End of Vehicle life Directive (ELV) and Annex II (ELV II)
- 2002/95/EC Restriction of the use of Hazardous Substances Directive (RoHS)
- 2002/96/EC Waste Electrical and Electronic Equipment Directive (WEEE)

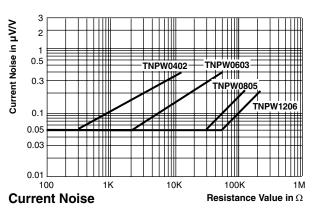
Solderability is specified for 2 years after production or re-qualification. The permitted storage time is 20 years.

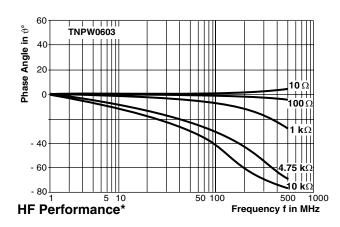
Notes

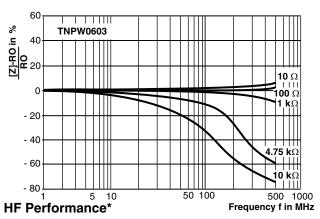
- (2) Global Automotive Declarable Substance List, see www.gadsl.org
- (3) CEFIC (European Chemical Industry Council), EECA (European Electronic Component Manufacturers Association), EICTA (European trade organisation representing the information and communications technology and consumer electronics), see www.eicta.org → issue → environment policy → chemicals → chemicals for electronics

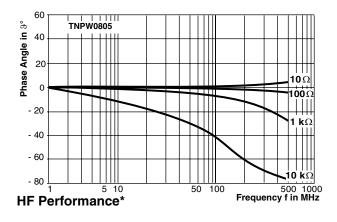
For technical questions, contact: filmresistors.thinfilmchip@vishay.com

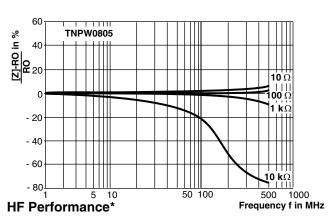

Document Number: 28758

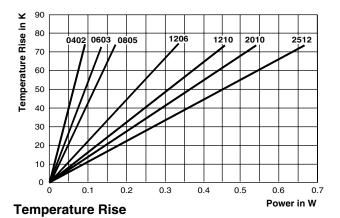

Revision: 30-Sep-08

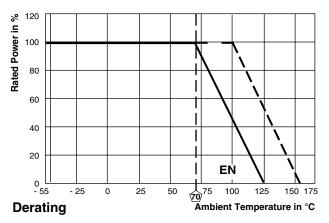

⁽¹⁾ E52/EN only for precision resistors with tolerance ± 0.1 % and temperature coefficient ≤ ± 25 ppm/K

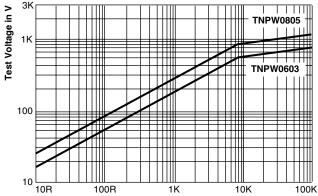


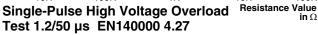

FUNCTIONAL PERFORMANCE

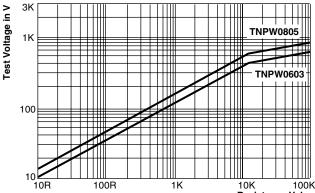


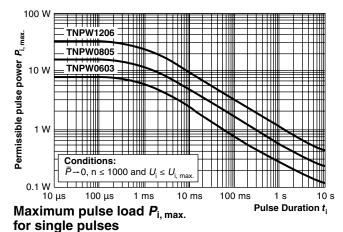


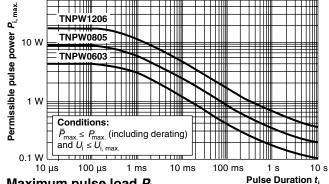

^{*} Typical figures. HF-characteristic also depends on termination and circuit design.


Document Number: 28758 Revision: 30-Sep-08

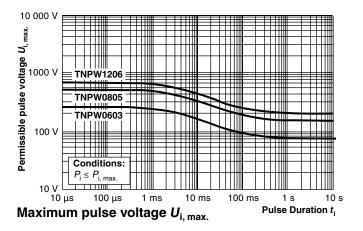

High Stability Thin Film Flat Chip Resistor \leq 0.05 % (1000 h rated power at 70 °C)







Single-Pulse High Voltage Overload Resistance Value in O Test 10/700 µs EN140000 4.27



Maximum pulse load Pi, max. for continuous pulses

Pulse Duration ti

100 W

Vishay

TEST AND REQUIREMENTS

All tests are carried out in accordance with the following specifications:

EN 60115-1, Generic specification (includes tests)

EN 140400, Sectional specification (includes schedule for qualification approval)

EN 140401-801, Detail specification (includes schedule for conformance inspection)

The following table contains only the most important tests. For the full test schedule refer to the documents listed above. The testing also covers most of the requirements specified by EIA/IS-703 and JIS-C-5202. The tests are carried out in accordance with IEC 60068 and under standard atmospheric conditions in accordance with IEC 60068-1, 5.3. Climatic category LCT/UCT/56 (rated temperature range: Lower

Category Temperature, Upper Category Temperature; damp heat, long term, 56 days) is valid. Unless otherwise specified the following values apply:

Temperature: 15 °C to 35 °C Relative humidity: 45 % to 75 %

Air pressure: 86 kPa to 106 kPa (860 mbar to 1060 mbar).

The components are mounted for testing on boards in accordance with EN 60115-1, 4.31 unless otherwise specified. The parameters stated in the Test Procedures and Requirements table are based on the required tests and permitted limits of EN 140401-801. However, some additional tests and a number of improvements against those minimum requirements have been included.

TEST PR	TEST PROCEDURES AND REQUIREMENTS						
EN 60115-1 CLAUSE	IEC 60068-2 TEST METHOD	TEST	PROCEDURE	REQUIREMENTS PERMISSIBLE CHANGE			
			Stability for product types:				
			TNPW0402				
			TNPW0603				
			TNPW0805				
			TNPW1206				
			TNPW1210				
			TNPW2010				
			TNPW2512				
4.5	-	Resistance		± 1 %; ± 0.5 %; ± 0.1 %			
4.8.4.2	-	Temperature coefficient	At 20/- 55/20 °C ± and 20/125/20 °C	± 50 ppm/K; ± 25 ppm/K; ± 15 ppm/K; ± 10 ppm/K			
4.25.1	-	Endurance at	$U = \sqrt{P_{70} \times R} \text{ or }$ $U = U_{\text{max.}};$ whichever is the less severe; $1.5 \text{ h on; } 0.5 \text{ h off;}$				
		70 0	70 °C; 1000 h	± (0.05 % R + 0.01 Ω)			
			70 °C; 8000 h	± (0.1 % R + 0.02 Ω)			

Document Number: 28758 Revision: 30-Sep-08

TNPW e3

Vishay

High Stability Thin Film Flat Chip Resistor \leq 0.05 % (1000 h rated power at 70 °C)

	ROCEDURES	AND REQUI	REMENIS	
EN 60115-1 CLAUSE	IEC 60068-2 TEST METHOD	TEST	PROCEDURE	REQUIREMENTS PERMISSIBLE CHANGE
			Stability for product types:	
			TNPW0402	
			TNPW0603	
			TNPW0805	
			TNPW1206	
			TNPW1210	
			TNPW2010	
			TNPW2512	
4.25.3	-	Endurance at upper category temperature	125 °C; 1000 h 155 °C; 1000 h	\pm (0.05 % R + 0.01 Ω) \pm (0.1 % R + 0.02 Ω)
4.24	78 (Cab)	Damp heat, steady state	(40 ± 2) °C; 56 days; (93 ± 3) % RH	± (0.1 % R + 0.01 Ω)
4.23		Climatic sequence:		
4.23.2	2 (Ba)	Dry heat	UCT; 16 h	
4.23.3	30 (Db)	Damp	55 °C; 24 h; > 90 % RH; 1 cycle	
4.23.4	1 (Aa)	Cold	LCT; 2 h	± (0.1 % R + 0.02 Ω)
4.23.5	13 (M)	Low air	8.5 kPa; 2 h; 25 ± 10 °C	± (0.1 /8 // + 0.02 s2)
4.23.6	30 (Db)	Damp heat, cyclic	55 °C; 5 days; > 95 to 100 % RH; 5 cycles	
4.23.7	-	D.C. load	$U = \sqrt{P_{70} \times R} \le U_{\text{max}}; 1 \text{ min}$ $LCT = -55 \text{ °C}$ $UCT = 125 \text{ °C}$	
-	1 (Aa)	Cold	- 55 °C; 2 h	± (0.05 % R + 0.01 Ω)
4.19	14 (Na)	Rapid change of temperature	30 min at LCT and 30 min at UCT; LCT = -55 °C; UCT = 125 °C; 1000 cycles	± (0.1 % R + 0.01 Ω)
4.13	-	Short time overload	$U = 2.5 \text{ x } \sqrt{P_{70} \text{ x } R} \text{ or }$ $U = 2 \text{ x } U_{\text{max}}; \text{ whichever is the }$ less severe; 5 s	± (0.05 % R + 0.01 Ω)
4.27	-	Single pulse high voltage overload	Severity no. 4: $U = 10 \text{ x } \sqrt{P_{70} \text{ x } R}$ or $U = 2 \text{ x } U_{\text{max}};$ whichever is the less severe; 10 pulses 10 µs/700 µs	\pm (0.5 % R + 0.05 Ω) no visible damage
4.37	-	Periodic electric overload	$U = \sqrt{15 \times P_{70} \times R} \text{ or } $ $U = 2 \times U_{\text{max}};$ whichever is the less severe; $0.1 \text{ s on; } 2.5 \text{ s off;}$ 1000 cycles	\pm (0.5 % R + 0.05 Ω) no visible damage
4.22	6 (Fc)	Vibration	Endurance by sweeping; 10 to 2000 Hz; no resonance; amplitude ≤ 1.5 mm or ≤ 200 m/s²; 6 h	\pm (0.05 % R + 0.01 Ω) no visible damage

Vishay

TEST PR	OCEDURES	AND REQUI	REMENTS	
EN 60115-1 CLAUSE	IEC 60068-2 TEST METHOD	TEST	PROCEDURE	REQUIREMENTS PERMISSIBLE CHANGE
			Stability for product types:	
			TNPW0402	
			TNPW0603	
			TNPW0805	
			TNPW1206	
			TNPW1210	
			TNPW2010	
			TNPW2512	
			Solder bath method; SnPb40; non-activated flux (215 ± 3) °C; (3 ± 0.3) s	Good tinning (≥ 95 % covered);
4.17.2	4.17.2 58 (Td)	Solderability	Solder bath method; SnAg3Cu0.5 or SnAg3.5; non-activated flux (235 ± 3) °C; (2 ± 0.2) s	no visible damage
4.18.2	58 (Td)	Resistance to soldering heat	Solder bath method; (260 ± 5) °C; (10 ± 1) s	± (0.02 % R + 0.01 Ω)
4.29	45 (XA)	Component solvent resistance	Isopropyl alcohol + 50 °C; method 2	No visible damage
4.32	21 (Ue ₃)	Shear	RR 1005M and RR 1608M; 9 N	No visible damage
4.02	21 (063)	(adhesion)	RR 2012M and RR 3216M: 45 N	ino visible dalliage
4.33	21 (Ue ₁)	Substrate bending	Depth 2 mm, 3 times	\pm (0.05 % R + 0.01 $\Omega)$ no visible damage, no open circuit in bent position
4.7	-	Voltage proof	$U_{\rm rms} = U_{\rm ins}; 60 \pm 5 {\rm s}$	No flashover or breakdown
4.35	-	Flammability	IEC 60695-11-5, needle flame test; 10 s	No burning after 30 s
-	-	Damp heat	(85 ± 5) °C; 56 days (85 ± 5) % RH	$\pm (0.25 R + 0.05 \Omega)$

APPLICABLE SPECIFICATIONS

- CECC40000/40400
- EN140400
- EN 140401-801
- EN 60115-1
- IEC 60286-3

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk and agree to fully indemnify and hold Vishay and its distributors harmless from and against any and all claims, liabilities, expenses and damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Vishay or its distributor was negligent regarding the design or manufacture of the part. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Document Number: 91000 www.vishay.com Revision: 11-Mar-11