MULTILAYER CERAMIC CHIP CAPACITORS - GMC SERIES -

■ APPLICATIONS

- Can be used on surface mount assembly equipment - Our fully integrated manufacturing and total quality control systems ensure unprecedented high standards of quality and reliability.

FEATURES

- Large capacitance values in small sizes
- Excellent high frequency characteristics

- CHIP CAPACITOR SELECTION

 time, voltage and frequency.

$\begin{gathered} \text { OPERATING } \\ \text { TEMPERATURE } \\ \text { RANGE } \end{gathered}$	TEMPERATURE COEFFICIENT	DISSIPATION FACTOR	INSULATION RESISTANCE	DIELECTRIC WITHSTANDING VOLTAGE	AGING RATE	TEST PARAMETERS
$-55^{\circ} \mathrm{C}$ to ${ }^{\circ}+125 \mathrm{C}$	$0 \pm 30 \mathrm{ppm}^{\circ} \mathrm{C}$	0.1\% Max, 0.02\% Typlical	->100G Ω or $1000 \Omega F$ - $125^{\circ} \mathrm{C}$ VDCW: $10 \mathrm{G} \Omega \mathrm{F}$ or $100 \Omega \mathrm{~F}$ whichever is less	$3 \times \mathrm{VDCW}$	0\% per decade hour	- $\mathrm{C}<1000 \mathrm{pF} \mathrm{f}=1 \mathrm{MHz}$ $\mathrm{V}=1.0 \mathrm{~V}$ rms $\pm 0.2 \mathrm{~V}$ rms $\mathrm{T}=25^{\circ} \mathrm{C}$ - C $>1000 \mathrm{pF} f=1 \mathrm{KHz}$ $\mathrm{V}=1.0 \mathrm{~V}$ rms $\pm 0.2 \mathrm{~V}$ rms $\mathrm{T}=25^{\circ} \mathrm{C}$

Stable class II dielectric

OPERATING TEMPERATURE RANGE	TEMPERATURE COEFFICIENT	DISSIPATION FACTOR	INSULATION RESISTANCE	DIELECTRIC WITHSTANDING VOLTAGE	AGING RATE	TEST PARAMETERS
X7R: -55C to +125 C X5R: -55 C to +85 C X6S: -55 C to +105 C X7S: -55 C to +125 C	$\begin{aligned} & \pm 15 \% \\ & \pm 15 \% \\ & \pm 22 \% \\ & \pm 22 \% \end{aligned}$	2.5\% Max, 1.8\% Typical	- $25^{\circ} \mathrm{C}$, VdCW: $>100 \mathrm{G} \Omega \mathrm{F}$ or $1000 \Omega \mathrm{~F}$, whichever is less $-125^{\circ} \mathrm{C}$, VdCW: >100G Ω F or $1000 \Omega \mathrm{~F}$ whichever is less	$2.5 \times \mathrm{VDCW}$	<2\% per decade hour	- 1 KHz 1.0 V rms +/-0.2Vrms 25c Values >or $=$ to $10 \mu \mathrm{~F} 0.5+/-0.1$ VDCW @120Hz

Z5U - Despite their capacitance instability, Z5U formulations are very popular because of their small size, temperature range low ESL, low ESR and excellent frequency response. These features are particularly important for decoupling application where only a minimum capacitance value is required.

Y5V - Y5V formulations are for general purpose use in a limited temperature range. They have a wide temperature characteristic of $+22 \%-82 \%$ capacitance change over the operating temperature range of $-30^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Y 5 V s high dielectric constant allows the manufacture of very high capacitance values (up to $100 \mu \mathrm{~F}$) in small physical sizes.

High capacitance per unit volume: general purpose product

OPERATING TEMPERATURE RANGE	TEMPERATURE COEFFICIENT	TEMPERATURE VOLTAGE COEFFICIENT ($\triangle \mathrm{c}$ MAX @ Vocw)	DISSIPATION FACTOR	INSULATION RESISTANCE	DIELECTRIC WITHSTANDING VOLTAGE	AGING RATE	TEST PARAMETERS
$-30^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\begin{aligned} & +22 \% \\ & -82 \% \end{aligned}$	N/A	3.0\% Max, 2.0\% Typical	-10G Ω or $100 \Omega \mathrm{~F}$ whichever is less, $25^{\circ} \mathrm{C}$, VdCW	2.5 XVdCW	3.0\% per decade hour	- $1 \mathrm{KHz}, 1$ Vrms $25^{\circ} \mathrm{C}$ values > or = to 10 uF 1.0 Vrms 120 Hz

CAPACITANCE VALUE \& TOLERANCE

Determined by circuit requirements. Note that chip prices decrease with lower capacitance value and looser tolerance.

- VOLTAGE

Determined by circuit requirements.

REFLOW SOLDERING CONDITIONS

The lead-free termination MLCCs are not only to be used on SMT against lead-free solder paste, but also suitable against lead-containing solder paste. If the optimized solder joint is requested, increasing soldering time, temperature and concentration of N 2 within oven are recommended.

NO.	NAME		CLASS I DIELECTRIC	CLASS II DIELECTRIC
1	Ceramic Material		CaZrO_{3}	BatTi03
2	Inner Electrode		Ni	Ni
3	Termination	Inner layer	Cu	Cu
4		Middle layer	Ni	Ni
5		Outer layer	Sn	Sn

- CAPACITOR SIZE

Select the smallest unit permitted by the circuit constraints that provides the required capacitance and voltage rating. All Cal-Chip capacitors conform to EIA specifications.

- CAPACITOR TERMINATION

Nickel barrier is standard and recommended for units exposed to repeated solder cycles, to minimize leaching of the termination.

■ PART NUMBER GUIDE

GMC	

PRODUCT TYPE

21		
\mid		
DIMENSIONS		

01: 1005 32: 1210
02: 0201 40: 1808
04: 0402 43: 1812
10: 0603 45: 1825
21: 0805 55: 2220
31: 1206 57: 2225

■ NPO/COG

		NPO/COG																													
DIMENSION (MM)		GMC01					GMC02				GMCO4							GMC10				GMC21						GMC31			
		0.4 ± 0.02					0.6 ± 0.03				1.0 ± 0.05							1.6 ± 0.2				2.0 ± 0.3						3.2 ± 0.3			
		0.2 ± 0.02					0.3 ± 0.03				0.5 ± 0.05							0.8 ± 0.2				1.25 ± 0.2						1.6 ± 0.2			
		$0.07 \sim 0.14$					0.15 ± 0.05				$0.1 \sim 0.35$							$0.1 \sim 0.4$				$0.25 \sim 0.75$						$0.25 \sim 0.75$			
RATED VOLTAGE		6.3	10	16	25	50	16	25	50	100	6.3	10	16	25	50	100	200	25	50	100	200	10	16	25	50	100	200	25	50	100	200
CAP. RANGE																															
0.1 pF	R10						C	C	C	C	H	H	H	H	H																
0.2	R20	A	A	A	A		C	C	C	C	H	H	H	H	H																
0.3	R30	A	A	A	A	A	C	C	C	C	H	H	H	H	H																
0.4	R40	A	A	A	A	A	C	C	C	C	H	H	H	H	H	H		L	L	L		J	J	J	J	J	J				
0.47	R47						C	C	C	C	H	H	H	H	H	H		L	L	L		J	J	J	J	J	J	L	L		
0.5	OR5	A	A	A	A	A	C	C	C	C	H	H	H	H	H	H		L	L	L	L	J	J	J	J	J	J	L	L	L	L
0.56	R56						C	C	C	C	H	H	H	H	H	H		L	L	L		J	J	J	J	J	J	L	L		
0.6	OR6	A	A	A	A		C	C	C	C	H	H	H	H	H	H		L	L	L		J	J	J	J	J	J	L	L	L	L
0.68	R68										H	H	H	H	H	H		L	L	L		J	J	J	J	J	J	L	L		
0.7	OR7	A	A	A	A		C	C	C	C	H	H	H	H	H	H		L	L	L		J	J	J	J	J	J	L	L	L	L
0.75	R75	A	A	A	A		C	C	C	C	H	H	H	H	H			L	L	L		J	J	J	J	J	J	L	L	L	
0.8	OR8	A	A	A	A		C	C	C	C	H	H	H	H	H	H		L	L	L		J	J	J	J	J	J	L	L	L	L
0.82	R82						C	C	C	C	H	H	H	H	H	H		L	L	L		J	J	J	J	J	J				
0.9	OR9	A	A	A	A		C	C	C	C	H	H	H	H	H	H		L	L	L		J	J	J	J	J	J	L	L	L	L
1	1R0	A	A	A	A		C	C	C	C	H	H	H	H	H	H	H	L	L	L	L	J	J	J	J	J	J	L	L	L	L
1.1	1R1	A	A	A	A	A	C	C	C	C	H	H	H	H	H	H						J	J	J	J	J	J	L	L	L	L
1.2	1R2	A	A	A	A		C	C	C	C	H	H	H	H	H	H	H	L	L	L	L	J	J	J	J	J	J	L	L	L	L
1.3	1 R3	A	A	A	A		C	C	C	C	H	H	H	H	H	H		L	L	L		J	J	J	J	J	J	L	L	L	L
1.4	1R4	A	A	A	A		C	C	C	C	H	H	H	H	H	H						J	J	J	J	J	J				
1.5	1R5	A	A	A	A	A	C	C	C	C	H	H	H	H	H	H		L	L	L	L	J	J	J	J	J	J	L	L	L	L
1.6	1R6	A	A	A	A		C	C	C	C	H	H	H	H	H	H		L	L	L	L	J	J	J	J	J	J	L	L	L	L
1.7	1R7	A	A	A	A		C	C	C	C	H	H	H	H	H	H															
1.8	1 R8	A	A	A	A		C	C	C	C	H	H	H	H	H	H		L	L	L	L	J	J	J	J	J	J	L	L	L	L
1.9	$1 \mathrm{R9}$	A	A	A	A		C	C	C	C	H	H	H	H	H	H															
2	2R0	A	A	A	A		C	C	C	C	H	H	H	H	H	H		L	L	L	L	J	J	J	J	J	J	L	L	L	L
2.1	2R1	A	A	A	A		C	C	C	C	H	H	H	H	H	H															
2.2	2R2	A	A	A	A		C	C	C	C	H	H	H	H	H	H	H	L	L	L	L	J	J	J	J	J	J	L	L	L	L
2.3	2R3	A	A	A	A		C	C	C	C	H	H	H	H	H	H															
2.4	2R4	A	A	A	A		C	C	C	C	H	H	H	H	H	H		L	L	L	L	J	J	J	J	J	J	L	L	L	L
2.5	2R5	A	A	A	A		C	C	C	C	H	H	H	H	H	H															
2.6	2R6	A	A	A	A		C	C	C	C	H	H	H	H	H	H															
2.7	2R7	A	A	A	A	A	C	C	C	C	H	H	H	H	H	H		L	L	L	L	J	J	J	J	J	J	L	L	L	L
2.8	2R8	A	A	A	A		C	C	C	C	H	H	H	H	H	H															
2.9	2R9	A	A	A	A		C	C	C	C	H	H	H	H	H	H															
3	3R0	A	A	A	A	A	C	C	C	C	H	H	H	H	H	H		L	L	L	L	J	J	J	J	J	J	L	L	L	L
3.1	3R1	A	A	A	A		C	C	C	C	H	H	H	H	H	H															
3.2	3R2	A	A	A	A		C	C	C	C	H	H	H	H	H	H															
3.3	3R3	A	A	A	A	A	C	C	C	C	H	H	H	H	H	H	H	L	L	L	L	J	J	J	J	J	J	L	L	L	L
3.4	3R4	A	A	A	A		C	C	C	C	H	H	H	H	H	H															
3.5	3R5	A	A	A	A		C	C	C	C	H	H	H	H	H	H															
3.6	3R6	A	A	A	A	A	C	C	C	C	H	H	H	H	H	H		L	L	L	L	J	J	J	J	J	J	L	L	L	L
3.7	3R7	A	A	A	A		C	C	C	C	H	H	H	H	H	H															
3.8	3R8	A	A	A	A		C	C	C	C	H	H	H	H	H	H															
3.9	3R9	A	A	A	A	A	C	C	C	C	H	H	H	H	H	H		L	L	L	L	J	J	J	J	J	J	L	L	L	L
4	4RO	A	A	A	A		C	C	C	C	H	H	H	H	H	H		L	L	L	L	J	J	J	J	J	J	L	L	L	L
4.1	4R1	A	A	A	A		C	C	C	C	H	H	H	H	H	H															
4.2	4R2	A	A	A	A		C	C	C	C	H	H	H	H	H	H															
4.3	4R3	A	A	A	A		C	C	C	C	H	H	H	H	H	H		L	L	L	L	J	J	J	J	J	J	L	L	L	L
4.4	4R4	A	A	A	A		C	C	C	C	H	H	H	H	H	H															
4.5	4R5	A	A	A	A		C	C	C	C	H	H	H	H	H	H															

MAX HEIGHT

A	C	H	J	L
0.22	0.33	0.55	0.7	0.90

59 Steamwhistle Drive, Ivyland, PA 18974 | p. 215.942 .8900 | www.calchip.com | quotes@calchip.com

		NPO/COG																											
DIME	SION (MM)	GMC01					GMC02			GMC04							GMC10				GMC21					GMC31			
	L	0.4 ± 0.02					0.6 ± 0.03			1.0 ± 0.05							1.6 ± 0.2				2.0 ± 0.3					3.2 ± 0.3			
	W	0.2 ± 0.02					0.3 ± 0.03			0.5 ± 0.05							0.8 ± 0.2				1.25 ± 0.2					1.6 ± 0.2			
	BW	0.07 ~ 0.14					0.15 ± 0.05			$0.1 \sim 0.35$							$0.1 \sim 0.4$				$0.25 \sim 0.75$					$0.25 \sim 0.75$			
RATE	VOLTAGE	6.3	10	1016	625	5016	1625	25 50	100	6.3	10	16	25	50	100	200	25	50	100	200	10	16	25.50	100	200	25	50	100	200
CAP. RANGE																													
4.6 pF	4R6	A	A	A A	A A		C C	C C	C	H	H	H	H	H	H		L	L	L	L									
4.7	4R7	A	A	A A	A A	A C	C C	C C	C	H	H	H	H	H	H		L	L	L		J	J	J J	J	J	L	L	L	L
4.8	4R8	A	A	A A	A A		C C	C C	C	H	H	H	H	H	H		L	L	L										
4.9	4R9	A	A	A A	A A		C C	C C	C	H	H	H	H	H	H		L	L	L		J	J	J J	J	J				
5	5R0	A	A	A A	A A		C C	C C	C	H	H	H	H	H	H		L	L	L	L	J	J	J J	J	J	L	L	L	L
5.1	5R1	A	A	A A	A A		C C	C C	C	H	H	H	H	H	H		L	L	L		J	J	J J	J	J	L	L	L	L
5.2	5R2	A	A	A A	A A		C C	C C	C	H	H	H	H	H	H		L	L	L										
5.3	5R3	A	A	A A	A A		C C	C C	C	H	H	H	H	H	H		L	L	L		J	J	J J	J	J				
5.4	5R4	A	A	A A	A A		C C	C C	C	H	H	H	H	H	H		L	L	L		J	J	J J	J	J				
5.5	5R5	A	A	A	A A		C C	C C	C	H	H	H	H	H	H		L	L	L		J	J	J J	J	J				
5.6	5R6	A	A	A	A A	A C	C C	C C	C	H	H	H	H	H	H	H	L	L	L	L	J	J	J J	J	J	L	L	L	L
5.7	5R7	A	A	A	A A		C C	C C	C	H	H	H	H	H	H		L	L	L		J	J	J J	J	J				
5.8	5R8	A	A	A	A A		C C	C C	C	H	H	H	H	H	H		L	L	L										
5.9	5R9	A	A	A	A A		C C	C C	C	H	H	H	H	H	H		L	L	L		J	J	J J	J	J				
6	6R0	A	A	A	A A		C C	C C	C	H	H	H	H	H	H		L	L	L	L	J	J	J J	J	J	L	L	L	L
6.1	6R1	A	A	A	A		C C	C C	C	H	H	H	H	H	H		L	L	L		J	J	J J	J	J				
6.2	6R2	A	A	A	A A		C C	C C	C	H	H	H	H	H	H	H	L	L	L	L	J	J	J J	J	J	L	L	L	L
6.3	6 R3	A	A	A	A A		C C	C C	C	H	H	H	H	H	H		L	L	L		J	J	J J	J	J				
6.4	6R4	A	A	A	A A		C C	C C	C	H	H	H	H	H	H		L	L	L										
6.5	6R5	A	A	A	A A		C C	C C	C	H	H	H	H	H	H		L	L	L		J	J	J	J	J				
6.6	6R6	A	A	A	A		C C	C C	C	H	H	H	H	H	H		L	L	L										
6.7	6R7	A	A	A	A A		C C	C C	C	H	H	H	H	H	H		L	L	L		J	J	J J	J	J				
6.8	6R8	A	A	A	A A	A C	C C	C C	C	H	H	H	H	H	H		L	L	L	L	J	J	J J	J	J	L	L	L	L
6.9	6R9	A	A	A	A A		C C	C C	C	H	H	H	H	H	H		L	L	L										
7	7R0	A	A	A	A A A	A C	C C	C C	C	H	H	H	H	H	H		L	L	L		J	J	J J	J	J	L	L	L	L
7.1	7R1	A	A	A	A A		C C	C C	C	H	H	H	H	H	H		L	L	L										
7.2	7R2	A	A	A A	A A		C C	C C	C	H	H	H	H	H	H		L	L	L		J	J	J	J	J				
7.3	7 R 3	A	A	A	A A		C C	C C	C	H	H	H	H	H	H		L	L	L										
7.4	7R4	A	A	A	A A		C C	C C	C	H	H	H	H	H	H		L	L	L		J	J	J	J	J				
7.5	7R5	A	A	A	A A		C C	C C	C	H	H	H	H	H	H		L	L	L	L	J	J	J J	J	J	L	L	L	L
7.6	7R6	A	A	A	A A		C C	C C	C	H	H	H	H	H	H		L	L	L		J	J	J J	J	J				
7.7	7R7	A	A	A	A A		C C	C C	C	H	H	H	H	H	H		L	L	L							L	L	L	L
7.8	7R8	A	A	A	A A		C C	C C	C	H	H	H	H	H	H		L	L	L		J	J	J	J	J				
7.9	7R9	A	A	A	A A		C C	C C	C	H	H	H	H	H	H		L	L	L										
8	8R0	A	A	A	A A	A C	C C	C C	C	H	H	H	H	H	H		L	L	L		J	J	J J	J	J	L	L	L	L
8.1	8R1	A	A	A	A A		C C	C C	C	H	H	H	H	H	H		L	L	L		J	J	J J	J	J				
8.2	8R2	A	A	A	A	A C	C C	C C	C	H	H	H	H	H	H	H	L	L	L	L	J	J	J J	J	J	L	L	L	L
8.3	8R3	A	A	A	A A		C C	C C	C	H	H	H	H	H	H		L	L	L		J	J	J J	J	J				
8.3	8R3	A	A	A	A		C C	C C	C	H	H	H	H	H	H		L	L	L		J	J	J J	J	J				
8.4	8R4	A	A	A	A		C C	C C	C	H	H	H	H	H	H		L	L	L										
8.5	8R5	A	A	A	A		C C	C C	C	H	H	H	H	H	H		L	L	L		J	J	J	J	J				
8.6	8R6	A	A	A	A		C C	C C	C	H	H	H	H	H	H		L	L	L										
8.7	8R7	A	A	A	A		C C	C C	C	H	H	H	H	H	H		L	L	L		J	J	J J	J	J				
8.8	8R8	A	A	A	A		C C	C C	C	H	H	H	H	H	H		L	L	L										
8.9	8R9	A	A	A	A		C C	C C	C	H	H	H	H	H	H		L	L	L		J	J	J J	J	J				
9	9 RO	A	A	A	A		C C	C C	C	H	H	H	H	H	H		L	L	L		J	J	J J	J	J	L	L	L	L
9.1	9 R 1	A	A	A	A		C C	C C	C	H	H	H	H	H	H		L	L	L	L	J	J	J J	J	J	L	L	L	L
9.2	9R2	A	A	A	A		C C	C C	C	H	H	H	H	H	H		L	L	L										
9.3	9 R 3	A	A	A	A		C C	C C	C	H	H	H	H	H	H		L	L	L		J	J	J J	J	J				
9.4	9R4	A	A	A	A		C C	C C	C	H	H	H	H	H	H		L	L	L										
9.5	9R5	A	A	A	A		C C	C C	C	H	H	H	H	H	H		L	L	L		J	J	J J	J	J				
9.6	$9 \mathrm{R6}$	A	A	A	A		C C	C C	C	H	H	H	H	H	H		L	L	L										
9.7	$9 \mathrm{R7}$	A	A	A	A		C C	C C	C	H	H	H	H	H	H		L	L	L			J	J J	J	J				

MAX HEIGHT				
A	C	H	J	L
0.22	0.33	0.55	0.7	0.90

DIELECTRIC		NPO/COG																													
DIMENSION (MM)		GMC01					GMC02				GMC04							GMC10				GMC21						GMC31			
L		0.4 ± 0.02					0.6 ± 0.03				1.0 ± 0.05							1.6 ± 0.2				2.0 ± 0.3						3.2 ± 0.3			
W		0.2 ± 0.02					0.3 ± 0.03				0.5 ± 0.05							0.8 ± 0.2				1.25 ± 0.2						1.6 ± 0.2			
BW		$0.07 \sim 0.14$					0.15 ± 0.05				$0.1 \sim 0.35$							$0.1 \sim 0.4$				$0.25 \sim 0.75$						$0.25 \sim 0.75$			
RATED	AGE	6.3	10	16	25	50	16	25	50	100	6.3	10	16	25	50	100	200	25	50	100	200	10	16	25	50	100	200	25	50	100	200
CAP. RANGE																															
9.8pF	9R8	A	A	A	A		C	C	C	C	H	H	H	H	H	H		L	L	L	L										
9.9	$9 \mathrm{R9}$	A	A	A	A		C	C	C	C	H	H	H	H	H	H		L	L	L	L										
10	100	A	A	A	A	A	C	C	C	C	H	H	H	H	H	H	H	L	L	L	L	J	J	J	J	J	J	L	L	L	L
11	110	A	A	A	A	A	C	C	C		H	H	H	H	H			L	L	L	L	J	J	J	J	J	J	L	L	L	L
12	120	A	A	A	A	A	C	C	C	C	H	H	H	H	H	H		L	L	L	L	J	J	J	J	J	J	L	L	L	L
13	130	A	A	A	A	A	C	C	C		H	H	H	H	H			L	L	L	L	J	J	J	J	J	J	L	L	L	L
15	150	A	A	A	A	A	C	C	C	C	H	H	H	H	H	H		L	L	L	L	J	J	J	J	J	J	L	L	L	L
16	160	A	A	A	A		C	C	C		H	H	H	H	H			L	L	L	L	J	J	J	J	J	J	L	L	L	L
18	180	A	A	A	A		C	C	C		H	H	H	H	H	H		L	L	L	L	J	J	J	J	J	J	L	L	L	L
20	200	A	A	A	A		C	C	C		H	H	H	H	H	H		L	L	L	L	J	J	J	J	J	J	L	L	L	L
22	220	A	A	A	A		C	C	C		H	H	H	H	H	H		L	L	L	L	J	J	J	J	J	J	L	L	L	L
23	230										H	H	H	H	H																
24	240	A	A	A	A		C	C	C		H	H	H	H	H	H		L	L	L	L	J	J	J	J	J	J	L	L	L	L
25	250										H	H	H	H	H																
27	270	A	A	A	A		C	C	C		H	H	H	H	H	H		L	L	L	L	J	J	J	J	J	J	L	L	L	L
30	300	A	A	A	A		C	C	C	C	H	H	H	H	H	H		L	L	L	L	J	J	J	J	J	J	L	L	L	L
33	330	A	A	A	A		C	C	C		H	H	H	H	H	H		L	L	L	L	J	J	J	J	J	J	L	L	L	L
36	360	A	A	A	A		C	C	C		H	H	H	H	H	H		L	L	L	L	J	J	J	J	J	J	L	L	L	L
38	380										H	H	H	H	H																
39	390	A	A	A	A		C	C	C		H	H	H	H	H	H		L	L	L	L	J	J	J	J	J	J	L	L	L	L
40	400										H	H	H	H	H			L	L	L											
42	420										H	H	H	H	H																
43	430	A	A	A	A	A	C	C	C		H	H	H	H	H	H		L	L	L	L	J	J	J	J	J	J	L	L	L	L
47	470	A	A	A	A		C	C	C		H	H	H	H	H	H		L	L	L	L	J	J	J	J	J	J	L	L	L	L
50	500										H	H	H	H	H	H		L	L	L											
51	510	A	A	A	A		C	C	C		H	H	H	H	H	H		L	L	L	L	J	J	J	J	J	J	L	L	L	L
53	530																	L	L	L											
56	560	A	A	A	A		C	C	C		H	H	H	H	H	H		L	L	L	L	J	J	J	J	J	J	L	L	L	L
60	600										H	H	H	H	H			L	L	L											
62	620	A	A	A	A	A	C	C	C		H	H	H	H	H	H		L	L	L	L	J	J	J	J	J	J	L	L	L	L
68	680	A	A	A	A	A	C	C	C		H	H	H	H	H	H		L	L	L	L	J	J	J	J	J	J	L	L	L	L
70	700																	L	L	L											
75	750	A	A	A	A		C	C	C		H	H	H	H	H	H		L	L	L	L	J	J	J	J	J	J	L	L	L	L
80	800										H	H	H	H	H			L	L	L											
82	820	A	A	A	A	A	C	C	C		H	H	H	H	H	H		L	L	L	L	J	J	J	J	J	J	L	L	L	L
91	910	A	A	A	A		C	C	C		H	H	H	H	H			L	L	L	L	J	J	J	J	J	J	L	L	L	L
100	101	A	A	A	A	A	C	C	C	C	H	H	H	H	H	H	H	L	L	L	L	J	J	J	J	J	J	R	R	R	R
110	111						C	C	C		H	H	H	H	H	H	H	L	L	L											
120	121						C	C	C		H	H	H	H	H	H		L	L	L	L	J	J	J	J	J	J	L	L	L	L
130	131						C	C	C		H	H	H	H	H			L	L	L		J	J	J	J	J	J	L	L	L	L
150	151						C	C	C		H	H	H	H	H	H		L	L	L	L	J	J	J	J	J	J	L	L	L	L
160	161										H	H	H	H	H			L	L	L		J	J	J	J	J	J	L	L	L	L
180	181						C	C	C		H	H	H	H	H	H		L	L	L	L	J	J	J	J	J	J	L	L	L	L
200	201						C	C	C		H	H	H	H	H			L	L	L		J	J	J	J	J	J	L	L	L	L
220	221		A	A	A		C	C	C		H	H	H	H	H	H		L	L	L	L	J	J	J	J	J	J	L	L	L	L
240	241		A	A	A		C	C	C		H	H	H	H	H	H		L	L	L	L	J	J	J	J	J	J	L	L	L	L
250	251																	L	L	L											
270	271		A	A	A		C	C	C		H	H	H	H	H	H		L	L	L	L	J	J	J	J	J	J	L	L	L	L
300	301						C	C	C		H	H	H	H	H			L	L	L	L	J	J	J	J	J	J	L	L	L	L
330	331		A	A	A		C	C	C		H	H	H	H	H	H	H	L	L	L	L	J	J	J	J	J	J	L	L	L	L
360	361						C	C	C		H	H	H	H	H			L	L	L	L	J	J	J	J	J	J	L	L	L	L
390	391						C	C	C		H	H	H	H	H	H		L	L	L	L	M	M	M	M	M	M	L	L	L	L
430	431						C	C	C		H	H	H	H	H			L	L	L		M	M	M	M	M	M	L	L	L	L
470	471						C	C	C		H	H	H	H	H	H		L	L	L	L	M	M	M	M	M	M	L	L	L	L

MAX HEIGHT					
A	C	H	J	L	R
0.22	0.33	0.55	0.7	0.90	1.45

59 Steamwhistle Drive, Ivyland, PA 18974 | p. 215.942.8900 | www.calchip.com | quotes@calchip.com

		NPO/COG																										
DIMENSION (MM)		GMC01					GMC02		GMC04							GMC10				GMC21					GMC31			
L		0.4 ± 0.02					0.6 ± 0.03		1.0 ± 0.05							1.6 ± 0.2				2.0 ± 0.3					3.2 ± 0.3			
W		0.2 ± 0.02					0.3 ± 0.03		0.5 ± 0.05							0.8 ± 0.2				1.25 ± 0.2					1.6 ± 0.2			
BW		$0.07 \sim 0.14$					0.15 ± 0.05		$0.1 \sim 0.35$							$0.1 \sim 0.4$				$0.25 \sim 0.75$					$0.25 \sim 0.75$			
RATED VOLTAGE		6.3	25	16	25	50	25	50	6.3	10	16	25	50	100	200	25	50	100	200	16	25	50	100	200	25	50	100	200
CAP. RANGE																												
500pF	501																			M	M	M	M					
510	511						C		H	H	H	H	H	H		L	L	L	L	M	M	M	M		L	L	L	L
560	561						C		H	H	H	H	H	H		L	L	L	L	M	M	M	M	M	L	L	L	L
620	621						C		H	H	H	H	H	H		L	L	L	L	M	M	M	M		L	L	L	L
680	681						C		H	H	H	H	H	H		L	L	L	L	M	M	M	M	M	L	L	L	L
750	751						C		H	H	H	H	H	H		L	L	L		M	M	M	M	M	L	L	L	L
820	821						C		H	H	H	H	H	H		L	L	L	L	M	M	M	M	M	L	L	L	L
910	911						C		H	H	H	H	H	H		L	L	L	L	M	M	M	M	M	L	L	L	L
1000	102						C		H	H	H	H	H	H		L	L	L	L	M	M	M	M	M	L	L	L	L
1100	112								H	H	H	H	H			L	L	L		M	M	M	M	M				
1200	122								H	H	H	H	H			M	M	M	M	M	M	M	M	M	L	L	L	L
1300	132								H	H	H	H	H			M	M	M		M	M	M	M	M				
1500	152								H	H	H	H	H			M	M	M	M	M	M	M	M	M	L	L	L	L
1600	162								H	H	H	H				M	M	M										
1800	182								H	H	H	H				M	M	M	M	M	M	M	M	M	L	L	L	L
2000	202								H	H	H	H				M	M	M		M	M	M	M	M				
2200	222								H	H	H	H				M	M	M	M	R	R	R	R	R	L	L	L	L
2400	242															M	M	M		R	R	R	$\frac{R}{R}$	R	L	L	L	L
2700	272								H	H	H	H				M	M	M		R	R	$\frac{R}{R}$	$\frac{R}{R}$	$\frac{R}{R}$	L	L	L	L
3000	302															M	M			R	R	$\frac{R}{R}$	$\frac{R}{R}$	$\frac{R}{R}$	M	M	M	M
3300	332								H	H	H	H				M	M	M		R	$\frac{R}{R}$	$\frac{R}{R}$	$\frac{R}{R}$	R	M	M	M	M
3600	362																			R	R	R	R	R				
3900	392															M	M	M		R	R	R	$\frac{R}{R}$	R	M	M	M	M
4300	432																			R	$\frac{R}{R}$	$\frac{R}{R}$	$\frac{R}{R}$	R				
4700	472								1	1	I	1	1			M	M	M		R	$\frac{R}{R}$	$\frac{R}{R}$	$\frac{R}{R}$	R	M	M	M	M
5600	562								1	1	1	1	1			M	M	M		R	R	R	R		M	M	M	M
6200	622															M	M			R	R	R						
6800	682								I	I	1	I	I			M	M	M		R	R	$\frac{R}{R}$	R		0	0	0	
7500	752															M	M			R	R	R						
8200	822															M	M	M		R	R	$\frac{R}{R}$	R		R	R	R	
9100	912															M	M			R	R	R						
0.01uF	103								I	1	I	I				M	M	M		R	R	$\frac{R}{R}$	R		R	R	R	R
0.012	123															M				R	$\frac{R}{R}$	R			U	U	U	
0.015	153															M				R	R	R			U	U	U	
0.018	183																			R	R	R			U	U	U	
0.02	203																			R	R	R						
0.022	223																			R	R	R	R		U	U	U	
0.027	273																			R	R	R			U	U	U	
0.03	303																			R	R							
0.033	333																			R	R	R	R		U	U	U	
0.039	393																								U	U	U	
0.047	473																			R	R				U	U	U	
0.056	563																								U	U	U	
0.068	683																								U	U	U	
0.082	823																								U	U	U	
0.1	104																								U	U	U	
0.12	124																											

MAX HEIGHT							
C	H	I	L	M	Q	R	U
0.33	0.55	0.65	0.90	0.95	1.40	1.45	1.90

DIELECTRIC		NPO/COG																			
DIMENSION (MM)		GMC32					GMC40			GMC43			GMC45			GMC55			GMC57		
L		3.2 ± 0.3					4.57 ± 0.25			4.5 ± 0.35			4.5 ± 0.35			5.7 ± 0.4			5.7 ± 0.4		
W		2.5 ± 0.3					2.03 ± 0.25			3.2 ± 0.3			6.3 ± 0.4			5.0 ± 0.4			6.3 ± 0.4		
BW		$0.25 \sim 0.75$					$0.25 \sim 0.75$			$0.25 \sim 0.75$			$0.40 \sim 1.10$			$0.50 \sim 1.20$			0.50 ~ 1.20		
RATED VOLTAGE		16	25	50	100	200	50	100	200	50	100	200	50	100	200	50	100	200	50	100	200
CAP. RANGE																					
10pF	100	R	R	R	R	R	R	R	R	V	V	V	V	V	V	V	V	V	V	V	V
11	110	R	R	R	R	R	R	R	R	V	V	V	V	V	V	V	V	V	V	V	V
12	120	R	R	R	R	R	R	R	R	V	V	V	V	V	V	V	V	V	V	V	V
13	130	R	R	R	R	R	R	R	R	V	V	V	V	V	V	V	V	V	V	V	V
15	150	R	R	R	R	R	R	R	R	V	V	V	V	V	V	V	V	V	V	V	V
16	160	R	R	R	R	R	R	R	R	V	V	V	V	V	V	V	V	V	V	V	V
18	180	R	R	R	R	R	R	R	R	V	V	V	V	V	V	V	V	V	V	V	V
20	200	R	R	R	R	R	R	R	R	V	V	V	V	V	V	V	V	V	V	V	V
22	220	R	R	R	R	R	R	R	R	V	V	V	V	V	V	V	V	V	V	V	V
24	240	R	R	R	R	R	R	R	R	V	V	V	V	V	V	V	V	V	V	V	V
27	270	R	R	R	R	R	R	R	R	V	V	V	V	V	V	V	V	V	V	V	V
30	300	R	R	R	R	R	R	R	R	V	V	V	V	V	V	V	V	V	V	V	V
33	330	R	R	R	R	R	R	R	R	V	V	V	V	V	V	V	V	V	V	V	V
36	360	R	R	R	R	R	R	R	R	V	V	V	V	V	V	V	V	V	V	V	V
39	390	R	R	R	R	R	R	R	R	V	V	V	V	V	V	V	V	V	V	V	V
43	430	R	R	R	R	R	R	R	R	V	V	V	V	V	V	V	V	V	V	V	V
47	470	R	R	R	R	R	R	R	R	V	V	V	V	V	V	V	V	V	V	V	V
51	510	R	R	R	R	R	R	R	R	V	V	V	V	V	V	V	V	V	V	V	V
56	560	R	R	R	R	R	R	R	R	V	V	V	V	V	V	V	V	V	V	V	V
62	620	R	R	R	R	R	R	R	R	V	V	V	V	V	V	V	V	V	V	V	V
68	680	R	R	R	R	R	R	R	R	V	V	V	V	V	V	V	V	V	V	V	V
75	750	R	R	R	R	R	R	R	R	V	V	V	V	V	V	V	V	V	V	V	V
82	820	R	R	R	R	R	R	R	R	V	V	V	V	V	V	V	V	V	V	V	V
91	910	R	R	R	R	R	R	R	R	V	V	V	V	V	V	V	V	V	V	V	V
100	101	R	R	R	R	R	R	R	R	V	V	V	V	V	V	V	V	V	V	V	V
120	121	R	R	R	R	R	R	R	R	V	V	V	V	V	V	V	V	V	V	V	V
130	131	R	R	R	R	R	R	R	R	V	V	V	V	V	V	V	V	V	V	V	V
150	151	R	R	R	R	R	R	R	R	V	V	V	V	V	V	V	V	V	V	V	V
160	161	R	R	R	R	R	R	R	R	V	V	V	V	V	V	V	V	V	V	V	V
180	181	R	R	R	R	R	R	R	R	V	V	V	V	V	V	V	V	V	V	V	V
200	201	R	R	R	R	R	R	R	R	V	V	V	V	V	V	V	V	V	V	V	V
220	221	R	R	R	R	R	R	R	R	V	V	V	V	V	V	V	V	V	V	V	V
240	241	R	R	R	R	R	V	V	V	V	V	V	V	V	V	V	V	V	V	V	V
270	271	R	R	R	R	R	V	V	V	V	V	V	V	V	V	V	V	V	V	V	V
300	301	R	R	R	R	R	V	V	V	V	V	V	V	V	V	V	V	V	V	V	V
330	331	R	R	R	R	R	V	V	V	V	V	V	V	V	V	V	V	V	V	V	V
360	361	R	R	R	R	R	V	V	V	V	V	V	V	V	V	V	V	V	V	V	V
390	391	R	R	R	R	R	V	V	V	V	V	V	V	V	V	V	V	V	V	V	V
430	431	R	R	R	R	R	V	V	V	V	V	V	V	V	V	V	V	V	V	V	V
470	471	R	R	R	R	R	V	V	V	V	V	V	V	V	V	V	V	V	V	V	V

MAX HEIGHT	
R	V
1.45	2.20

59 Steamwhistle Drive, Ivyland, PA 18974 | p. 215.942.8900 | www.calchip.com | quotes@calchip.com

DIELECTRIC		NPO/COG																			
DIMENSION (MM)		GMC32					GMC40			GMC43			GMC45			GMC55			GMC57		
L		3.2 ± 0.3					4.57 ± 0.25			4.5 ± 0.35			4.5 ± 0.35			5.7 ± 0.4			5.7 ± 0.4		
W		2.5 ± 0.3					2.03 ± 0.25			3.2 ± 0.3			6.3 ± 0.4			5.0 ± 0.4			6.3 ± 0.4		
BW		$0.25 \sim 0.75$					$0.25 \sim 0.75$			$0.25 \sim 0.75$			$0.40 \sim 1.10$			$0.50 \sim 1.20$			0.50 ~ 1.20		
RATED VOLTAGE		16	25	50	100	200	50	100	200	50	100	200	50	100	200	50	100	200	50	100	200
CAP. RANGE																					
510pF	511	R	R	R	R	R	V	V	V	V	V	V	V	V	V	V	V	V	V	V	V
560	561	R	R	R	R	R	V	V	V	V	V	V	V	V	V	V	V	V	V	V	V
620	621						V	V	V	V	V	V	V	V	V	V	V	V	V	V	V
680	681	R	R	R	R	R	V	V	V	V	V	V	\checkmark	V	V	V	V	V	V	V	V
750	751	R	R	R	R	R	V	V	V	V	V	V	\checkmark	V	V	V	V	V	V	V	V
820	821	R	R	R	R	R	V	V	V	V	V	V	V	V	V	V	V	V	V	V	V
910	911	R	R	R	R	R	V	V	V	V	V	V	V	V	V	V	V	V	V	V	\checkmark
1000	102	R	R	R	R	R	V	V	V	V	V	V	V	V	V	V	V	V	V	V	V
1100	112						V	V	\checkmark	V	V	V	V	V	V	V	V	V	V	\checkmark	V
1200	122	R	R	R	R	R	V	V	V	V	V	V	\checkmark	V	V	V	V	V	V	\checkmark	V
1500	152	R	R	R	R	R	V	V	V	V	V	V	V	V	V	V	V	V	V	V	V
1800	182	R	R	R	R	R	V	V	V	V	V	V	V	V	V	V	V	V	V	V	\checkmark
2000	202						V	V	V	V	V	V	\checkmark	V	\checkmark	V	\checkmark	\checkmark	V	V	\checkmark
2200	222	R	R	R	R	R	V	V	V	V	V	V	V	V	V	V	V	V	V	V	\checkmark
2400	242	R	R	R	R	R	V	V	V	V	V	V	V	V	V	V	V	V	V	V	V
2700	272	R	R	R	R	R	V	V	V	V	V	V	V	V	V	V	V	V	V	V	V
3000	302						V	V	V	V	V	V	V	V	V	V	V	V	V	V	V
3300	332	R	R	R	R	R	V	V	V	V	V	V	V	V	V	V	V	V	V	V	V
3900	392	R	R	R	R	R	V	V	V	V	V	V	V	V	V	V	V	V	V	V	V
4700	472	R	R	R	R	R	V	V	V	V	V	V	V	V	V	V	V	V	V	V	V
5600	562	R	R	R	R	R	V	V	V	V	V	V	V	V	V	V	V	V	V	V	V
6800	682	R	R	R	R	R	V	V	V	V	V	V	V	V	V	V	V	V	V	V	V
7500	752	R	R	R	R	R	V	V	V	V	V	V	V	V	V	V	V	V	V	V	V
8200	822	R	R	R	R	R	V	V		V	V	V	V	V	V	V	V	V	V	V	V
.01uF	103	R	R	R	R	R	V	V		V	V	V	V	V	V	V	V	V	V	V	V
0.012	123	P	P	P	P	P	V	V		V	V	V	V	V	V	V	V		V	V	V
0.015	153	P	P	P	P	P	V			V	V	V	V	V	V	V	V		V	V	V
0.018	183	V	V	V	V	V	V			V	V	V	V	V	V	V	V		V	V	V
0.022	223	V	V	V	V	V				V	V	V	V	V	V	V	V		V	V	V
0.027	273	V	V	V	V	V				V	V	V	V	V	V	V	V		V	V	V
0.033	333	V	V	V	V	V				V	V	V	V	V		V	V		V	V	V
0.039	393	V	V	V	V	V				Y	Y	Y	V	V		V	V		V	V	V
0.047	473	V	V	V	V	V				Y	Y	Y	V	V		V	V		V	V	V
0.056	563	V	V	V	V					Y	Y	Y	V	V		V	V		V	V	Y
0.068	683	V	V	V	V					Y	Y	Y	V	V		V	V		V	V	Y
0.082	823	V	V	V	V					Y	Y	Y	V			Y	Y		V	V	Y
0.1	104	V	V	V	V					Y	Y	Y	V			Y	Y		V	V	Y
0.12	124									Y	Y		V			V	V		Y	Y	
0.15	154	W	W	W						Y	Y		V			V	V				
0.18	184									Y						V	V				
0.22	224	W	W							A2						V	V				
0.27	274															V	V				
0.33	334															V	V				
0.47	474															V					
1	105																				
2.2	225																				
4.7	475																				

■ X7R

DIELECTRIC		X7R																																						
DIMEN	(MM)	GMC01			GMC02					GMC04						GMC10									GMC21								GMC31							
L		0.4 ± 0.02			0.6 ± 0.03					1.0 ± 0.05						1.6 ± 0.2									2.0 ± 0.3								3.2 ± 0.3							
W		0.2 ± 0.02			0.3 ± 0.03					0.5 ± 0.05						0.8 ± 0.2									1.25 ± 0.2								1.6 ± 0.2							
BW		$0.07 \sim 0.14$			0.15 ± 0.05					$0.1 \sim 0.35$						$0.1 \sim 0.4$									$0.25 \sim 0.75$								$0.25 \sim 0.75$							
RATED VOLTAGE		6.3	10	16	6.3	10	16	25	50	6.3	10	16	25	50	100	4	6.3	10	16	25	35	50	100	200	6.3	10	16	25	35	50	100	200	6.3	10	16	25	$35 \quad 5$	5010	100	200
CAP. RANGE																																								
56pF	560	A	A																																					
68	680	A	A																																					
82	820	A	A																																					
100	101	A	A	A	C	C	c	C	c	H	H	H	H	H	H		L	L	L	L	L	L	L	L	M	M	M	M	M	M	M	M	R	R	R	R	R	R	R	R
120	121	A	A		C	C	c	C	C	H	H	H	H	H	H		L	L	L	L	L	L	L	L	M	M	M	M	M	M	M	M	M	M	M	M	M M	M	M	M
150	151	A	A	A	C	C	c	C	C	H	H	H	H	H			L	L	L	L	L	L	L	L	M	M	M	M	M	M	M	M	M	M	M	M	M M	M	M	M
180	181	A	A		C	C	C	c	C	H	H	H	H	H			L	L	L	L	L	L	L	L	M	M	M	M	M	M	M	M	M	M	M	M	M M	M	M	M
200	201				C	C	C	C	C	H	H	H	H	H	H		L	L	L	L	L	L	L	L	M	M	M	M	M	M	M	M	M	M	M	M	M M	M	M	M
220	221	A	A	A	C	C	C	C	C	H	H	H	H	H	H		L	L	L	L	L	L	L	L	M	M	M	M	M	M	M	M	M	M	M	M	M M	M	M	M
240	241									H	H	H	H	H			L	L	L	L	L	L	L	L	M	M	M	M	M	M	M	M	M	M	M	M	M M	M	M	M
270	271	A	A		C	C	C	C	C	H	H	H	H	H	H		L	L	L	L	L	L	L	L	M	M	M	M	M	M	M	M	M	M	M	M	M M	M	M	M
300	301									H	H	H	H	H	H		L	L	L	L	L	L	L	L	M	M	M	M	M	M	M	M	M	M	M	M	M M	M	M	M
330	331	A	A		C	C	c	C	C	H	H	H	H	H	H		L	L	L	L	L	L	L	L	M	M	M	M	M	M	M	M	M	M	M	M	M M	M	M	M
360	361									H	H	H	H	H			L	L	L	L	L	L	L	L	M	M	M	M	M	M	M	M	M	M	M	M	M M	M	M	M
390	391	A	A		C	C	C	C	C	H	H	H	H	H	H		L	L	L	L	L	L	L	L	M	M	M	M	M	M	M	M	M	M	M	M	M M	M	M	M
430	431																L	L	L	L	L	L	L	L	M	M	M	M	M	M	M	M	M	M	M	M	M M	M	M	M
470	471	A	A	A	C	C	C	C	C	H	H	H	H	H	H		L	L	L	L	L	L	L	L	M	M	M	M	M	M	M	M	M	M	M	M	M M	M	M	M
510	511									H	H	H	H	H			L	L	L	L	L	L	L	L	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M
560	561	A	A		C	C	c	C	C	H	H	H	H	H	H		L	L	L	L	L	L	L	L	M	M	M	M	M	M	M	M	M	M	M	M	M M	M	M	M
620	621									H	H	H	H	H	H		L	L	L	L	L	L	L	L	M	M	M	M	M	M	M	M	M	M	M	M	M M	M	M	M
680	681	A	A	A	C	C	c	C	C	H	H	H	H	H	H		L	L	L	L	L	L	L	L	M	M	M	M	M	M	M	M	M	M	M	M	M M	M	M	M
750	751									H	H	H	H	H	H		L	L	L	L	L	L	L	L	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M
820	821	A	A		C	C	c	C	C	H	H	H	H	H	H		L	L	L	L	L	L	L	L	M	M	M	M	M	M	M	M	M	M	M	M	M M	M	M	M
910	911																L	L	L	L	L	L	L	L	M	M	M	M	M	M	M	M	M	M	M	M	M M	M	M	M
1000	102	A	A		C	C	C	C	C	H	H	H	H	H	H		L	L	L	L	L	L	L	L	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M
1200	122	A	A		C	C	C	c		H	H	H	H	H	H				L	L	L	L	L	L	M	M	M	M	M	M	M	M	M	M	M	M	M M	M	M	M
1500	152	A	A		C	C	c	C	C	H	H	H	H	H	H				L	L	L	L	L	L	M	M	M	M	M	M	M	M	M	M	M	M	M ${ }^{\text {M }}$	M	M	M
1800	182				C	C	c	C		H	H	H	H	H					L	L	L	L	L	L	M	M	M	M	M	M	M	M	M	M	M	M	M M	M	M	M
2000	202									H	H	H	H	H					L	L	L	L	L	L	M	M	M	M	M	M	M	M	M	M	M	M	M M	M	M	M
2200	222	A	A	A	C	C	c	c		H	H	H	H	H	H				L	L	L	L	L	L	M	M	M	M	M	M	M	M	M	M	M	M	M M	M	M	M
2400	242																		L	L	L	L		L	M	M	M	M	M	M	M	M	M	M	M	M	M ${ }^{\text {M }}$	M	M	M
2700	272				C	C	c	C		H	H	H	H	H	H				L	L	L	L		L	M	M	M	M	M	M	M	M	M	M	M	M	M M	M	M	M
3000	302																								M	M	M	M	M	M	M	M	M	M	M	M	M M	M	M	M
3300	332				C	C	c	C		H	H	H	H	H	H				L	L	L	L	L	L	M	M	M	M	M	M	M	M	R	R	R	R	R	R	R	R
3600	362																								M	M	M	M	M	M	M	M	$\frac{R}{R}$	$\frac{R}{R}$	$\frac{R}{R}$	R	$\frac{R}{R}$	R	R	$\frac{R}{R}$
3900	392				C	C	C	C		H	H	H	H	H	H				L	L	L	L	L	L	M	M	M	M	M	M	M	M	R	R	R	R	R	R	R	R
																													MAX	X H	HEIG	GHT								
																						A			C				H			L			M				R	
																						. 22			0.33				. 55			0.90			0.9	95			. 45	

Cal-Chip

59 Steamwhistle Drive, Ivyland, PA 18974 | p. 215.942.8900 | www.calchip.com | quotes@calchip.com

DIELECTRIC		X7R																																							
DIMENSION (MM)		GMC01			GMC02					GMC04							GMC10									GMC21								GMC31							
		0.4 ± 0.02			0.6 ± 0.03					1.0 ± 0.05							1.6 ± 0.2									2.0 ± 0.3								3.2 ± 0.3							
		0.2 ± 0.02			0.3 ± 0.03					0.5 ± 0.05							0.8 ± 0.2									1.25 ± 0.2								1.6 ± 0.2							
BW		$0.07 \sim 0.14$			0.15 ± 0.05					$0.1 \sim 0.35$							0.1 ~ 0.4									$0.25 \sim 0.75$								$0.25 \sim 0.75$							
RATED VOLTAGE		6.3	10	16	6.3	10	16	25	50	6.3	10	16	25	35	50	100	4	6.3	10	16	25	35	50	100	200	6.3	10	16	25	35	50	100	200	6.3	10	16	25	35	50	100	200
CAP. RANGE																																									
4700pF	472				C	C	C	C		H	H	H	H	H	H	H	L	L	L	L	L	L	L	L		M	M	M	M	M	M	M	M	R	R	R	R	R	R	R	R
5600	562				C	C	C	C		H	H	H	H	H	H		L	L	L	L	L	L	L	L		M	M	M	M	M	M	M	M	R	R	R	R	R	R	R	R
6800	682				C	C	C	C		H	H	H	H	H	H		L	L	L	L	L	L	L	L		M	M	M	M	M	M	M	M	R	R	R	R	R	R	R	R
8200	822				C	C	C	C		H	H	H	H	H	H	H	L	L	L	L	L	L	L	L		M	M	M	M	M	M	M	M	R	R	R	R	R	R	R	R
0.01 uF	103				C	C	C	C		H	H	H	H	H	H	H	L	L	L	L	L	L	L	L		M	M	M	M	M	M	M	M	R	R	R	R	R	R	R	R
0.012	123									H	H	H	H	H	H		L	L	L	L	L	L	L	L		M	M	M	M	M	M	M	M	R	R	R	R	R	R	R	R
0.015	153									H	H	H	H	H	H		L	L	L	L	L	L	L	L		M	M	M	M	M	M	M	M	R	R	R	R	R	R	R	R
0.018	183									H	H	H	H	H	H		L	L	L	L	L	L	L	L		M	M	M	M	M	M	M	M	R	R	R	R	R	R	R	R
0.02	203																L	L	L	L	L	L	L			M	M	M	M	M	M	M	M	$\frac{R}{R}$	$\frac{R}{R}$	R	R	$\frac{R}{R}$	$\frac{R}{R}$	R	R
0.022	223						C			H	H	H	H	H	H	H	L	L	L	L	L	L	L	L		M	M	M	M	M	M	M	M	R	R	R	R	R	R	R	R
0.027	273									H	H	H	H	H	H		L	L	L	L	L	L	L	L		M	M	M	M	M	M	M	M	R	R	R	R	R	R	R	R
0.033	333									H	H	H	H	H	H		M	M	M	M	M	M	M	M		M	M	M	M	M	M	M	M	R	R	R	R	R	R	R	R
0.039	393									H	H	H	H	H	H		M	M	M	M	M	M	M	M		M	M	M	M	M	M	M	M	R	R	R	R	R	R	R	R
0.047	473									H	H	H	H	H	H		M	M	M	M	M	M	M	M		M	M	M	M	M	M	R	R	R	R	R	R	R	R	R	R
0.056	563									H	H	H	H	H	J		M	M	M	M	M	M	M	M		M	M	M	M	M	M	R	R	R	R	R	R	R	R	R	R
0.068	683									H	H	H	H	H	J		M	M	M	M	M	M	M	M		M	M	M	M	M	M	R	R	R	R	R	R	R	R	R	R
0.082	823									H	H	H	H	H	J		M	M	M	M	M	M	M			M	M	M	M	M	M	R		R	R	R	R	R	R	R	R
0.1	104				C	C	C			H	H	H	H	H	J		M	M	M	M	M	M	M	M		M	M	M	M	M	M	R		M	M	M	M	M	M	M	M
0.12	124																M	M	M	M	M	M	M			M	M	M	M	M	M	R		M	M	M	M	M	M	M	
0.15	154									H	H	H	H				M	M	M	M	M	M	M			R	R	R	R	R	R	R		P	P	P	P	P	P	T	
0.18	184																M	M	M	M	M	M	M			R	R	R	R	R	R	R		P	P	P	P	P	P	T	
0.22	224									H	H	H	H				M	M	M	M	M	M	M			R	R	R	R	R	R	R		Q	Q	Q	Q	Q	Q	T	
0.27	274																M	M	M	M	M	M	M			R	R	R	R	R	$\frac{R}{R}$			Q	Q	Q	Q	Q	Q	T	
0.33	334																M	M	M	M	M	M	M			R	R	R	R	R	R	R		Q	Q	Q	Q	Q	Q	T	
0.39	394																M	M	M	M	M	M	M			R	R	R	R	R	R			U	U	U	U	U	U	U	
0.47	474									H	H						M	M	M	M	M	M	M			R	R	R	R	R	R	R		U	U	U	U	U	U	U	
0.56	564																M	M	M	M						R	R	R	R	R	R			U	U	U	U	U	U	U	
0.68	684																M	M	M	M	M	M				R	R	R	R	R	R			U	U	U	U	U	U	U	
0.82	824																M	M	M	M						R	R	R	R					U	U	U	U	U	U	U	
1	105									H^{*}	H^{*}						M	M	M	M	M	M	M			R	R	R	R	R	R	R		T	T	T	T	T	T	T	
1.5	155																N	N	N							R	R	R	R	R	R			U	U	U	U	U	U		
2.2	225									।*	।*						N	N	N	N	N					R	R	R	R	R	R			A3	A3	A3	A3	A3	A3	U	
3.3	335																									R	R	R	R					U	U	U	U	U	U		
4.7	475																N	N	N	N						R	R	R	R	R	R			U	U	U	U	U	U	U	
6.8	685																									R	R	R						U	U	U	U	U			
10	106																N	N	N							Q	Q	Q	R					U	U	U	U	U	U		
22	226																									R	R							U	U	U					
33	336																																								
47	476																																								
100	107																																								
150	157																																								
220	227																																								

* L 1.0 ± 0.10 I W 0.5 ± 0.10
*1L 1.0 ± 0.15 I W 0.5 ± 0.15

MAX HEIGHT													
C	H	I	J	L	M	N	P	Q	R	S	A3	T	U
0.33	0.55	0.65	0.70	0.90	0.95	1.00	1.35	1.40	1.45	1.50	1.70	1.80	1.90

DIELECTRIC		X7R																															
DIMENS	(MM)	GMC32								GMC40			GMC43						GMC45					GMC55					GMC57				
		3.2 ± 0.3								4.57 ± 0.25			4.5 ± 0.35						4.5 ± 0.35					5.7 ± 0.4					5.7 ± 0.4				
		2.5 ± 0.3								2.03 ± 0.25			3.2 ± 0.3						6.3 ± 0.4					5.0 ± 0.4					6.3 ± 0.4				
		$0.25 \sim 0.75$								$0.25 \sim 0.75$			$0.25 \sim 0.75$						0.40~1.10					$0.50 \sim 1.20$					$0.50 \sim 1.20$				
RATED	TAGE	6.3	10	16	25	35	50	100	200	50	100	200	10	16	25	50	100	200	16	25	50	100	200	16	25	50	100	200	16	25	50	100	200
CAP.																																	
1000pF	102	0	O	O	O	O	O	O	O	R	R	R	R	R	R	R	R	R	V	V	V	V	V	V	V	V	V	V	V	V	V	V	V
1200	122	0	O	\bigcirc	O	O	O	O	0	R	R	R	R	R	R	R	R	R	V	V	V	V	V	V	V	V	V	V	V	V	V	V	V
1500	152	0	O	O	0	O	O	O	0	R	R	R	R	R	R	R	R	R	V	V	V	V	V	\checkmark	V	V	V	V	V	V	V	V	V
1800	182	0	0	\bigcirc	0	O	O	0	O	R	R	R	R	R	R	R	R	R	V	V	V	V	V	V	V	V	V	V	V	V	V	V	V
2200	222	0	0	\bigcirc	0	O	O	0	0	R	R	R	R	R	R	R	R	R	V	V	V	V	V	V	V	V	V	V	V	V	V	V	V
2400	242	0	0	O	0	O	O	O	0	R	R	R	R	R	R	R	R	R	V	V	V	V	V	\checkmark	V	V	V	V	V	V	V	V	V
2700	272	0	0	0	0	0	O	0	0	R	R	R	R	R	R	R	R	R	V	V	V	V	V	V	V	V	V	V	V	V	V	V	V
3000	302	0	O	O	0	O	O	0	0	R	R	R	R	R	R	R	R	R	V	V	V	V	V	V	V	V	V	V	V	V	V	V	V
3300	332	0	O	\bigcirc	0	0	O	0	\bigcirc	R	R	R	R	R	R	R	R	R	V	V	V	V	V	V	V	V	V	V	V	\checkmark	V	V	V
3600	362	0	0	O	0	O	O	0	0	R	$\frac{R}{R}$	R	R	R	R	R	R	R	V	V	V	V	V	V	V	V	V	V	V	V	V	V	V
3900	392	0	0	\bigcirc	0	0	O	0	0	R	R	R	R	R	R	R	R	R	V	V	V	V	V	V	V	V	V	V	V	V	V	V	V
4300	432	0	0	O	0	O	O	O	0	R	R	R	R	R	R	R	R	R	V	V	V	V	V	V	V	V	V	V	V	V	V	V	V

DIELECTRIC		X7R																																
DIMENSION (MM)		GMC32									GMC40			GMC43						GMC45					GMC55					GMC57				
L		3.2 ± 0.3									4.57 ± 0.25			4.5 ± 0.35						4.5 ± 0.35					5.7 ± 0.4					5.7 ± 0.4				
W		2.5 ± 0.3									2.03 ± 0.25			3.2 ± 0.3						6.3 ± 0.4					5.0 ± 0.4					6.3 ± 0.4				
		$0.25 \sim 0.75$									$0.25 \sim 0.75$			$0.25 \sim 0.75$						$0.40 \sim 1.10$					0.50~1.20					$0.50 \sim 1.20$				
RATED	AGE	6.3	10	16	25	35	50	63	100	200	50	100	200	10	16	25	50	100	200	16	25	50	100	200	16	25	50	100	200	16	25	50	100	200
CAP. RANGE																																		
4700pF	472	0	0	0	0	0	0	0	0	0	R	R	R	R	R	R	R	R	R	V	V	V	V	V	V	V	V	V	V	V	V	V	V	V
5600	562	0	O	O	O	O	O	O	O	O	V	V	V	R	R	R	R	R	R	V	V	V	V	V	V	V	V	V	V	V	V	V	V	V
6800	682	0	O	0	O	O	O	O	\bigcirc	O	V	V	V	R	R	R	R	R	R	V	V	V	V	V	V	V	V	V	V	V	V	V	V	\checkmark
8200	822	0	O	O	O	O	O	O	O	O	V	V	V	R	R	R	R	R	R	V	V	V	V	V	V	V	V	V	V	V	V	V	V	V
0.01uF	103	R	R	R	R	R	R	R	R	R	V	V	V	R	R	R	R	R	R	V	V	V	V	V	V	V	V	V	V	V	V	V	V	V
0.012	123	O	O	O	O	O	O	O	O	O	V	V	V	R	R	R	R	R	R	V	V	V	V	V	V	V	V	V	V	V	V	V	V	V
0.015	153	0	0	0	0	O	O	O	\bigcirc	\bigcirc	V	V	V	R	R	R	R	R	R	V	V	V	V	V	V	V	V	V	V	V	V	V	V	\checkmark
0.018	183	0	O	0	\bigcirc	0	O	O	\bigcirc	\bigcirc	V	V	V	R	R	R	R	R	R	V	V	V	V	V	V	V	V	V	V	V	V	V	V	V
0.022	223	0	0	0	0	0	0	O	0	O	V	V	V	R	R	R	R	R	R	V	V	V	V	V	V	V	V	V	V	V	V	V	V	V
0.027	273	0	O	0	O	O	O	O	O	O	V	V	V	R	R	R	R	R	R	V	V	V	V	V	V	V	V	V	V	V	V	V	V	V
0.033	333	O	O	0	0	O	O	T	T	T	V	V	V	R	R	R	R	R	R	V	V	V	V	V	V	V	V	V	V	V	V	V	V	\checkmark
0.039	393	0	0	0	0	0	O	O	O	\bigcirc	V	V	V	R	R	R	R	R	R	V	V	V	V	V	V	V	V	V	V	\checkmark	V	V	V	V
0.047	473	0	0	0	O	O	O	0	0	O	V	V	V	R	R	R	R	R	R	V	V	V	V	V	V	V	V	V	V	V	V	V	V	V
0.056	563	0	0	0	0	0	0	0	0	0	V	V	V	R	R	R	R	R	R	V	V	V	V	V	V	V	V	V	V	V	V	V	V	V
0.068	683	O	O	O	O	O	O	O	O	O	V	V	V	R	R	R	R	R	R	V	V	V	V	V	V	V	V	V	V	V	V	V	V	V
0.082	823	0	O	O	\bigcirc	O	O	O	\bigcirc	\bigcirc	V	V	V	R	R	R	R	R	R	V	V	V	V	V	V	V	V	V	V	\checkmark	V	V	V	V
0.1	104	\checkmark	V	V	V	V	V	V	V	V	V	V	V	R	R	R	R	R	R	V	V	V	V	V	V	V	V	V	V	V	V	V	V	V
0.12	124	0	0	0	O	O	O	0	O	O	A1	A1	V	R	R	R	R	R	R	V	V	V	V	V	V	V	V	V	V	V	V	V	V	V
0.15	154	0	0	0	0	0	0	O	Y	Y	A1	A1	V	R	R	R	R	\bar{R}	R	V	V	V	V	V	V	V	V	V	V	V	V	V	V	V
0.18	184	0	O	0	0	0	0	O	Y	Y	A1	A1	V	R	$\frac{R}{R}$	R	R	\bar{R}	R	V	V	V	V	V	V	V	V	V	V	V	V	V	V	\checkmark
0.22	224	0	0	0	0	0	O	O	O	R	A1	A1		R	R	R	R	R	R	V	V	V	V	V	V	V	V	V	V	V	V	V	V	\checkmark
0.27	274	0	0	0	O	O	O	0	T	Y	A1	A1		R	R	R	R	R	R	V	V	V	V	V	V	V	V	V	V	V	V	V	V	V
0.33	334	0	0	0	0	O	O	0	0	T	A1	A1		R	$\frac{R}{R}$	R	R	R	R	V	V	V	V	V	V	V	V	V	V	\checkmark	V	V	V	\checkmark
0.39	394	0	O	0	O	R	R	Z	Z	Z	A1			R	$\frac{R}{R}$	R	R	R	R	V	\checkmark	V	V	V	V	V	V	V	V	\checkmark	V	V	V	\checkmark
0.47	474	0	O	0	O	O	O	O	0	V	A1			R	R	R	R	R	R	V	V	V	V	V	V	V	V	V	V	V	V	V	V	V
0.56	564	R	R	R	R	R	R	R	Y	Y	A1			R	R	R	R	V		V	V	V	V	V	V	V	V	V	V	V	V	V	V	V
0.68	684	0	0	0	O	O	O	0	T	Y	A1			R	R	R	V	V		V	V	V	V	V	V	V	V	V	V	\checkmark	V	V	V	V
0.82	824	0	O	0	\bigcirc	O	0	O	V					R	R	R	V	V		V	V	V	V	V	V	V	V	V	V	V	V	V	V	V
1	105	T	T	T	T	T	T	T	Y					V	V	V	V	V	Y	R	R	R	R	V	X	X	X	X	X	V	V	V	V	V
1.5	155	Z	Z	Z	Z	Z	Z	Z	Z					V	V	V	V	V		V	V	V	V	Y	V	V	V	V	V	Y	Y	Y	Y	Y
2.2	225	Z	Z	Z	Z	Z	Z	Z	Z					Y	Y	Y	Y	Y		V	V	V	V	Y	V	V	V	V	V	Y	Y	Y	Y	Y
3.3	335	Z	Z	Z	Z	Z	Z	Z	Z					Y	Y	Y	Y	Y		V	V	V	V		V	V	V	V		V	V	V	V	
4.7	475	Z	Z	Z	Z	Z	Z	Z	Z					V	V	V	V	Y		V	V	V	V		V	V	V	V		V	V	V	V	
6.8	685	Z	Z	Z	Z	Z								Y	Y	Y	Y			V	V	V	V		V	V	V	V		V	V	V	V	
10	106	Z	Z	Z	Z	Z	Z	Y						Y	Y	Y	Y			Y	Y	Y	Y		Y	Y	Y	Y		Y	Y	Y	Y	
15	156	Y	Y	Y										A1	A1	A1									A1	A1								
22	226	Y	Y	Y	Y									Y	Y	Y									Y	Y	Y							
33	336													Y	Y										V	V								
47	476	Y	Y																						X	X								
100	107																																	

MAX HEIGHT							
O	R	T	V	X	Y	Z	A 1
1.10	1.45	1.80	2.2	2.5	2.8	2.9	3.1

DIELECTRIC		X7S																																														
DIMENSION (MM)		GMC02				GMC04						GMC10							GMC21								GMC31								GMC32								GMC55					
		0.6 ± 0.03				1.0 ± 0.05						1.6 ± 0.2							2.0 ± 0.3								3.2 ± 0.3								3.2 ± 0.3								5.7 ± 0.4					
		0.3 ± 0.03				0.5 ± 0.05						0.8 ± 0.2							1.25 ± 0.2								1.6 ± 0.2								2.5 ± 0.3								6.3 ± 0.4					
BW(0.15 ± 0.05				$0.1 \sim 0.35$						$0.1 \sim 0.4$							$0.25 \sim 0.75$								$0.25 \sim 0.75$								$0.25 \sim 0.75$								$0.50 \sim 1.2$					
RATED	AGE	4	6.3	10	16	4/6.3	10	16	25	50	100	4/6.3	10	16	25	35	50	100	4	6.3	10	16	25	35	50	100	4	6	10	16	25	35	50	100	4	6.3	10	16	25	50	63	100	4	6.3	1016	1625	25 50	5 100
CAP.																																																
1000pF	102					H	H	H	H	H	H	L	L	L	L	L	L	L																														
1500	152					H	H	H	H	H	H	L	L	L	L	L	L	L																														
2200	222					H	H	H	H	H	H	L	L	L	L	L	L	L																														
3300	332					H	H	H	H	H	H	L	L	L	L	L	L	L																														
4700	472					H	H	H	H	H	H	L	L	L	L	L	L	L																														
6800	682					H	H	H	H	H	H	L	L	L	L	L	L	L																														
.01uF	103					H	H	H	H	H	H	L	L	L	L	L	L	L																														
0.022	223	C	C	C		H	H	H	H	H	H	L	L	L	L	L	L	L																														
0.033	333					H	H	H	H	H		M	M	M	M	M	M	M																														
0.039	393					H	H	H	H	H		M	M	M	M	M	M	M																														
0.047	473	C	C	C		H	H	H	H	H		M	M	M	M	M	M	M																														
0.056	563					H	H	H	H	H		M	M	M	M	M	M	M																														
0.068	683					H	H	H	H	H		M	M	M	M	M	M	M																														
0.082	823					H	H	H	H			M	M	M	M	M	M	M																														
0.1	104	C	C	C	C	H	H	H	H			M	M	M	M	M	M	M																														
0.15	154											M	M	M	M	M	M		R	R	R	R	R	R	R	R																						
0.22	224	D	D			H	H	H				M	M	M	M	M	M		R	R	R	R	R	R	R	R																						
0.33	334					H	H	H				M	M	M	M	M	M		R	R	R	R	R	R	R	R																						
0.47	474					H	H	H				M	M	M	M	M	M		R	R	R	R	R	R	R	R																						
0.56	564											M	M	M					R	R	R	R	R																									
0.68	684					H	H					M	M	M	M	M			R	R	R	R	R	R	R																							
0.82	824											M	M	M					R	R	R	R	R																									
1	105					H	H					M	M	M	M	M			R	R	R	R	R	R	R	R																						
1.5	155					1	1					N	N	N					R	R	R	R	R	R	R		U	U	U	U	U	U	U	U														
2.2	225					1	1					N	N	N	N				R	R	R	R	R	R	R		U	U	U	U	U	U	U	U	Z	Z	Z	Z	Z	Z								
3.3	335											N	N						R	\bar{R}	R	\bar{R}	R				T	T	T	T	T	T	T	T	Z	Z	Z	Z	Z	Z								
4.7	475											N	N	N					R	R	R	R	R	R	R		U	U	U	U	U	U	U	U	Z	Z	Z	Z	Z	Z								
6.8	685											N							R	R	R	R					U	U	U	U	U	U			Z	Z	Z	Z	Z								V	V
10	106											N							R	R	R	R	R				U	U	U	U	U	U	U		Z	Z	Z	Z	Z	Z	Y						X	X X
15	156																		R	R	R																										Y	Y Y
22	226																		R	R	R						U	U	U	U					Y	Y	Y	Y	Y								Y	Y
33	336																										U	U							Y	Y	Y											
47	476																										U	U							Y	\bar{Y}	Y											
100	107																																		Z	Z	Z											

MAX HEIGHT

MAX HEIGHT														
C	D	H	1	L	M	N	P	R	T	U	V	X	Y	Z
0.33	0.35	0.55	0.65	0.90	0.95	1.00	1.35	1.45	1.80	1.90	2.2	2.5	2.8	2.9

59 Steamwhistle Drive, Ivyland, PA 18974 | p. 215.942 .8900 | www.calchip.com | quotes@calchip.com

DIELECTRIC		X6S																																		
DIMENSION (MM)		GMC02						GMC04							GMC10							GMC21							GMC31							
L		0.6 ± 0.03						1.0 ± 0.05							1.6 ± 0.2							2.0 ± 0.3							3.2 ± 0.3							
W		0.3 ± 0.03						0.5 ± 0.05							0.8 ± 0.2							1.25 ± 0.2							1.6 ± 0.2							
RATED VOLTAGE		0.15 ± 0.05						$0.1 \sim 0.35$							0.1 ~ 0.4							$0.25 \sim 0.75$							$0.25 \sim 0.75$							
		4	6.3	10	16	25	35	4	6.3	10	16	25	35	50	4	6.3	10	16	25	35	50	4	6.3	10	16	25	35	50	4	6.3	10	16	25	35	50	100
CAP. RANGE																																				
2200pF	222	C	C	C	C	C																														
4700	472	C	C	C	C	C																														
. 01 uf	103	C	C	C	C	C		H	H	H	H	H	H	H																						
0.012	123	C	C					H	H	H	H	H	H	H																						
0.015	153	C	C					H	H	H	H	H	H	H																						
0.018	183	C	C					H	H	H	H	H	H	H																						
0.022	223	C	C	C	C	C		H	H	H	H	H	H	H																						
0.027	273	C	C	C	C			H	H	H	H	H																								
0.033	333	C	C	C	C			H	H	H	H	H	H	H																						
0.039	393	C	C																																	
0.047	473	C	C	C	C	C		H	H	H	H	H	H	H																						
0.056	563	C	C					H	H	H	H	H	J	J																						
0.068	683	C	C	C	C			H	H	H	H	H	J	J																						
0.082	823	C	C					H	H	H	H	H	J	J																						
0.1	104	C	C	C	C			H	H	H	H	H	J	J																						
0.12	124							H	H																											
0.15	154							H	H	H	H	H			M	M	M	M	M	M	M															
0.18	184							H	H						M	M	M	M	M																	
0.22	224	C	C					H	H	H	H	H	H		M	M	M	M	M	M	M															
0.27	274							H	H						M	M	M	M																		
0.33	334							H	H	H	H				M	M	M	M	M	M	M															
0.39	394							H	H						M	M	M	M	M																	
0.47	474	E	E	E	E			H	H	H	H				M	M	M	M	M	M	M	R	R	R	R	R	R	R								
0.56	564							H	H						M	M	M	M				R	R	R	R											
0.68	684							H	H	H	H				M	M	M	M	M	M	M	R	R	R	R	R	R	R								
0.82	824							H	H						M	M	M	M				R	R	R	R											
1	105	E	E	E	E			J	J	J	J	J	J		M	M	M	M	M	M	M	R	R	R	R	R	R	R	T	T	T	T	T	T	T	T
1.5	155														N	N	N	N				R	R	R	R	R	R	R	U	U	U	U	U	U	U	U
2.2	225							J	J	J	J	J			N	N	N	N				R	R	R	R	R	R	R	U	U	U	U	U	U	U	U
2.7	275																																			
3.3	335														N	N	N	N				R	R	R	R	R	R	R	U	U	U	U	U	U	U	
3.9	395																																			
4.7	475							1	1						N	N	N	N	N			R	R	R	R	R	R	R	U	U	U	U	U	U	U	U
6.8	685														N	N	N					R	R	R	R				U	U	U	U	U	U		
10	106							J	J						N	N	N	N				R	R	R	R	R	R		U	U	U	U	U	U	U	U
15	156																					R	R	R	R				U	U	U	U				
22	226							K							N	N	N					R	R	R	R				U	U	U	U	U			
33	336																					R							U	U	U					
47	476														N							R	R						U	U	U					
68	686																												U							
100	107																					R							U	U						
150	157																												U							
220	227																												U							

MAX HEIGHT														
C	E	H	I	J	K	M	N	R	T					
0.33	0.39	0.55	0.65	0.7	0.8	0.95	1.00	1.45	1.80	1.90				

		X6S														
DIMENSION (MM)		GMC32								GMC43						
L(L1)		3.2 ± 0.30								4.5 ± 0.35						
W		2.5 ± 0.30								3.2 ± 0.30						
BW(L2/LW)		0.75 ± 0.25								$0.25 \sim 0.75$						
RATED VOLTAGE		2.5	4	6.3	10	16	25	35	50	4	6.3	10	16	25	35	50
CAP. RANGE																
3.3 F	335						Z	Z	Z							
4.7	475						Z	Z	Z							
6.8	685						Z	Z	Z							
10	106				Z	Z	Z	Z	Z							
22	226				Y	Y	Y									
33	336															
47	476			Y	Y	Y										
68	686															
100	107	Z	Z	Z	Z					A1	A1					
150	157	Z	Z													
220	227	Z	Z	Z												
330	337	Z	Z													

MAX HEIGHT		
Y	Z	A1
2.8	2.9	3.1

X5R

DIELECTRIC		X5R																																	
DIMENSION (MM)		GMC01				GMC02							GMC04								GMC10							GMC21							
L(L1)		0.4 ± 0.02				0.6 ± 0.03							1.0 ± 0.05								1.6 ± 0.2							2.0 ± 0.3							
W		0.2 ± 0.02				0.3 ± 0.03							0.5 ± 0.05								0.8 ± 0.2							1.25 ± 0.2							
		$0.07 \sim 0.14$				0.15 ± 0.05							$0.1 \sim 0.35$								$0.1 \sim 0.4$							$0.25 \sim 0.75$							
RATED VOLTAGE		4 V	6.3	10	16	4	6.3	10	16	25	35	50	4	6.3	10	16	25	35	50	63	6.3	10	16	25	35	50	100	4	6.3	10	16	25	35	50	100
CAP. RANGE																																			
1000pF	102	A	A	A	A	C	C	C	C	C	C	C	H	H	H	H	H	H	H		L	L	L	L	L	L	L								
1200	122	A	A			C	C	C	C	C	C	C	H	H	H	H	H	H	H		L	L	L	L	L	L	L								
1500	152	A	A	A	A	C	C	C	C	C	C	C	H	H	H	H	H	H	H		L	L	L	L	L	L	L								
1800	182	A	A			C	C	C	C	C	C	C	H	H	H	H	H	H	H		L	L	L	L	L	L	L								
2200	222	A	A	A	A	C	C	C	C	C	C	C	H	H	H	H	H	H	H		L	L	L	L	L	L	L								
2700	272	A	A			C	C	C	C	C			H	H	H	H	H	H	H		L	L	L	L	L	L	L								
3300	332	A	A	A		C	C	C	C	C	C	C	H	H	H	H	H	H	H		L	L	L	L	L	L	L								
3900	392	A	A			C	C	C	C	C	C	C	H	H	H	H	H	H	H		L	L	L	L	L	L	L								
4700	472	A	A	A	A	C	C	C	C	C	C		H	H	H	H	H	H	H		L	L	L	L	L	L	L								
5600	562	A	A	A		C	C	C	C	C			H	H	H	H	H	H	H		L	L	L	L	L	L	L								
6800	682	A	A	A	A	C	C	C	C	C	C	C	H	H	H	H	H	H	H		L	L	L	L	L	L	L								
8200	822	A	A			C	C	C	C	C	C		H	H	H	H	H	H	H		L	L	L	L	L	L	L								
. 01 uF	103	A	A	A	A	C	C	C	C	C	C	C	H	H	H	H	H	H	H		L	L	L	L	L	L	L								
0.012	123					C	C	C	C				H	H	H	H	H	H	H		L	L	L	L	L	L	L								
0.015	153	A	A			C	C	C	C				H	H	H	H	H	H	H		L	L	L	L	L	L	L								
0.018	183					C	C	C	C				H	H	H	H	H	H	H		L	L	L	L	L	L	L								
0.02	203																				L	L	L	L	L	L	L								
0.022	223	A	A			C	C	C	C	C			H	H	H	H	H	H	H		L	L	L	L	L	L	L								
0.027	273	A	A			C	C	C	C				H	H	H	H	H	H	H		L	L	L	L	L	L	L								
0.033	333	A	A			C	C	C	C				H	H	H	H	H	H	H		M	M	M	M	M	M	M	M	M	M	M	M	M	M	M
0.039	393					C	C	C	C				H	H	H	H	H	H	H		M	M	M	M	M	M	M	M	M	M	M	M	M	M	M
0.047	473	A	A			C	C	C	C				H	H	H	H	H	H	H		M	M	M	M	M	M	M	M	M	M	M	M	M	M	R
0.056	563					C	C	C	C				H	H	H	H	H	J	J		M	M	M	M	M	M	M	M	M	M	M	M	M	M	R
0.068	683	A	A			C	C	C	C				J	J	J	J	J	J	J		M	M	M	M	M	M	M	M	M	M	M	M	M	M	R
0.082	823					C	C	C	C				H	H	H	H	H	J	J		M	M	M	M	M	M		M	M	M	M	M	M	M	R
0.1	104	A	A	A		C	C	C	C	C	C		H	H	H	H	H	J	J		M	M	M	M	M	M	M	M	M	M	M	M	M	M	R
0.12	124					C	C	C					H	H	H						M	M	M	M	M	M		M	M	M	M	M	M	R	
0.15	154					C	C	C	C	D			H	H	H	H	H				M	M	M	M	M	M		R	R	R	R	R	R	R	
0.18	184												H	H	H						M	M	M	M				R	R	R	R	R	R	R	
0.22	224	A	A			C	C	C	C	D			H	H	H	H	H	H	H	H	M	M	M	M	M	M		R	R	R	R	R	R	R	R
0.27	274	A	A										H	H	H						M	M	M					R	R	R	R	R	R	R	
0.33	334					E	E	E					H	H	H	H	H	H			M	M	M	M	M	M		R	R	R	R	R	R	R	R
0.39	394												H	H	H						M	M	M					R	R	R	R	R	R	R	
0.47	474	B				C	C	C	E				J	J	J	J	J	J	J		M	M	M	M	M	M		R	R	R	R	R	R	R	R
0.56	564												H	H	H						M	M	M					R	R	R	R	R			
0.68	684												H	H	H	H	H	H			M	M	M	M	M			R	R	R	R	R	R	R	
0.82	824												H	H	H						M	M	M					R	R	R	R	R			
1	105	F	F			C	C	C	C				H	H	H	H	H	H	H		M	M	M	M	M	M		R	R	R	R	R	R	R	R
1.5	155					C	C														N	N	N					R	R	R	R	R			
2.2	225					E	E	E					I	I	1	1	1	1			N	N	N	N	N	N		R	R	R	R	R	R	R	
3.3	335												H								N	N						R	R	R	R	R	R	R	
4.7	475					H	H						J	J	J	J					N	N	N	N	N			R	R	R	R	R	R	R	
6.8	685																											R	R	R	R	R	R	R	
10	106												K	K	K						N	N	N	N	N			R	R	R	R	R	R	S	
15	156												H	H							N	N						R	R	R	R	R	R		
18	186												1	I																					
22	226												K	K							N	N	N					R	R	R	R	R	R		
33	336																											R	R	R					
47	476																				N	N						R	R	R					
100	107																											R	R						

MAX HEIGHT														
A	B	C	D	E	F	H	1	J	K	L	M	N	R	S
0.22	0.25	0.33	0.35	0.39	0.45	0.55	0.65	0.7	0.8	0.90	0.95	1.00	1.45	1.5

[^0]| DIELECTRIC DIMENSION (MM) | | X5R | |
| :---: |
| | | GMC31 | | | | | | | | GMC32 | | | | | | | | | GMC43 | | | | | | | GMC55 | | | | | |
| L | | 3.2 ± 0.3 | | | | | | | | 3.2 ± 0.3 | | | | | | | | | 4.5 ± 0.35 | | | | | | | 5.7 ± 0.4 | | | | | |
| | | 1.6 ± 0.2 | | | | | | | | 2.5 ± 0.3 | | | | | | | | | 3.2 ± 0.3 | | | | | | | 5.0 ± 0.4 | | | | | |
| BW | | $0.25 \sim 0.75$ | | | | | | | | $0.25 \sim 0.75$ | | | | | | | | | $0.25 \sim 0.75$ | | | | | | | $0.50 \sim 1.2$ | | | | | |
| RATED VOLTAGE | | 4 | 6.3 | 10 | 16 | 25 | 35 | 50 | 100 | 4 | 6.3 | 10 | 16 | 25 | 35 | 50 | 63 | 100 | 6.3 | 10 | 16 | 25 | 35 | 50 | 100 | 6.3 | 10 | 16 | 25 | 50 | 100 |
| CAP. RANGE | |
| . 1 uF | 104 | M | M | M | M | M | M | M | M | V | V | V | V | V | V | V | V | V | | | | | | | | | | | | | |
| 0.12 | 124 | M | M | M | M | M | M | M | M | \bigcirc | \bigcirc | \bigcirc | \bigcirc | \bigcirc | \bigcirc | O | \bigcirc | \bigcirc | | | | | | | | | | | | | |
| 0.15 | 154 | P | P | P | P | P | P | P | T | \bigcirc | Y | | | | | | | | | | | | | |
| 0.18 | 184 | P | P | P | P | P | P | P | T | \bigcirc | O | O | \bigcirc | O | O | \bigcirc | O | Y | | | | | | | | | | | | | |
| 0.22 | 224 | Q | Q | Q | Q | Q | Q | Q | T | \bigcirc | | | | | | | | | | | | | |
| 0.27 | 274 | Q | Q | Q | Q | Q | Q | Q | T | \bigcirc | T | | | | | | | | | | | | | |
| 0.33 | 334 | Q | Q | Q | Q | Q | Q | Q | T | \bigcirc | \bigcirc | O | \bigcirc | O | O | \bigcirc | O | O | | | | | | | | | | | | | |
| 0.39 | 394 | U | U | U | U | U | U | U | U | \bigcirc | \bigcirc | \bigcirc | \bigcirc | \bigcirc | R | R | Y | Y | | | | | | | | | | | | | |
| 0.47 | 474 | U | U | U | U | U | U | U | U | \bigcirc | \bigcirc | \bigcirc | O | \bigcirc | O | O | O | \bigcirc | | | | | | | | | | | | | |
| 0.56 | 564 | U | U | U | U | U | U | U | U | R | R | R | R | R | R | R | R | Y | | | | | | | | | | | | | |
| 0.68 | 684 | U | U | U | U | U | U | U | U | O | O | O | O | O | O | O | O | T | | | | | | | | | | | | | |
| 0.82 | 824 | U | U | U | U | U | U | U | U | \bigcirc | O | V | | | | | | | | | | | | | |
| 1 | 105 | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | Y | | | | | | | | | | | | | |
| 1.5 | 155 | U | U | U | U | U | U | U | | Z | Z | Z | Z | Z | Z | Z | Z | Z | | | | | | | | | | | | | |
| 2.2 | 225 | U | U | U | U | U | U | U | U | Z | Z | Z | Z | Z | Z | Z | Z | Z | | | | | | | | | | | | | |
| 3.3 | 335 | U | U | U | U | U | U | U | | Z | Z | Z | Z | Z | Z | Z | Z | Z | Y | Y | Y | Y | Y | Y | Y | V | V | V | V | V | V |
| 4.7 | 475 | U | U | U | U | U | U | U | U | Z | Z | Z | Z | Z | Z | Z | Z | Z | V | V | V | V | V | V | Y | V | V | V | V | V | V |
| 6.8 | 685 | U | U | U | U | U | U | | | Z | Z | Z | Z | Z | | | | | Y | Y | Y | Y | Y | Y | | V | V | V | V | V | \checkmark |
| 10 | 106 | U | U | U | U | U | U | U | | Z | Z | Z | Z | Z | Z | Y | | | Y | Y | Y | Y | Y | Y | | Y | Y | Y | Y | Y | Y |
| 15 | 156 | T | T | T | T | T | T | | | Y | Y | Y | Y | | | | | | A1 | A1 | A1 | A1 | | | | A1 | A1 | A1 | | | |
| 22 | 226 | T | T | T | T | T | T | | | Y | Y | Y | Y | Y | | | | | Y | Y | Y | Y | | | | Y | Y | Y | Y | Y | |
| 33 | 336 | T | T | T | T | T | | | | V | V | V | | | | | | | Y | Y | Y | | | | | V | V | V | | | |
| 47 | 476 | T | T | T | T | T | | | | Y | Y | Y | Y | Y | | | | | A1 | A1 | | | | | | X | X | X | X | | |
| 68 | 686 | U | U | U | | | | | | V | V | | | | | | | | A1 | A1 | | | | | | X | X | | | | |
| 100 | 107 | T | T | T | | | | | | Y | Y | Y | Y | | | | | | A1 | A1 | | | | | | A1 | A1 | | | | |
| 220 | 227 | U | U | | | | | | | Y | Y | Y | | | | | | | | | | | | | | | | | | | |
| 330 | 337 | | | | | | | | | Y | Y | |

MAX HEIGHT															
M	O	P	Q	R	T	U	V	X	Y	Z	A 1				
0.95	1.1	1.35	1.40	1.45	1.80	1.9	2.2	2.5	2.80	2.9	3.1				

Cal-Chip

DIELECTRIC		Y5V / Z5U																																			
DIMENSION (MM)		GMC02	GMC04					GMC10					GMC21					GMC31					GMC32					GMC43					GMC55				
		0.6 ± 0.03	1.0 ± 0.05					1.6 ± 0.2					2.0 ± 0.3					3.2 ± 0.3					3.2 ± 0.3					4.5 ± 0.35					5.7 ± 0.4				
		0.3 ± 0.03	0.5 ± 0.05					0.8 ± 0.2					1.25 ± 0.2					1.6 ± 0.2					2.5 ± 0.3					3.2 ± 0.3					5.0 ± 0.4				
		0.15 ± 0.05	$0.1 \sim 0.35$					$0.1 \sim 0.4$					$0.25 \sim 0.75$					0.50~1.20																			
RATED VOLTAGE		6.3/10	6.3	10	16	25	50	6.3	10	16	25	50	6.3	10	16	25	50	6.3	10	16	25	50	6.3	10	16	25	50	6.3	10	16	25	50	6.3	10	16	25	50
CAP. RANGE																																					
0.01 FF	103	C	H	H	H	H	H	L	L	L	L	L	M	M	M	M	M	R	R	R	R	R	R	R	R	R	R										
0.012	123	C	H	H	H	H	H	L	L	L	L	L	M	M	M	M	M	R	R	R	R	R	\bigcirc	O	O	\bigcirc	O										
0.015	153	C	H	H	H	H	H	L	L	L	L	L	M	M	M	M	M	R	R	R	R	R	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc										
0.018	183	C	H	H	H	H	H	L	L	L	L	L	M	M	M	M	M	R	R	R	R	R	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc										
0.02	203	C											M	M	M	M	M						\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc										
0.022	223	C	H	H	H	H	H	L	L	L	L	L	M	M	M	M	M	R	R	R	R	R	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc										
0.027	273	C	H	H	H	H	H	L	L	L	L	L	M	M	M	M	M	R	R	R	R	R	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc										
0.03	303	C											M	M	M	M	M						\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc										
0.033	333	C	H	H	H	H	H	M	M	M	M	M	M	M	M	M	M	R	R	R	R	R	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc										
0.039	393	C	H	H	H	H	H	M	M	M	M	M	M	M	M	M	M	R	R	R	R	R	\bigcirc	O	\bigcirc	\bigcirc	\bigcirc										
0.047	473	C	H	H	H	H	H	M	M	M	M	M	M	M	M	M	M	R	R	R	R	R	\bigcirc	O	\bigcirc	\bigcirc	O	R	R	R	R	R					
0.056	563	C	H	H	H	H	J	M	M	M	M	M	M	M	M	M	M	R	R	R	R	R	\bigcirc	\bigcirc	O	\bigcirc	O	R	R	R	R	R					
0.068	683	C	J	J	J	J	J	M	M	M	M	M	M	M	M	M	M	R	R	R	R	R	\bigcirc	\bigcirc	O	\bigcirc	O	R	R	R	R	R	V	V	V	V	V
0.082	823	C	H	H	H	H	J	M	M	M	M	M	M	M	M	M	M	R	R	R	R	R	O	\bigcirc	O	O	O	R	R	R	R	R	V	V	V	V	V
0.1	104	C	H	H	H	H	J	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	V	V	V	V	V	R	R	R	R	R	V	V	V	V	V
0.12	124		H	H	H	H	H	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	R	R	R	R	R	V	V	V	V	V
0.15	154		H	H	H	H		M	M	M	M	M	R	R	R	R	R	P	P	P	P	P	\bigcirc	O	O	\bigcirc	\bigcirc	R	R	R	R	R	V	V	V	V	V
0.18	184		H	H	H	H							R	R	R	R	R	P	P	P	P	P	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O	R	R	R	R	R	V	V	V	V	V
0.22	224		H	H	H	H		M	M	M	M	M	R	R	R	R	R	Q	Q	Q	Q	Q	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	R	R	R	R	R	V	V	V	V	V
0.27	274		H	H	H			M	M	M	M	M	R	R	R	R	R	Q	Q	Q	Q	Q	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	R	R	R	R	R	V	V	V	V	V
0.33	334		H	H	H			M	M	M	M	M	R	R	R	R	R	Q	Q	Q	Q	Q	\bigcirc	O	\bigcirc	\bigcirc	O	R	R	R	R	R	V	V	V	V	V
0.39	394		H	H	H			M	M	M	M	M	R	R	R	R	R	U	U	U	U	U	\bigcirc	\bigcirc	\bigcirc	R	R	R	R	R	R	R	V	V	V	V	V
0.47	474		H	H	H			M	M	M	M	M	R	R	R	R	R	U	U	U	U	U	\bigcirc	\bigcirc	O	O	O	R	R	R	R	R	V	V	V	V	V
0.56	564		H	H	H			M	M	M	M	M	R	R	R	R	R	U	U	U	U	U	R	R	R	R	R	R	R	R	R	R	V	V	V	V	V
0.68	684		H	H	H			M	M	M	M	M	R	R	R	R	R	U	U	U	U	U	O	O	O	O	O	R	R	R	R	V	V	V	V	V	V
0.82	824		H	H	H			M	M	M	M	M	R	R	R	R	R	U	U	U	U	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O	R	R	R	R	V	V	V	V	V	V
1.0uF	105		H	H	H	H		M	M	M	M	M	R	R	R	R	R	T	T	T	T	T	T	T	T	T	T	V	V	V	V	V	V	V	V	V	V
1.2	125																	U	U	U	U	U	Z	Z	Z	Z	Z	V	V	V	V	V	V	V	V	V	V
1.5	155																	U	U	U	U	U	Z	Z	Z	Z	Z	V	V	V	V	V	V	V	V	V	V
2.2	225							M	M	M			R	R	R	R	R	U	U	U	U	U	Z	Z	Z	Z	Z	Y	Y	Y	Y	Y	V	V	V	V	V
2.7	275																																V	V	V	V	V
3.3	335												R	R	R	R	R	U	U	U	U	U	Z	Z	Z	Z	Z	Y	Y	Y	Y	Y	V	V	V	V	V
4.7	475							M	M				R	R	R	R	R	U	U	U	U	U	Z	Z	Z	Z	Z	V	V	V	V	V	V	V	V	V	V
5.6	565																																V	V	V	V	V
6.8	685												R	R	R			U	U	U	U	U	Z	Z	Z	Z		Y	Y	Y	Y	Y	V	V	V	V	V
8.2	825																						Z	Z	Z	Z	Z										
10	106												R	R	R			U	U	U	U	U	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
15	156																						Y	Y	Y			A1	A1	A1	A1		A1	A1	A1		
22	226							N	N				R	R	R			T	T	T			Y	Y	Y	Y		Y	Y	Y	Y		Y	Y	Y	Y	Y
33	336																	T	T				V	V				Y	Y	Y			V	V	V		
47	476							N					R	R				T	T				Y	Y	Y	Y		A1	A1	A1			X	X	X	X	
68	686																	T	T									A1					X	X			
100	107																	T	T				Y	Y				A1	A1				A1	A1	A1		
220	227																																				
330	337																																				

SYMBOL	TAPE WIDTH	A	B	C	D	E	W	C
	8 mm	$\varnothing 178 \pm 2.0$	MIN $\varnothing 50$	$\varnothing 13 \pm 0.5$	21 ± 0.8	2.0 ± 0.5	10 ± 0.5	0.9 ± 0.2
	12 mm	$\varnothing 178 \pm 2.0$	MIN $\varnothing 50$	$\varnothing 13 \pm 0.5$	21 ± 0.8	2.0 ± 0.5	13 ± 0.5	1.2 ± 0.2
10 " Reel	8 mm	$\varnothing 258 \pm 2.0$	MIN $\varnothing 70$	$\varnothing 13 \pm 0.5$	21 ± 0.8	2.0 ± 0.5	10 ± 0.5	1.8 ± 0.2
	8 mm	$\varnothing 330 \pm 2.0$	MIN $\varnothing 70$	$\varnothing 13 \pm 0.5$	21 ± 0.8	2.0 ± 0.5	10 ± 0.5	1.8 ± 0.2
	12 mm	$\varnothing 330 \pm 2.0$	MIN $\varnothing 70$	$\varnothing 13 \pm 0.5$	21 ± 0.8	2.0 ± 0.5	13 ± 0.5	2.2 ± 0.2

CarrierTape (Standard)

- To peel off the cover tape by the method shown in the right figure apply a peel-off force of 20GF - 60GF (card board); 10GF - 75GF (plastic tape).
-The cover tape should not touch the top or bottom of the chip.
- If the cover tape has been peeled off it may be difficult to remove the chip due to punch-hole clearance, dirt, and debris. Make sure therefore that no paper waste will adhere to and block the absorption nozzle.
- If the cover tape has been peeled off from the top, stick it back on with a suitable adhesive.
- Follow the illustration for the start and end of the winding operation.

CARDBOARD CARRIER TAPE FOR 01005, 0201, 0402, 0603, 0805, 1206

Cal-Chip

59 Steamwhistle Drive, Ivyland, PA 18974 | p. 215.942 .8900 | www.calchip.com | quotes@calchip.com

- Embossed plastic carrier tape for 0805/1206/1210/1808/1812/1825/2220 AND 2225 type

TYPE	Ao	Bo	T	Ko	w	Po	10XPo	P_{1}	P_{2}	Do	D1	E	F	MOUNTING HOLE	STD. REEL QTY 7"	$\begin{array}{\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|} \hline \text { REEL OTY } \\ \left(10 / 13^{\prime}\right) \end{array}$
0805	<1.80	<2.70	0.23 ± 0.10	<2.50	8.0 ± 0.20	4.0 ± 0.10	40.0 ± 0.20	4.0 ± 0.10	2.0 ± 0.05	1.5 ± 0.10	1.0 ± 0.10	1.75 ± 0.10	3.5 ± 0.05		$\begin{aligned} & 2,000 \\ & 3,000 \end{aligned}$	$\begin{aligned} & 10,000 \mathrm{D} \\ & 15,000 \mathrm{G} \end{aligned}$
1206	<2.30	<4.00	0.23 ± 0.10	<2.50	8.0 ± 0.20	4.0 ± 0.10	40.0 ± 0.20	4.0 ± 0.10	2.0 ± 0.05	1.5 ± 0.10	1.0 ± 0.10	1.75 ± 0.10	3.5 ± 0.05		$\begin{aligned} & 2,000 \\ & 3,000 \end{aligned}$	$\begin{aligned} & 8,000 \mathrm{D} \\ & 10,000 \mathrm{G} \end{aligned}$
1210	<3.20	<3.95	0.23 ± 0.10	<3.00	8.0 ± 0.20	4.0 ± 0.10	40.0 ± 0.20	4.0 ± 0.10	2.0 ± 0.05	1.5 ± 0.10	1.0 ± 0.10	1.75 ± 0.10	3.5 ± 0.05		$\begin{array}{\|c\|} \hline 500 \\ 1,0002,000 \\ 3,000 \end{array}$	$\begin{aligned} & 4,000 \mathrm{D} \\ & 8,000 \mathrm{G} \end{aligned}$
1808	<2.50	<5.30	0.25 ± 0.10	<2.50	12.0 ± 0.20	4.0 ± 0.10	40.0 ± 0.20	4.0 ± 0.10	2.0 ± 0.05	1.5 ± 0.10	1.0 ± 0.10	1.75 ± 0.10	5.5 ± 0.10	Angular	$\begin{aligned} & 1,000 \\ & 2,000 \\ & 3,000 \\ & \hline \end{aligned}$	
1812	<3.90	<5.30	0.25 ± 0.10	<3.50	12.0 ± 0.20	4.0 ± 0.10	40.0 ± 0.20	8.0 ± 0.10	2.0 ± 0.05	1.5 ± 0.10	1.5 ± 0.10	1.75 ± 0.10	5.5 ± 0.10		$\begin{gathered} 500 \\ 1,000 \end{gathered}$	3,000 D
1825	<6.80	<5.30	0.30 ± 0.10	<3.10	12.0 ± 0.20	4.0 ± 0.10	40.0 ± 0.20	8.0 ± 0.10	2.0 ± 0.05	1.5 ± 0.10	1.5 ± 0.10	1.75 ± 0.10	5.5 ± 0.10		$\begin{gathered} 500 \\ 1,000 \end{gathered}$	
2220	<5.80	<6.50	0.30 ± 0.10	<3.10	12.0 ± 0.20	4.0 ± 0.10	40.0 ± 0.20	8.0 ± 0.10	2.0 ± 0.05	1.5 ± 0.10	1.5 ± 0.10	1.75 ± 0.10	5.5 ± 0.10		$\begin{gathered} 500 \\ 700 \\ 1,000 \end{gathered}$	
2225	<6.80	<6.50	0.30 ± 0.10	<3.10	12.0 ± 0.20	4.0 ± 0.10	40.0 ± 0.20	8.0 ± 0.10	2.0 ± 0.05	1.5 ± 0.10	1.5 ± 0.10	1.75 ± 0.10	5.5 ± 0.10		$\begin{aligned} & 500 \\ & 700 \end{aligned}$	

WARRANTY: All passive components supplied by Calchip Electronics, 59 Steamwhistle Drive, Ivyland, PA. 18974, are under warranty for a period of 2 years from the date of manufacture. Product will meet or exceed all reliability and test specifications expressed by Calchip for the above mentioned time period provided storage conditions (stated below) are met. Product Storage Instructions:

1) Product must be kept away from direct sunlight.
2) Product must be stored in the following conditions - Temperature; 5 to 35 degrees Celsius / 40 to 95 degrees Fahrenheit Humidity; 45 to 85%
3) Product to be kept free of moisture, dirt and debris.
WHEN THESE CONDITIONS ARE NOT MET, PRODUCT LIFE COULD BE SHORTENED***
NOTICE: Specifications are subject to change without notice. Contact your nearest Cal-Chip Sales Office for the latest specifications. All statements, information and data given herein are believed to be accurate and reliable, but are presented without guarantee, warranty, or responsibility of any kind, expressed or implied. Statements or suggestions concerning possible use of our products are made without representation or warranty that any such use is free of patent infringement and are not recommendations to infringe any patent. The user should not assume that all safety measures are indicated or that other measures may not be required. Specifications are typical and may not apply to all applications.

[^0]: * L 0.6 ± 0.09 | W 0.3 ± 0.09

