ispXPGA ${ }^{\circledR}$ Device Datasheet

June 2010

Select Devices Discontinued!

Product Change Notifications (PCNs) have been issued to discontinue select devices in this data sheet.

The original datasheet pages have not been modified and do not reflect those changes. Please refer to the table below for reference PCN and current product status.

Product Line	Ordering Part Number	Product Status	Reference PCN
LFX125B	LFX125B-03F256C	Discontinued	PCN\#09-10
	LFX125B-03FN256C		
	LFX125B-04F256C		
	LFX125B-04FN256C		
	LFX125B-05F256C		
	LFX125B-05FN256C		
	LFX125B-03F516C		
	LFX125B-04F516C		
	LFX125B-05F516C		
LFX125C	LFX125C-03F256C	Discontinued	PCN\#09-10
	LFX125C-03FN256C		
	LFX125C-04F256C		
	LFX125C-04FN256C		
	LFX125C-03F516C		
	LFX125C-04F516C		
LFX200B	LFX200B-03F256C	Active / Orderable	
	LFX200B-03FN256C		
	LFX200B-04F256C		
	LFX200B-04FN256C		
	LFX200B-05F256C		
	LFX200B-05FN256C		
	LFX200B-03F516C	Discontinued	PCN\#09-10
	LFX200B-04F516C		
	LFX200B-05F516C		
LFX200C	LFX200C-03F256C	Discontinued	PCN\#09-10
	LFX200C-03FN256C		
	LFX200C-04F256C		
	LFX200C-04FN256C		
	LFX200C-03F516C		
	LFX200C-04F516C		

Product Line	Ordering Part Number	Product Status	Reference PCN
LFX500B	LFX500B-03F516C	Discontinued	PCN\#09-10
	LFX500B-04F516C		
	LFX500B-05F516C		
	LFX500B-03F900C		
	LFX500B-03FN900C		
	LFX500B-04F900C		
	LFX500B-04FN900C		
	LFX500B-05F900C		
	LFX500B-05FN900C		
LFX500C	LFX500C-03F516C	Discontinued	PCN\#09-10
	LFX500C-04F516C		
	LFX500C-03F900C		
	LFX500C-03FN900C		
	LFX500C-04F900C		
	LFX500C-04FN900C		
LFX1200B	LFX1200B-03FE680C	Discontinued	PCN\#03A-10
	LFX1200B-04FE680C		
	LFX1200B-05FE680C		
	LFX1200B-03F900C		
	LFX1200B-04F900C		
	LFX1200B-05F900C		
LFX1200C	LFX1200C-03FE680C	Discontinued	PCN\#03A-10
	LFX1200C-04FE680C		
	LFX1200C-03F900C		
	LFX1200C-04F900C		
LFX125EB	LFX125EB-03F256C	Active / Orderable	
	LFX125EB-03FN256C		
	LFX125EB-04F256C		
	LFX125EB-04FN256C		
	LFX125EB-05F256C		
	LFX125EB-05FN256C		
	LFX125EB-03F256I		
	LFX125EB-03FN256I		
	LFX125EB-04F256I		
	LFX125EB-04FN256I		
	LFX125EB-03F516C	Discontinued	PCN\#09-10
	LFX125EB-04F516C		
	LFX125EB-05F516C		
	LFX125EB-03F516I		
	LFX125EB-04F516\|		
LFX125EC	LFX125EC-03F256C	Discontinued	PCN\#09-10
	LFX125EC-03FN256C		
	LFX125EC-04F256C		
	LFX125EC-04FN256C		
	LFX125EC-03F256I		
	LFX125EC-03FN256I		

Product Line	Ordering Part Number	Product Status	Reference PCN
LFX125EC (Cont'd)	LFX125EC-03F516C	Discontinued	PCN\#09-10
	LFX125EC-04F516C		
	LFX125EC-03F516I		
LFX200EB	LFX200EB-03F256C	Active / Orderable	
	LFX200EB-03FN256C		
	LFX200EB-04F256C		
	LFX200EB-04FN256C		
	LFX200EB-05F256C		
	LFX200EB-05FN256C		
	LFX200EB-03F256I		
	LFX200EB-03FN256I		
	LFX200EB-04F256I		
	LFX200EB-04FN256I		
	LFX200EB-03F516C	Discontinued	PCN\#09-10
	LFX200EB-04F516C		
	LFX200EB-05F516C		
	LFX200EB-03F516I		
	LFX200EB-04F516I		
LFX200EC	LFX200EC-03F256C	Discontinued	PCN\#09-10
	LFX200EC-03FN256C		
	LFX200EC-04F256C		
	LFX200EC-04FN256C		
	LFX200EC-03F256I		
	LFX200EC-03FN2561		
	LFX200EC-03F516C		
	LFX200EC-04F516C		
	LFX200EC-03F516I		
LFX500EB	LFX500EB-03F516C	Discontinued	PCN\#09-10
	LFX500EB-04F516C		
	LFX500EB-05F516C		
	LFX500EB-03F516I		
	LFX500EB-04F516I		
	LFX500EB-03F900C		
	LFX500EB-03FN900C		
	LFX500EB-04F900C		
	LFX500EB-04FN900C		
	LFX500EB-05F900C		
	LFX500EB-05FN900C		
	LFX500EB-03F9001		
	LFX500EB-03FN900I		
	LFX500EB-04F9001		
	LFX500EB-04FN900I		
LFX500EC	LFX500EC-03F516C	Discontinued	PCN\#09-10
	LFX500EC-04F516C		
	LFX500EC-03F516I		

Product Line	Ordering Part Number	Product Status	Reference PCN
LFX500EC (Cont'd)	LFX500EC-03F900C	Discontinued	PCN\#09-10
	LFX500EC-03FN900C		
	LFX500EC-04F900C		
	LFX500EC-04FN900C		
	LFX500EC-03F9001		
	LFX500EC-03FN9001		
LFX1200EB	LFX1200EB-03FE680C	Discontinued	PCN\#03A-10
	LFX1200EB-04FE680C		
	LFX1200EB-05FE680C		
	LFX1200EB-03FE680I		
	LFX1200EB-04FE680I		
	LFX1200EB-03F900C		
	LFX1200EB-04F900C		
	LFX1200EB-05F900C		
	LFX1200EB-03F900I		
	LFX1200EB-04F900I		
LFX1200EC	LFX1200EC-03FE680C	Discontinued	PCN\#03A-10
	LFX1200EC-04FE680C		
	LFX1200EC-03FE6801		
	LFX1200EC-03F900C		
	LFX1200EC-04F900C		
	LFX1200EC-03F900I		

February 2010

ispXPGA ${ }^{\circ}$ Family

- Non-volatile, Infinitely Reconfigurable
- Instant-on - Powers up in microseconds via on-chip $\mathrm{E}^{2} \mathrm{CMOS}^{\oplus}$ based memory
- No external configuration memory
- Excellent design security, no bit stream to intercept
- Reconfigure SRAM based logic in milliseconds
- High Logic Density for System-level Integration
- 139 K to 1.25 M functional gates
- 160 to 496 I/O
- $1.8 \mathrm{~V}, 2.5 \mathrm{~V}$, and 3.3 V V cc operation
- Up to 414 Kb sysMEM ${ }^{\text {cM }}$ embedded memory
- High Performance Programmable Function Unit (PFU)
- Four LUT-4 per PFU supports wide and narrow functions
- Dual flip-flops per LUT-4 for extensive pipelíning
- Dedicated logic for adders, multipliers, multiplexers, and counters

- Flexible Memory Resources

- Multiple sysMEM Embedded RAM Blocks
- Single port, Dual port, and FIFO operation
- 64-bit distributed memory in each PFU
- Single port, Double port, FIFO, and Shift Register operation
- Flexible Programming, Reconfiguration, and Testing
- Supports IEEE 1532 and 1149.1

Data Sheet DS1026

- Microprocessor configuration interface
- Program $E^{2} \mathrm{CMOS}$ while operating from SRAM

■ Eight sysCLOCK ${ }^{\text {™ }}$ Phase Locked Loops
(PLLs) for Clock Management

- True PLL technology
- 10 MHz to 320 MHz operation
- Clock multiplication and division
- Phase adjustment
- Shift clocks in 250ps steps
- sys $\mathrm{IO}^{\text {M }}$ for High System Performance
- High speed memory support through SSTL and HSTL
- Advanced buses supported through PCI, GTL+, LVDS, BLVDS, and LVPECL
- Standard logic supported through LVTTL, LVCMOS 3.3, 2.5 and 1.8
- 5V tolerant I/O for LVCMOS 3.3 and LVTTL interfaces
- Programmable drive strength for series termination
- Programmable bus maintenance

Two Options Available

- High-performance sysHSI (standard part number)
- Low-cost, no sysHSI ("E-Series")
sysHSITM Capability for Ultra Fast Serial Communications
- Up to 800Mbps performance
- Up to 20 channels per device
- Built in Clock Data Recovery (CDR) and Serialization and De-serialization (SERDES)

Table 1. ispXPGA Family Selection Guide

	ispXPGA 125/E	ispXPGA 200/E	ispXPGA 500/E	ispXPGA 1200/E
Functional Gates	139 K	210 K	476 K	1.25 M
PFUs	484	676	1764	3844
LUT-4s	1936	2704	7056	15376
Logic FFs	3.8 K	5.4 K	14.1 K	30.7 K
sysMEM Memory	92 K	111 K	184 K	414 K
Distributed Memory	30 K	43 K	112 K	246 K
EBR	20	24	40	90
sysHSI Channels ${ }^{1}$	4	8	12	20
User I/O	$160 / 176$	$160 / 208$	336	496
Packaging	$256 \mathrm{fpBGA}^{2}$	$256 \mathrm{fpBGA}^{2}$	$516 \mathrm{fpBGA}{ }^{2}$	$516 \mathrm{fpBGA}^{2}$

[^0]
ispXPGA Family Overview

The ispXPGA family of devices provides the ideal vehicle for the creation of high-performance logic designs that are both non-volatile and infinitely re-programmable. Other FPGA solutions force a compromise, being either reprogrammable or non-volatile. This family couples this capability with a mainstream architecture containing the features required for today's system-level design.

The ispXPGA family is available in two options. The standard device supports sysHSI capability for ultra fast serial communications while the lower-cost "E-Series" supports the same high-performance FPGA fabric without the sysHSI Block.

Electrically Erasable CMOS (E^{2} CMOS) memory cells provide the ispXPGA family with non-volatile capability. These allow logic to be functional microseconds after power is applied, allowing easy interfacing in many applications. This capability also means that expensive external configuration memories are not required and that designs can be secured from unauthorized read back. Internal SRAM cells allow the device to be infinitely reconfigured if desired. Both the SRAM and $\mathrm{E}^{2} \mathrm{CMOS}$ cells can be programmed and verified through the IEEE 1532 industry standard. Additionally, the SRAM cells can be configured and read-back through the sysCONFIG ${ }^{\text {TM }}$ peripheral port.
The family spans the density and I/O range required for the majority of today's logic designs, 139 K to 1.25 M functional gates and 160 to $496 \mathrm{I} / \mathrm{O}$. The devices are available for operation from $1.8 \mathrm{~V}, 2.5 \mathrm{~V}$, and 3.3 V power supplies, providing easy integration into the overall system.
System-level design needs are met through the incorporation of sysMEM dual-port memory blocks, sysIO advanced I/O support, and sysCLOCK Phase Locked Loops (PLLs). High-speed serial communications are supported through multiple sysHSI blocks, which provide clock data recovery (CDR) and serialization/de-serialization (SERDES).

The ispLEVERTM design tool from Lattice allows easy implementation of designs using the ispXPGA product. Synthesis library support is available for major logic synthesis tools. The ispLEVER tool takes the output from these common synthesis packages and place and routes the design in the ispXPGA product. The tool supports floor planning and the management of other constraints within the device. The tool also provides outputs to common timing analysis tools for timing analysis.

To increase designer productivity, Lattice provides a variety of pre-designed modules referred to as IP cores for the ispXPGA product. These IP cores allow designers to concentrate on the unique portions of their design while using pre-designed blocks to implement standard functions such as bus interfaces, standard communication interfaces, and memory controllers.

Through the use of advanced technology and innovative architecture the ispXPGA FPGA devices provide designers with excellent speed performance. Although design dependent, many typical designs can run at over 150 MHz . Certain designs can run at over 300MHz. Table 2 details the performance of several building blocks commonly used by logic designers.

Table 2. ispXPGA Speed Performance for Typical Building Blocks

Function	Performance
8:1 Asynch MUX	150 MHz
1:32 Asynch Demultiplexer	125 MHz
8 x 8 2-LL Pipelined Multiplier	225 MHz
32-bit Up/Down Counter	290 MHz
32-bit Shift Register	360 MHz

Architecture Overview

The ispXPGA architecture is a symmetrical architecture consisting of an array of Programmable Function Units (PFUs) enclosed by Input Output Groups (PICs) with columns of sysMEM Embedded Block RAMs (EBRs) distributed throughout the array. Figure 1 illustrates the ispXPGA architecture. Each PIC has two corresponding sysIO blocks, each of which includes one input and output buffer. On two sides of the device, between the PICs and the sysIO blocks, there are sysHSI High-Speed Interface blocks. The symmetrical architecture allows designers to easily implement their designs, since any logic function can be placed in any section of the device.

The PFUs contain the basic building blocks to create logic, memory, arithmetic, and register functions. They are optimized for speed and flexibility allowing complex designs to be implemented quickly and efficiently.

The PICs interface the PFUs and EBRs to the external pins of the device. They allow the signals to be registered quickly to minimize setup times for high-speed designs. They also allow connections directly to the different logic elements for fast access to combinatorial functions.

The sysMEM EBRs are large, fast memory elements that can be configured as RAM, ROM, FIFO, and other storage types. They are designed to facilitate both single and dual-port memory for high-speed applications.

These three components of the architecture are interconnected via a high-speed, flexible routing array. The routing array consists of Variable Length Interconnect (VLI) lines between the PICs, PFUs, and EBRs. There is additional routing available to the PFU for feedback and direct routing of signals to adjacent PFUs or PICs.

The sysIO blocks consist of configurable input and output buffers connected directly to the PICs. These buffers can be configured to interface with 16 different I/O standards. This allows the ispXPGA to interface with other devices without the need for external transceivers.

The sysHSI blocks provide the necessary components to allow the ispXPGA device to transfer data at up to 800 Mbps using the LVDS standard. These components include serializing, de-serializing, and clock data recovery (CDR) logic.

The sysCLOCK blocks provide clock multiplication/division, clock distribution, delay compensation, and increased performance through the use of PLL circuitry that manipulates the global clocks. There is one sysCLOCK block for each global clock tree in the device.

Figure 1. ispXPGA Block Diagram

Programmable Function Unit

The Programmable Function Unit (PFU) is the basic building block of the ispXPGA architecture. The PFUs are arranged in rows and columns in the device with PFU (1,1) referring to (row 1, column 1). Each PFU consists of four Configurable Logic Elements (CLEs), four Configurable Sequential Elements (CSEs), and a Wide Logic Generator (WLG). By utilizing these components, the PFU can implement a variety of functions. Table 3 lists some of the function capabilities of the PFU.

There are 57 inputs to each PFU and nine outputs. The PFU uses 20 inputs for logic, and 37 inputs drive the control logic from which six control signals are derived for the PFU.

Table 3. Function Capability of ispXPGA PFU

Function	Capability
	Look-up table
Wide logic functions	UUT-4, LUT-5, LUT-6
Multiplexing	Up 20 input logic functions
	2:1, 4:1, 8:1
Arithmetic logic	Dedicated carry chain and booth multiplication logic
Single-port RAM	16X1, 16X2, 16X4, 32X1, 32X2, 64X1
Double-port RAM	16X1, 16X2, 32X1
Shift register	8-bit shift registers (up to 32-bit shift capability)

Figure 2. ispXPGA PFU

Configurable Logic Element

The CLE is made up of a four-input Look-up Table (LUT-4), a Carry Chain Generator (CCG), and a two-input AND gate. The LUT-4 creates various combinatorial and memory elements, the CCG creates a single one-bit full adder, and the two-input AND gate can expand the CCG to incorporate Booth Multiplier capability by feeding the output of the AND gate to one of the inputs of the CCG.

Of the five inputs that feed each CLE, two are dedicated inputs into each LUT-4 and the remaining three take on varying functionality. The third and fourth inputs can be used as either inputs to the LUT-4 or as a Feed-Thru to the CSE via the WLG. The fifth input can be a data port when the LUT is configured as Distributed Memory, a select line for multiplexer operation, or a Feed-Thru directly to the CSE via the WLG (Figure 2).

Look-Up Table - Combinatorial Mode

In combinatorial mode, the LUT-4 can implement any logic function up to four inputs. By using the carry chain and the WLG, each LUT-4 can be combined to form the enhanced functions listed in Table 3.

Look-Up Table - Distributed Memory Mode

In the distributed memory mode, the LUT functions as a memory element. The inputs to the LUT function as Address and Data. Each PFU is capable of implementing up to 64 SRAM bits. Both single and double port RAM can be performed in the PFU (Table 3). Furthermore, the distributed memory can be configured as either synchronous or asynchronous memory. Figure 3 illustrates the LUT while in distributed memory mode. When using any LUT in the PFU in memory mode, the Set/Reset signal will be used for Write Enable (WE(SR)) and the CLK0 signal will be used as the clock for synchronous read and write.

Figure 3. LUT in Distributed Memory Mode

Look-Up Table - Shift Register Mode

In the shift register mode, the LUT functions as a 1-bit to 8 -bit shift register. This means that each PFU can implement up to four 8 -bit shift registers or any cascaded combination. Figure 4 illustrates the LUT when configured in shift register mode.

Figure 4. LUT in Shift Register Mode

Carry Chain Generator

The Carry Chain Generator is useful for implementing high-speed arithmetic functions. The CCG consists of a twoinput XOR gate whose carryout can be cascaded with the input of the adjacent CCG. As shown in Figure 5, the carryin signal feeds CLE3 of the PFU and is propagated through CLE2 and CLE1 before reaching CLE0. The sum output of the CCG can be fed to the CSE through the WLG. The carryout must propagate to CLEO for use outside the PFU. The carryout from the PFU can feed the W0 input of CSE0. The CCG also helps to effectively implement wider functions by using its logic elements to expand the capabilities of the LUT-4.

Wide Logic Generator

The WLG contains the logic necessary to implement wide gate functions. This is made up of a set of multiplexers that are located between the CLE and the CSE. The WLG helps in enhancing the wide gating capability of the PFU. The outputs of each CLE can be cascaded in the WLG to build wide gating functions. Wide multiplexing functions are also possible with a similar use of the WLG. Figure 6 illustrates the WLG.

Figure 6. ispXPGA Wide Logic Generator

Configurable Sequential Element

There are two registers in each CSE for a total of eight registers in each PFU. This high register count assists in implementing efficient pipelined applications with no utilization penalty. Each register can be configured as a latch or D type flip-flop with either synchronous or asynchronous set or reset. Figure 2 shows the signals that feed the register's D inputs. Feed-through signals in the architecture ensure that registers are efficiently utilized even if the accompanying LUT is occupied.

Control Logic

The control signals available to the registers in a PFU are Clock, Clock Enable, and Set/Reset. Figure 7 shows the various options available to generate the clock signal. As can be seen, the clock signal is the output of a 12:1 MUX with true and compliment versions available from the 12:1 MUX. Each CSE can chose whether it uses the true or complement form of the clock. Figure 8 shows the Set/Reset selection for each PFU in the ispXPGA. A common

Set/Reset signal controls all the registers for each PFU. This common Set/Reset signal is composed of the logical OR term of the Global Set/Reset signal (GSR) and the selected signal from routing. The polarity of this signal is not controllable inside the PFU. The polarity of the Global Set/Reset signal (GSR) is programmable. Figure 9 shows the Clock Enable and Output Enable selection for each PFU.

Figure 7. Clock Selection per PFU

Figure 8. Set/Reset Selection per PFU

Figure 9. Clock Enable and Output Enable Selection per PFU

Programmable Input/Output Cell

The Programmable Input/Output Cell (PIC) is an essential part of the symmetrical architecture of the ispXPGA Family. The PICs interface the PFUs and EBRs to the sysIO and sysHSI blocks of the device.

Each PIC contains two Programmable Input/Outputs (PIOs) with a total of 21 inputs and 10 outputs. There are 18 inputs from routing, two inputs from the sysIO buffers, and the Global Set/Reset signal. Four outputs of the PIC connect to routing and two outputs are available as Output Enables for the tri-statable Long Lines. The remaining four outputs feed the sysiO buffers directly (one output enable and one output to each). Each PIC associated with a sysHSI block has four additional inputs and six additional outputs to support the sysHSI blocks. The four additional inputs come from the sysHSI block associated with the PIC. The four of the six additional outputs come from the PIC outputs and feed the sysHSI block, while the remaining two outputs feed routing. Figure 10 shows the block diagram of the PIC with the sysHSI block inputs and outputs.

Figure 10. ispXPGA PIC

The PIO is the building block of a PIC. The PIO has a total of 11 inputs and five outputs. Nine of the 11 inputs are generated from routing. The inputs from routing are the PIO Input (IN), Feed-Thru (FT), Clock (CLK), Input Clock Enable (ICE), Input Set/Reset (ISR), Output Clock Enable (OCEN), Output Set/Reset (OSR), PIO Output Enable (OEN), and PIO Input Enable (IEN). The remaining inputs are the sysIO input buffer signal and the Global Set/ Reset signal. Three of the five outputs (OUT0, OUT1, and OE) feed routing. The last two outputs feed the sysIO buffer directly as the output and output enable of the sysiO output buffer.

PIOs associated with sysHSI blocks contain two additional inputs and outputs to support the sysHSI block. The two inputs come from the sysHSI block associated with the PIO, and the two outputs feed the sysHSI block. One of the inputs routes directly through the PIO to routing, while the other is multiplexed with the Feed-Thru, register bypass, and Q output of the register to form the OUT1 output of the PIO. The outputs to the sysHSI block are the same signals as the outputs which feed the sysiO buffers (sysIO Output and sysIO Output Enable).

Each PIO has an input register, an output register, and an output enable register as shown in Figure 11. The input register path of the PIO has a 'delay' option, which slows the data-flow. A two-input OR function of the Global Set/ Reset (GSR) and Set/Reset (ISR or OSR) signals creates the set/reset term for the respective registers. Each PIO has two pairs of set/reset and clock enable signals. One is exclusive to the input register, whereas the other is common for both the output and output enable registers. The clock (CLK) is common to all registers in a PIO, and the polarity of the clock is controllable. The input, output, and the output enable registers can be configured as a latch or D-type flip-flop. Each PIO is capable of generating an output enable signal, which in turn becomes a PIC output.

Figure 11. ispXPGA PIO

The ispXPGA architecture contains a Variable-Length-Interconnect (VLI) routing technology connecting the PFUs, PICs, and EBRs in the device. There are four types of routing resources, Global Lines, Long Lines, General Interconnect, and Local Lines forming the global routing structure. This allows a signal to be routed to any element in the device with the optimal delay.

The Global Lines consist of global clock lines and a global set/reset line. These lines are routed to all elements in the device. They are specifically designed for high speed, predictable timing regardless of fan-out. The global clock lines can also be used as dedicated inputs.

The Long Lines consist of Horizontal and Vertical Long Lines (HLL and VLL). The VLL and HLL are tri-statable lines spanning the entire device. These lines allow fast routing for high fan-out nets and general-purpose functions.

The General Interconnect consists of Double and Deca Lines. The Double Lines connect up to three elements (two plus the driving element), while the Deca Lines connect up to eleven elements (ten plus the driving element).

The Local Lines are extremely fast routing paths consisting of Feedback and Direct Connect Lines. The Feedback Lines are internal routing paths from the PFU outputs to the PFU inputs. The Direct Connect Lines connect all adjacent elements.

The Common Interface Block (CIB) provides the link between the logic element (PFU, PIC, or EBR) and the VLI Routing resources. The CIB is a switch matrix that can be programmed to connect virtually any routing resource to any input or output of the logic element.

Memory

The ispXPGA architecture provides a large amount of resources for memory intensive applications. Embedded Block RAMs (EBRs) are available to complement the Distributed Memory that is configured in the PFUs (see LookUp Table -Distributed Memory Mode in the PFU section above). Each memory element can be configured as RAM or ROM. Additionally, the internal logic of the device can be used to configure the memory elements as FIFO and other storage types. These EBRs are referred to as sysMEM blocks. Refer to Table 1 for memory resources per device.

sysMEM Blocks

The sysMEM blocks are organized in columns distributed throughout the device. Each EBR contains 4.6K bits of dual-port RAM with dedicated control, address, and data lines for each port. Each column of sysMEM blocks has dedicated address and control lines that can be used by each block separately or cascaded to form larger memory elements. The memory cells are symmetrical and contain two sets of identical control signals. Each port has a read/write clock, clock enable, write enable, and output enable. Figure 12 illustrates the sysMEM block.

The ispXPGA memory block can operate as single-port or dual-port RAM. Supported configurations are:

- 512×9 bits single-port
- 256×18 bits single-port
- 512×9 bits dual-port
- 256 x18 bits dual-port
(8 bits data / 1 bit parity)
(16 bits data / 2 bits parity)
(8 bits data / 1 bit parity)
(16 bits data/2 bits parity)

The data widths of " 9 " and " 18 " are ideal for applications where parity is necessary. This allows 9 data bits, 8 data bits plus a parity bit, 18 data bits, or 16 data bits plus two parity bits. The logic for generating and checking the parity must be customized separately.

Figure 12. sysMEM Block Diagram

Read and Write Operations

The ispXPGA EBR has fully synchronous read and write operations as well as an asynchronous read operation. These operations allow several different types of memory to be implemented in the device.

Synchronous Read: The Clock Enable ($\overline{\mathrm{CE}}$) and Write Enable (WE) signals control the synchronous read operation. When the $\overline{C E}$ signal is low, the clock is enabled. When the WE signal is low the read operation begins. Once the address (ADDR) is present, a rising clock edge (or falling edge depending on polarity) causes the stored data to be available on the DATA port. Figure 13 illustrates the synchronous read timing.

Figure 13. EBR Synchronous Read Timing Diagram

Synchronous Write: The WE signal controls the synchronous write operation. When the WE signal is high, the write operation begins. Once the address and data are present and the Output Enable (OE) is active, a rising clock edge (or falling edge depending on polarity) causes the data to be stored into the EBR. Figure 14 illustrates the synchronous write timing.

Figure 14. EBR Synchronous Write Timing Diagram

Asynchronous Read: The WE signal controls the asynchronous read operation. When the WE signal is low, the read operation begins. Shortly after the address is present, the stored data is available on the DATA port. Figure 15 illustrates the asynchronous read timing. For more information about the EBR, refer to TN1028 ispXPGA Memory Usage Guidelines.

Fígure 15. EBR Asynchronous Read Timing Diagram

sysCLOCK PLL Description

The sysCLOCK PLL circuitry consists of Phase-Lock Loops (PLLs) and the various dividers, reset, and feedback signals associated with the PLLs. This feature gives the user the ability to synthesize clock frequencies and generate multiple clock signals for routing within the device. Furthermore, it can generate clock signals that are aligned either at the board level or the device level.

The ispXPGA devices provide up to eight PLLs. Each PLL receives its input clock from its associated global clock pin, and its output is routed to the associated global clock net. For example, PLLO receives its clock input from the GCLKO global clock pin and provides output to the CLKO global clock net. The PLL also has the ability to output a secondary clock that is a division of the primary clock output. When using the secondary clock, the secondary clock will be routed to the neighboring global clock net. For example, PLLO will drive its primary clock output on the CLK0 global clock net and its secondary clock output will drive the CLK1 global clock net. Additionally, each PLL has a set of PLL_RST, PLL_FBK, and PLL_LOCK signals. The PLL_RST signal can be generated through routing or a dedicated dual-function I/O pin. The PLL_FBK signal can be generated through a dedicated dual-function I/O pin or internally from the Global Clock net associated with the PLL. The PLL_LOCK signal feeds routing directly from the sysCLOCK PLL circuit. Figure 17 illustrates how the PLL_RST and PLL_FBK signals are generated.

Each PLL has four dividers associated with it, M, N, V, and K. The M divider is used to divide the clock signal, while the N divider is used to multiply the clock signal. The V divider allows the VCO frequency to operate at higher frequencies than the clock output, thereby increasing the frequency range. The K divider is only used when a secondary clock output is needed. This divider divides the primary clock output and feeds to the adjacent global clock net. Different combinations of these dividers allow the user to synthesize clock frequencies. Figure 16 shows the ispXPGA PLL block diagram.

The PLL also has a delay feature that allows the output clock to be advanced or delayed to improve set-up and clock-to-out times for better performance. This operates by inserting delay on the input or feedback lines of the PLL. For more information on the PLL, please refer to TN1003, sysCLOCK PLL Usage and Design Guidelines.

Figure 16. ispXPGA PLL Block Diagram

Figure 17. ispXPGA PLL_RST and PLL_FBK Generation

Clock Routing

The Global Clock Lines (GCLK) have two sources, their dedicated pins and the sysCLOCK circuit. Figure 18 illustrates the generation of the Global Clock Lines.

Figure 18. Global Clock Line Generation

sysIO Capability

All the ispXPGA devices have eight sysIO banks, where each bank is capable of supporting multiple I/O standards. Each sysIO bank has its own I/O supply voltage ($\mathrm{V}_{\mathrm{CCO}}$) and reference voltage ($\mathrm{V}_{\mathrm{REF}}$) resources allowing each bank complete independence from the others. Each I/O is individually configurable based on the bank's $\mathrm{V}_{\mathrm{CCO}}$ and $\mathrm{V}_{\text {REF }}$ settings. In addition, each l/O has configurable drive strength, weak pull-up, weak pull-down, or a bus-keeper latch. Table 4 lists the number of $1 / O$ s supported per bank in each of the ispXPGA devices. In addition, 5V tolerant inputs are specified within an $1 / \mathrm{O}$ bank that is connected to $\mathrm{V}_{\mathrm{CCO}}$ of 3.0 V to 3.6 V for LVCMOS 3.3, LVTTL and PCI interfaces.

Table 5 lists the sysIO standards with the typical values for $\mathrm{V}_{\mathrm{CCO}}, \mathrm{V}_{\mathrm{REF}}$ and V_{TT}.
The TOE, JTAG TAP pins, PROGRAM, CFG0 and DONE pins of the ispXPGA device are the only pins that do not have the sysIO capabilities. The TOE and CFG0 pins operate off the V_{CC} of the device, supporting only the LVCMOS standard corresponding to the device supply voltage. The TAP pins have a separate supply voltage ($\mathrm{V}_{\mathrm{CCJ}}$), which determines the LVCMOS standard corresponding to that supply voltage.

There are three classes of I/O interface standards that are implemented in the ispXPGA devices. The first is the unterminated, single-ended interface. It includes the 3.3V LVTTL standard along with the $1.8 \mathrm{~V}, 2.5 \mathrm{~V}$, and 3.3 V LVCMOS interface standards. Additionally, PCI and AGP-1X are subsets of this type of interface.

The second type of interface implemented is the terminated, single-ended interface standard. This group of interfaces includes different versions of SSTL and HSTL interfaces along with CTT, and GTL+. Usage of these particular I/O interfaces requires an additional $\mathrm{V}_{\mathrm{REF}}$ signal. At the system level a termination voltage, V_{TT}, is also required. Typically an output will be terminated to V_{TT} at the receiving end of the transmission line it is driving.

The third type of interface standards are the differential standards LVDS, BLVDS, and LVPECL. The differential standards require two I/O pins to create the differential pair. The logic level is determined by the difference in the two signals. Table 6 lists how these interface standards are implemented in the ispXPGA devices.

For more information on sysIO capability, refer to TN1000, sysIO Usage Guidelines for Lattice Devices.
Figure 19. sysIO Banks per Device

Table 4. Number of I/Os per Bank

Device	Max. Number of I/Os per Bank (N)
XPGA 1200	62
XPGA 500	42
XPGA 200	26
XPGA 125	22

Table 5. ispXPGA Supported I/O Standards

sysIO Standard	$\mathbf{V}_{\text {CCO }}$	$\mathbf{V}_{\text {REF }}$	$\mathbf{V}_{\text {TT }}$
LVTTL	3.3 V	$\mathrm{~N} / \mathrm{A}$	N / A
LVCMOS-3.3	3.3 V	$\mathrm{~N} / \mathrm{A}$	N / A
LVCMOS-2.5	2.5 V	$\mathrm{~N} / \mathrm{A}$	N / A
LVCMOS-1.8	1.8 V	$\mathrm{~N} / \mathrm{A}$	N / A
PCI	3.3 V	$\mathrm{~N} / \mathrm{A}$	N / A
AGP-1X	3.3 V	$\mathrm{~N} / \mathrm{A}$	N / A
SSTL3, Class I, II	3.3 V	1.5 V	1.5 V
SSTL2, Class I, II	2.5 V	1.25 V	1.25 V
HSTL, Class I	1.5 V	0.75 V	0.75 V
HSTL, Class III	1.5 V	0.9 V	1.5 V
GTL+	N / A	1.0 V	1.5 V
LVPECL	3.3 V	$\mathrm{~N} / \mathrm{A}$	N / A
LVDS ${ }^{1}$	2.5 V	$\mathrm{~N} / \mathrm{A}$	N / A
BLVDS	2.5 V	$\mathrm{~N} / \mathrm{A}$	N / A

1. $\mathrm{V}_{\mathrm{CCO}}$ must be 2.5 V for high speed serial operations (sysHSI block).

Table 6. Differential Interface Standard Support ${ }^{1}$

1. For more information, refer to TN1000, sysIO Usage Guídelines for Lattice Devices.

High Speed Serial Interface Block (sysHSI Block) ${ }^{1}$

The High Speed Serial Interface (sysHSI) allows high speed serial data transfer over a pair of LVDS I/O. The ispXPGA devices have multiple sysHSI blocks.

Each sysHSI block has two SERDES blocks which contain two main sub-blocks, Transmitter (with a serializer) and Receiver (with a deserializer) including Clock/Data Recovery Circuit (CDR). Each SERDES can be used as a full duplex channel. The two SERDES in sysHSI blocks share a common clock and must operate at the same nominal frequency. Figure 20 shows the sysHSI block.

Device features support two data coding modes: $10 B / 12 B$ and $8 B / 10 B$ (for use with other encoding schemes, see Lattice's sysHSI technical notes). The encoding and decoding of the 10B/12B standard are performed within the sysHSI block. For the $8 \mathrm{~B} / 10 \mathrm{~B}$ standard, the symbol boundaries are aligned internally but the encoding and decoding are performed outside the sysHSI block.

Each SERDES block receives a single high speed serial data input stream (with embedded clock) from an input, and provide a low speed 10-bit wide data stream and a recovered clock to the device. For transmitting, SERDES converts a 10-bit wide low-speed data stream to a single high-speed data stream with embedded clock for output.

Additionally, multiple sysHSI blocks can be grouped together to form a source synchronous interface of 1-10 channels.

For more information on the SERDES/CDR, refer to TN1020, sysHSI Usage Guidelines.

[^1]
Configuration and Programming

The ispXPGA family of devices takes a unique approach to FPGA configuration memory. It contains two types of memory, Static RAM and non-volatile $E^{2} C M O S$ cells. The static RAM is used to control the functionality of the device during normal operation and the $E^{2} C M O S$ memory cells are used to load the SRAM. The $E^{2} C M O S$ memory module can be thought of as the hard drive for the ispXPGA configuration and the SRAM as the working configuration memory. There is a one-to-one relationship between SRAM memory and the $\mathrm{E}^{2} \mathrm{CMOS}$ cells. The SRAM can be configured either from the $\mathrm{E}^{2} \mathrm{CMOS}$ memory or from an external source, as shown in Figure 21.

Figure 21 shows the different ports and modes that are used in the configuration and programming of the ispXPGA devices. There are two possible ports that can be used for configuration of the SRAM memory: the ISP port which supports the IEEE 1149.1 Test Access Port (TAP) Std., accommodates bit-wide configuration. The sysCONFIG port allows byte-wide configuration of the SRAM configuration memory. When programming the $\mathrm{E}^{2} \mathrm{CMOS}$ memory, only the 1149.1 TAP can be used.

Configuration and programming done through the 1149.1 Test Access Port (TAP) supports both the IEEE Std. 1149.1 Boundary Scan TAP specification and the IEEE Std. 1532 In-System Configuration specification. To configure or program the device using the 1149.1 TAP the device must be in the ISP mode. To configure the SRAM memory using the sysCONFIG Port, the device must be in the sysCONFIG mode. Upon power-up, the device's SRAM memory can be configured either from the $E^{2} \mathrm{CMOS}$ memory or from an external source through the sysCONFIG mode. Additionally, the SRAM can be re-configured from the E^{2} CMOS memory by executing a'REFRESH." See TN1026, ispXP Configuration Usage Guidelines, for more in depth information on the different programming modes, timing and wake-up.

Figure 21. ispXP Block Diagram

Supports IEEE 1149.1 Boundary Scan Testability

All ispXPGA devices have boundary scan cells and supports the IEEE 1149.1 standard. This allows functional testing of the circuit board on which the device is mounted through a serial scan path that can access all critical logic notes. Internal boundary scan registers are linked internally, allowing test data to be shifted in and loaded directly onto test nodes, or test node data to be captured and shifted out for verification. In addition, these devices can be linked into a board-level serial scan path for more board level testing.

Security Scheme

A programmable security scheme is provided on the ispXPGA devices as a deterrent to unauthorized copying of the array configuration patterns. Once programmed, the security scheme prevents read-back of the programmed
pattern by a device programmer, securing proprietary designs from competitors. The entire device must be erased in order to erase the security scheme.

Density Shifting

The ispXPGA family has been designed to ensure that different density devices in the same package have the same pin-out. Furthermore, the architecture ensures a high success rate when performing design migration from lower density parts to higher density parts. In many cases, it is possible to shift a lower utilization design targeted for a high-density device to a lower density device. However, the exact details of the final resource utilization will impact the likely success in each case.

Temperature Sensing Diode

The built-in temperature-sensing diodes allow junction temperature to be measured during device operation. A pair of pins (DXp and $D X n$) are dedicated for monitoring device junction temperature. The measurement is done by forcing $10 \mu \mathrm{~A}$ and $100 \mu \mathrm{~A}$ current in the forward direction, and then measuring the resulting voltage. The voltage decreases with increasing temperature at approximately $1.64 \mathrm{mV} /{ }^{\circ} \mathrm{C}$. A typical device with a $85^{\circ} \mathrm{C}$ junction temperature will measure approximately 593 mV .

The temperature-sensing diode works for the entire operating range as shown in Figure 22 - Sensing Diode Volt-age-Temperature Relationship. Refer to the Lattice Thermal Management document for thermal coefficients. Also refer to TN1043, Power Estimation in ispXPGA Devices.

Figure 22. Sensing Diode Voltage-Temperature Relationship

Absolute Maximum Ratings ${ }^{1,2,3}$

	1.8 V	2.5V/3.3V
Supply Voltage (V_{CC})	-0.5 to 2.5V	. 0.5 to 5.5 V
PLL Supply Voltage ($\mathrm{V}_{\text {CCP }}$)	-0.5 to 2.5 V	. 0.5 to 5.5 V
Output Supply Voltage ($\mathrm{V}_{\mathrm{CcO}}$)	-0.5 to 4.5V	.-0.5 to 4.5V
IEEE 1149.1 TAP Supply Volta	-0.5 to 4.5V	D. 5 to 4.5
Input Voltage Applied ${ }^{4,5}$	-0.5 to 5.5V	-0.5 to 5.5 V
Storage Temperature	-65 to $150^{\circ} \mathrm{C}$	65 to 15
Junction Temperature (T_{J}) with	-55 to $150^{\circ} \mathrm{C}$	-55 to $150^{\circ} \mathrm{C}$

1. Stress above those listed under the "Absolute Maximum Ratings" may cause permanent damage to the device. Functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied (while programming, following the programming specifications).
2. Compliance with the Lattice Thermal Management document is required.
3. All voltages referenced to GND.
4. Overshoot and undershoot of -2 V to $\left(\mathrm{V}_{\mathrm{IH}}(\mathrm{MAX})+2\right)$ volts not to exceed 6 V is permitted for a duration of $<20 \mathrm{~ns}$.
5. A maximum of $64 \mathrm{I} / \mathrm{Os}$ per device with $\mathrm{V}_{\mathrm{IN}}>3.6 \mathrm{~V}$ is allowed.

Recommended Operating Conditions

Symbol	Parameter	Min	Max	Units
V_{CC}	Supply Voltage for 1.8 V device ${ }^{1}$	1.65	1.95	V
	Supply Voltage for 2.5 V device	2.3	2.7	V
	Supply Voltage for 3.3 V device	3.0	3.6	V
$\mathrm{V}_{\text {CCP }}$	Supply Voltage for PLL and sysHSI blocks, 1.8 V devices ${ }^{1}$	1.65	1.95	V
	Supply Voltage for PLL and sysHSI blocks, 2.5V devices	2.3	2.7	V
	Supply Voltage for PLL and sysHSI blocks, 3.3V devices	3.0	3.6	V
$\mathrm{V}_{\text {ccJ }}$	Supply Voltage for IEEE 1149.1 Test Access Port for LVCMOS 1.8V	1.65	1.95	V
	Supply Voltage for IEEE 1149.1 Test Access Port for LVCMOS 2.5V	2.3	2.7	V
	Supply Voltage for IEEE 1149.1 Test Access Port for LVCMOS 3.3V	3.0	3.6	V
T_{J} (COM)	Junction Temperature Commercial Operation	0	85	C
T_{J} (IND)	Junction Temperature Industrial Operation	-40	105	C

1. sysHSI specification is valid for V_{CC} and $\mathrm{V}_{\mathrm{CCP}}=1.7 \mathrm{~V}$ to 1.9 V .

E^{2} CMOS Erase Reprogram Specifications

	Parameter	Min	Max	Units
${\text { Erase/Reprogram } \text { Cycle }^{1}}^{2}$	1,000	-	Cycles	

1. Valid over commercial temperature range.

Hot Socketing Characteristics ${ }^{1,2,3,4}$

Symbol	Parameter	Condition	Min	Typ	Max	Units
I_{DK}	Input or Tristated I/O Leakage Current	$0 ð \mathrm{~V}_{\mathrm{IN}} ð 3.0 \mathrm{~V}$	-	$+/-50$	$+/-800$	$\mu \mathrm{~A}$

1. Insensitive to sequence of V_{CC} and $\mathrm{V}_{\mathrm{CCO}}$ when $\mathrm{V}_{\mathrm{CCO}} \delta 1.0 \mathrm{~V}$. For $\mathrm{V}_{\mathrm{CCO}}>1.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}$ min must be present. However, assumes monotonic rise/fall rates for V_{CC} and $\mathrm{V}_{\mathrm{CCO}}$, provided $\left(\mathrm{V}_{\mathrm{IN}}-\mathrm{V}_{\mathrm{CCO}}\right) ~ ð 3.6 \mathrm{~V}$.
2. LVTTL, LVCMOS only.
3. $0<\mathrm{V}_{\mathrm{CC}} ð \mathrm{~V}_{\mathrm{Cc}}(\mathrm{MAX}), 0<\mathrm{V}_{\mathrm{CCO}} ð \mathrm{~V}_{\mathrm{CCO}}(\mathrm{MAX})$.
4. $I_{D K}$ is additive to $I_{P U}, I_{P D}$ or $I_{B H}$. Device defaults to pull-up until non-volatile cells are active.

DC Electrical Characteristics

> Over Recommended Operating Conditions

Symbol	Parameter	Condition	Min	Typ	Max	Units
${ }_{1 L}, \mathrm{I}_{\text {IH }}{ }^{1}$	Input or I/O Low Leakage	0 ठ $\mathrm{V}_{\text {IN }}<\left(\mathrm{V}_{\mathrm{CCO}}-0.2 \mathrm{~V}\right)$	-		10	$\mu \mathrm{A}$
		$\left(\mathrm{V}_{\text {CCO }}-0.2 \mathrm{~V}\right)$ ð $\mathrm{V}_{\text {IN }}$ ð 3.6 V	-		300	$\mu \mathrm{A}$
IH^{2}	Input High Leakage Current	$\begin{aligned} & 3.6 \mathrm{~V}<\mathrm{V}_{\text {IN }} ð 5.5 \mathrm{~V} \text { and } \\ & 3.0 \mathrm{~V} \delta \mathrm{~V}_{\mathrm{CCO}} ð 3.6 \mathrm{~V} \end{aligned}$	-			mA
I_{PU}	I/O Active Pull-up Current	0 ð $\mathrm{V}_{\text {IN }}$ ð $0.7 \mathrm{~V}_{\mathrm{CCO}}$	-30		-150	$\mu \mathrm{A}$
IPD	I/O Active Pull-down Current	$\mathrm{V}_{\mathrm{IL}}(\mathrm{MAX}) \delta \mathrm{V}_{\text {IN }} ð \mathrm{~V}_{\mathrm{IH}}(\mathrm{MAX})$	30		150	$\mu \mathrm{A}$
IBHLS	Bus Hold Low Sustaining Current	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}(\mathrm{MAX})$	30		-	$\mu \mathrm{A}$
$\mathrm{I}_{\text {BHHS }}$	Bus Hold High Sustaining Current	$\mathrm{V}_{\mathrm{IN}}=0.7 \mathrm{~V}_{\mathrm{CCO}}$	-30	-		$\mu \mathrm{A}$
IBHLO	Bus Hold Low Overdrive Current	0 ठ V_{IN} ठ $\mathrm{V}_{\mathrm{IH}}(\mathrm{MAX})$		-	150	$\mu \mathrm{A}$
$\mathrm{I}_{\text {BHHO }}$	Bus Hold High Overdrive Current	0 ठ $\mathrm{V}_{\mathrm{IN}} \delta \mathrm{V}_{\mathrm{IH}}(\mathrm{MAX})$			-15	$\mu \mathrm{A}$
$\mathrm{V}_{\text {BHT }}$	Bus Hold Trip Points		CO* 0		* 0	V
C_{1}	I/O Capacitance ${ }^{3}$	$\begin{array}{\|l\|} \hline \mathrm{V}_{\mathrm{CCO}}=3.3 \mathrm{~V}, 2.5 \mathrm{~V}, 1.8 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{CC}}=1.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{IO}}=0 \text { to } \mathrm{V}_{\mathbb{I H}}(\mathrm{MAX}) \\ \hline \end{array}$	-			pf
C_{2}	Clock Capacitance ${ }^{3}$	$\begin{array}{\|l\|} \hline \mathrm{V}_{\mathrm{CCO}}=3.3 \mathrm{~V}, 2.5 \mathrm{~V}, 1.8 \mathrm{~V} \\ \hline \mathrm{~V}_{\mathrm{CC}}=1.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{IO}}=0 \text { to } \mathrm{V}_{\mathrm{IH}}(\mathrm{MAX}) \\ \hline \end{array}$			-	pf
C_{3}	Global Input Capacitance ${ }^{3}$	$\begin{array}{\|l\|} \hline \mathrm{V}_{\mathrm{CCO}}=3.3 \mathrm{~V}, 2.5 \mathrm{~V}, 1.8 \mathrm{~V} \\ \hline \mathrm{~V}_{\mathrm{CC}}=1.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{IO}}=0 \text { to } \mathrm{V}_{\mathrm{IH}}(\mathrm{MAX}) \\ \hline \end{array}$		6	-	pf

1. Input or I/O leakage current is measured with the pin configured as an input or as an I / O with the output driver tri-stated. It is not measured with the output driver active. Bus maintenance circuits are disabled.
2. 5 V tolerant inputs and I / Os should be placed in banks where $3.0 \mathrm{~V} \varnothing \mathrm{~V}_{\mathrm{Cco}} \circlearrowright 3.6 \mathrm{~V}$. The JTAG and sysCONFIG ports are not included for the 5 V tolerant interface.
3. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$.

Supply Current

Over Recommended Operating Conditions

Symbol	Parameter	Device	Condition	Min.	Typ.	Max.	Units
$\mathrm{ICC}^{1,2}$	Standby Core Operating Power Supply Current	LFX125	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$	-	60	-	mA
			$\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}$	-	60	-	mA
			$\mathrm{V}_{\mathrm{CC}}=1.8 \mathrm{~V}$	-	40	-	mA
		LFX200	$\mathrm{V}_{C C}=3.3 \mathrm{~V}$		70	-	mA
			$\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}$		70	-	mA
			$\mathrm{V}_{C C}=1.8 \mathrm{~V}$	-	50	-	mA
		LFX500	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$	-	120	-	mA
			$\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}$	-	120	-	mA
			$\mathrm{V}_{\mathrm{CC}}=1.8 \mathrm{~V}$	-	100	-	mA
		LFX1200	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$	-	220	-	mA
			$\mathrm{V}_{C C}=2.5 \mathrm{~V}$	-	220		mA
			$\mathrm{V}_{\mathrm{CC}}=1.8 \mathrm{~V}$	-	200	-	mA
ICCO^{3}	Standby Output Power Supply Current		$\mathrm{V}_{\mathrm{CCO}}=3.3 \mathrm{~V}$		2.0	-	mA
			$\mathrm{V}_{\mathrm{CCO}}=2.5 \mathrm{~V}$		2.0	-	mA
			$V_{\text {CCO }}=1.8 \mathrm{~V}$		2.0	-	mA
			$\mathrm{V}_{\mathrm{CCO}}=1.5 \mathrm{~V}$	-	2.0	-	mA
ICCP^{4}	Standby PLL Operating Supply Current		$\mathrm{V}_{\mathrm{CCP}}=3.3 \mathrm{~V}$	-	17.0	-	mA
			$\mathrm{V}_{\text {CCP }}=2.5 \mathrm{~V}$	-	17.0	-	mA
			$\mathrm{V}_{\mathrm{CCP}}=1.8 \mathrm{~V}$	-	15.0	-	mA
ICCJ^{5}	Standby IEEE 1149.1 TAP Power Supply Current		$\mathrm{V}_{\mathrm{CCJ}}=3.3 \mathrm{~V}$	-	2.0	-	mA
			$\mathrm{V}_{\text {CCJ }}=2.5 \mathrm{~V}$	-	1.5	-	mA
			$\mathrm{V}_{\mathrm{CCJ}}=1.8 \mathrm{~V}$	-	1.0	-	mA

1. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, frequency $=1.0 \mathrm{MHz}$, device configured with 16 -bit counters.
2. I_{CC} varies with specific device configuration and operating frequency. For more accurate power calculation, see TN1043, Power Estimation in ispXPGA Devices.
3. $T_{A}=25^{\circ} \mathrm{C}$, per bank, no DC load, frequency $=0 \mathrm{MHz}$.
4. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, per PLL, frequency $=10 \mathrm{MHz}$.
5. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
sysIO Recommended Operating Conditions

Standard	$\mathrm{V}_{\text {cco }}(\mathrm{V})^{1}$			$\mathrm{V}_{\text {REF }}(\mathrm{V})$		
	Min.	Typ.	Max.	Min.	Typ.	Max.
LVCMOS 3.3	3.0	3.3	3.6	-		-
LVCMOS 2.5	2.3	2.5	2.7	-		-
LVCMOS 1.8 ${ }^{2}$	1.65	1.8	1.95	-		-
LVTTL	3.0	3.3	3.6	-		-
PCI 3.3	3.0	3.3	3.6	-		-
AGP-1X	3.15	3.3	3.45	-		-
SSTL 2	2.3	2.5	2.7	1.15	1.25	1.35
SSTL 3	3.0	3.3	3.6	1.3	1.5	1.7
CTT 3.3	3.0	3.3	3.6	1.35	1.5	1.65
CTT 2.5	2.3	2.5	2.7	1.35	1.5	1.65
HSTL Class I	1.4	1.5	1.6	0.68	0.75	0.9
HSTL Class III	1.4	1.5	1.6	-	0.9	-
GTL+	-	-		0.882	1.0	1.122
LVDS	2.3	2.5	2.7	-		-
LVPECL	3.0	3.3	3.6	-		-
BLVDS	2.3	2.5	2.7	-		-

1. Inputs independent of V_{Cc}.
2. Design tool default setting.

sysIO DC Electrical Characteristics

Over Recommended Operating Conditions

Standard	V_{IL}		$\mathrm{V}_{\mathbf{I H}}$		$\begin{gathered} \mathrm{V}_{\mathrm{OL}} \\ \text { Max. (V) } \end{gathered}$	$\begin{gathered} \mathrm{V}_{\mathrm{OH}} \\ \text { Min. (V) } \end{gathered}$	$1{ }_{\text {OL }}(\mathrm{mA})$	$\mathrm{I}_{\mathrm{OH}}(\mathrm{mA})$	
	Min. (V)	Max. (V)	Min. (V)	Max. (V)					
LVCMOS 3.3	-0.3	0.8	2.0	5.5	0.4	$\mathrm{V}_{\mathrm{CCO}}-0.4$	$\begin{array}{r} 20,16,12 \\ 8,5.33,4 \end{array}$	$\begin{aligned} & -20,-16,-12, \\ & -8,-5.33,-4 \end{aligned}$	
					0.2	$\mathrm{V}_{\mathrm{CCO}}-0.2$	0.1	-0.1	
LVCMOS 2.5	-0.3	0.7	1.7	3.6	0.4	$v_{\text {cco }}-0.4$	$\begin{gathered} 16,12,8, \\ 5.33,4 \end{gathered}$	$\begin{gathered} -16,-12,-8, \\ -5.33,-4 \end{gathered}$	
					0.2	$\mathrm{V}_{\mathrm{CCO}}-0.2$	0.1	-0.1	
LVCMOS 1.8¹	-0.3	$0.68{ }^{3}$	$1.07{ }^{3}$	3.6	$0.4 \quad V_{\text {cco }}-0.4$		$\begin{gathered} \hline 12,8^{1}, 5.33 \\ 4 \\ \hline \end{gathered}$	-12, -8 ${ }^{1}$,	
		$0.35 \mathrm{~V}_{\mathrm{Cc}}$	$0.65 \mathrm{~V}_{\text {cc }}$						
					0.2	$\mathrm{V}_{\text {cco }}-0.2$		0.1	-0.1
LVTTL	-0.3	0.8	2.0	5.5	0.4	$\mathrm{V}_{\text {cco }}-0.4$		-4	
					0.2	$\mathrm{V}_{\text {cco }}-0.2$	0.1	-0.1	
PCI 3.3	-0.3	$1.08{ }^{3}$	1.5^{3}	5.5	$0.1 \mathrm{~V}_{\mathrm{CCO}}$	$0.9 \mathrm{~V}_{\mathrm{CCO}}$		-0.5	
		$0.3 \mathrm{~V}_{\text {CCO }}$	$0.5 \mathrm{~V}_{\mathrm{CCO}}$						
AGP-1X	-0.3	$1.08{ }^{3}$	1.5^{3}		0.1 $\mathrm{V}_{\mathrm{CCO}}$	$0.9 \mathrm{~V}_{\mathrm{cco}}$	1.5	-0.5	
		$0.3 \mathrm{~V}_{\mathrm{CCO}}$	0.5 VCcO						
SSTL 3 Class I	-0.3	$\mathrm{V}_{\text {REF }}-0.2$	$\mathrm{V}_{\text {REF }}+0.2$	3.6	0.7	$\mathrm{V}_{\mathrm{CCO}}-1.1$	8	-8	
SSTL 3 Class II	-0.3	$\mathrm{V}_{\text {REF }}-0.2$	$\mathrm{V}_{\text {REF }}+0.2$	3.6	0.5	$\mathrm{V}_{\mathrm{CCO}}-0.9$	16	-16	
SSTL 2 Class I	-0.3	$\mathrm{V}_{\text {REF }}-0.18$	$V_{\text {REF }}+0.18$	3.6	0.54	$\mathrm{V}_{\text {cco }}-0.62$	7.6	-7.6	
SSTL 2 Class II	-0.3	$\mathrm{V}_{\text {REF }}-0.18$	$V_{\text {REF }}+0.18$	3.6	0.35	$\mathrm{V}_{\mathrm{CCO}}-0.43$	15.2	-15.2	
CTT 3.3	-0.3	$\mathrm{V}_{\text {REF }}-0.2$	$\mathrm{V}_{\text {REF }}+0.2$	3.6	$\mathrm{V}_{\text {REF }}-0.4$	$\mathrm{V}_{\text {REF }}+0.4$	8	-8	
CTT 2.5	-0.3	$\mathrm{V}_{\text {REF }}-0.2$	$\mathrm{V}_{\mathrm{REF}}+0.2$	3.6	$\mathrm{V}_{\text {REF }}-0.4$	$\mathrm{V}_{\text {REF }}+0.4$	8	-8	
HSTL Class I	-0.3	$\mathrm{V}_{\text {REF }}-0.1$	$\mathrm{V}_{\text {REF }}+0.1$	3.6	0.4	$\mathrm{V}_{\text {CCO }}-0.4$	8	-8	
HSTL Class III	-0.3	$V_{\text {REF }}-0.1$	$\mathrm{V}_{\text {REF }}+0.1$	3.6	0.4	$\mathrm{V}_{\text {CCO }}-0.4$	24	-8	
GTL+	-0.3	$\mathrm{V}_{\text {BEF }}-0.2$	$\mathrm{V}_{\text {REF }}+0.2$	3.6	0.6	N/A	36	N/A	

1. Design tool default setting
2. The average DC current drawn by I/Os between adjacent bank GND connections, or between the last GND in an I/O bank and the end of the I / O bank, as shown in the logic signals connection table, shall not exceed $\mathrm{n} * 8 \mathrm{~mA}$. Where n is the number of I / Os between bank GND connections or between the last GND in a bank and the end of a bank
3. Applicable for ispXPGA B devices.
sysIO Differential Standards DC Electrical Characteristics ${ }^{1}$

Parameter	Description	Test Conditions	Min.	Typ.	Max.
LVDS ${ }^{2}$					
$\mathrm{V}_{\text {INP, }} \mathrm{V}_{\text {INM }}$	Input voltage		OV	\bigcirc	2.4 V
$\mathrm{V}_{\text {THD }}$	Differential input threshold	0.2 V ठ V_{CM} ð 1.8 V	+/-100mV		-
I_{IN}	Input current	Power on		-	+/-10uA
V_{OH}	Output High Voltage for V_{OP} or $\mathrm{V}_{\text {OM }}$	RT $=100$ Ohm		1.38 V	1.60 V
$\mathrm{V}_{\text {OL }}$	Output Low Voltage for V_{OP} or V_{OM}	RT $=100$ Ohm	0.9 V	1.03 V	-
$V_{O D}$	Output Voltage Differential	$\left\|\mathrm{V}_{\mathrm{OP}}-\mathrm{V}_{\mathrm{OM}}\right\|, \mathrm{R}_{\mathrm{T}}=100$ ohm	250 mV	350 mV	450 mV
$\Delta \mathrm{V}_{\text {OD }}$	Change in V_{OD} between high and low			-	50 mV
$\mathrm{V}_{\text {OS }}$	Output Voltage Offset	$\mid \mathrm{V}_{\mathrm{OP}}+\mathrm{V}_{\mathrm{OM}} / / 2, \mathrm{R}_{\mathrm{T}}=100$ ohm	1.125 V	1.25 V	1.375 V
$\Delta \mathrm{V}_{\text {OS }}$	Change in $\mathrm{V}_{\text {OS }}$ between H and L		-		50 mV
IOSD	Output short circuit current	$\mathrm{V}_{\mathrm{OD}}=0 \mathrm{~V}$ Driver outputs shorted			$24 \mathrm{~mA}$
BLVDS ${ }^{1}$					
$\mathrm{V}_{\text {INP, }} \mathrm{V}_{\text {INM }}$	Input voltage		OV		2.4 V
$\mathrm{V}_{\text {THD }}$	Differential input threshold	0.2 V ठ V $\mathrm{CM}^{\text {¢ }} 1.8 \mathrm{~V}$	+ -100mV	-	-
$\mathrm{I}_{\text {IN }}$	Input current	Power on		-	+/-10uA
V_{OH}	Output High Voltage for V_{OP} or V_{OM}	$\mathrm{R}_{\mathrm{T}}=27 \Omega$		1.4V	1.80 V
$\mathrm{V}_{\text {OL }}$	Output Low Voltage for V_{OP} or V_{OM}	$\mathrm{R}_{\mathrm{T}}=27 \Omega$	0.95 V	1.1 V	-
$\mathrm{V}_{\text {OD }}$	Output Voltage Differential	$\left\|\mathrm{V}_{\mathrm{OP}}-\mathrm{V}_{\mathrm{OM}}\right\|, \mathrm{RT}=27 \Omega$	240 mV	300 mV	460 mV
$\Delta \mathrm{V}_{\text {OD }}$	Change in V_{OD} Between H and L		\checkmark		27 mV
$\mathrm{V}_{\text {OS }}$	Output Voltage Offset	$\left\|\mathrm{V}_{\mathrm{OP}}+\mathrm{V}_{\mathrm{OM}}\right\| / 2, \mathrm{RT}=27 \Omega$	1.1V	1.3 V	1.5 V
$\Delta \mathrm{V}_{\text {OS }}$	Change in $\mathrm{V}_{\text {OS }}$ Between H and L				27 mV
IOSD	Output Short Circuit Current	$\mathrm{V}_{\mathrm{OD}}=0$. Driver Outputs Shorted.		36 mA	65mA

1. Refer to TN1000, sysIO Usage Guidelines for Lattice Devices.
2. V_{OP} and V_{OM} are the two outputs of the LVDS/BLVDS output buffer.

3. These values are valid at the output of the source termination pack as shown above with 100 -ohm differential load only (see Figure 23).

The V_{OH} levels are 200 mV below the standard LVPECL levels and are compatible with devices tolerant of the lower common mode ranges.
2. Valid for $0.2 ð \mathrm{~V}_{\mathrm{CM}} ð 1.8 \mathrm{~V}$.

Figure 23. LVPECL Driver with Three Resistor Pack

ispXPGA 125B/C \& ispXPGA 125EB/EC External Switching Characteristics
Over Recommended Operating Conditions

Parameter	Description	Conditions					-3		Units
			Min.	Max.	Min.	Max.	Min.	Max.	
t_{CO}	Global Clock Input to Output	PIO Output Register	-	5.3		5.7	-	6.6	ns
t_{s}	Global Clock Input Setup	PIO Input Register without input delay	-1.9		-1.8		-1.5	-	ns
t_{H}	Global Clock Input Hold	PIO Input Register without input delay			2.9	-	3.3	-	ns
$\mathrm{t}_{\text {SINDLY }}$	Global Clock Input Setup	PIO Input Register with input delay	3.1		3.3	-	3.8	-	ns
$\mathrm{t}_{\text {HINDLY }}$	Global Clock Input Hold	PIO Input Register with input delay	0.0	-	0.0	-	0.0	-	
${ }^{\text {t }}$ COPLL	Global Clock Input to Output	PIO Output Register using PLL without delay		3.6	-	3.9	-	4.5	ns
${ }^{\text {SPPLL }}$	Global Clock Input Setup	PIO Input Register without input delay using PLL without delay	0	-	0.1	-	0.3	-	ns
$\mathrm{t}_{\text {HPLL }}$	Global Clock Input Hold	PIO Input Register without input delay using PLL without delay	0.9	-	1.0	-	1.2	-	ns
$\mathrm{t}_{\text {SINDLYPLL }}$	Global Clock Input Setup	PIO Input Register with input delay using PLL without delay	5.1	-	5.5	-	6.3	-	ns
$\mathrm{t}_{\text {HINDLYPLL }}$	Global Clock Input Hold	PIO Input Register with input delay using PLL without delay	-3.0	-	-2.8	-	-2.4	-	ns

ispXPGA 125B/C \& ispXPGA 125EB/EC PFU Timing Parameters

Over Recommended Operating Conditions

Parameter	Description	-5 ${ }^{1}$		-4		-3		Units
		Min.	Max.	Min.	Max.	Min.	Max.	
Functional Delays								
LUTs								
tLUT4	4-Input LUT Delay	-	0.41		0.44	-	0.51	ns
tLUT5	5-Input LUT Delay	-	0.73		0.79	-	0.91	ns
tut6	6-Input LUT Delay	-	0.86	-	0.93	-	1.07	ns
Shift Register (LUT)								
tLSR_S	Shift Register Setup Time	-0.64	-	-0.62	-	-0.53		ns
tLSR_H	Shift Register Hold Time	0.61		0.63	-	0.72		ns
tLSR_CO	Shift Register Clock to Output Delay		0.70	-	0.75		0.86	ns
Arithmetic Functions								
$\mathrm{t}_{\text {LCTHRUR }}$	MC (Macro Cell) Carry In to MC Carry Out Delay (Ripple)	-	0.08		0.09		0.10	ns
ticthrul ${ }^{2}$	MC Carry In to MC Carry Out Delay (Look Ahead)	-	0.05	-	0.05	-	0.06	ns
tıSTHRU	MC Sum In to MC Sum Out Delay		0.42		0.45	-	0.52	ns
tisincout	MC Sum In to MC Carry Out Delay	-	0.29		0.31	-	0.36	ns
thCINSOUTR	MC Carry In to MC Sum Out Delay (Ripple)	-	0.36	-	0.39	-	0.45	ns
thinsoutl	MC Carry In to MC Sum Out Delay (Look Ahead)		0.26	-	0.28	-	0.32	ns
Feed-thru								
$\mathrm{t}_{\text {LFT }}$	PFU Feed-Thru Delay	-	0.15	-	0.16	-	0.18	ns
Distributed RAM								
tLRAM_CO	Clock to RAM Output		1.24	-	1.33	-	1.53	ns
tLRAMAD_S	Address Setup Time $\quad \square$	-0.41	-	-0.40	-	-0.34	-	ns
tLRAMD_S	Data Setup Time	0.21	-	0.22	-	0.25	-	ns
tLRAMWE_S	Write Enable Setup Time	0.45	-	0.46	-	0.53	-	ns
tLRAMAD_H	Address Hold Time	0.58	-	0.60	-	0.69	-	ns
tLRAMD_H	Data Hold Time	0.11	-	0.11	-	0.13	-	ns
tlramwe_h	Write Enable Hold Time	0.12	-	0.12	-	0.14	-	ns
tlRamCPW	Clock Pulse Width (High or Low)	2.91	-	3.00	-	3.45	-	ns
tlramado	Address to Output Delay	-	0.86	-	0.93	-	1.07	ns

Register/Latch Delays

Registers

$t_{\text {L_CO }}$	Register Clock to Output Delay	-	0.58	-	0.62	-	0.71	ns
$t_{\text {L_S }}$	Register Setup Time (Data before Clock)	0.14	-	0.14	-	0.16	-	ns
$t_{\text {L_H }}$	Register Hold Time (Data after Clock)	-0.12	-	-0.12	-	-0.10	-	ns
$t_{\text {LCE_S }}$	Register Clock Enable Setup Time	-0.11	-	-0.11	-	-0.09	-	ns
$t_{\text {LCE_H }}$	Register Clock Enable Hold Time	0.11	-	0.11	-	0.13	-	ns

Latches

$t_{\text {L_GO }}$	Latch Gate to Output Delay	-	0.09	-	0.10	-	0.12	ns
$\mathrm{t}_{\text {LL_ }} \mathrm{S}$	Latch Setup Time	0.14	-	0.14	-	0.16	-	ns
$\mathrm{t}_{\text {LL_ }} \mathrm{H}$	Latch Hold Time	-0.12	-	-0.12	-	-0.10	-	ns
$\mathrm{t}_{\mathrm{LLPD}}$	Latch Propagation Delay (Transparent Mode)	-	0.09	-	0.10	-	0.12	ns

ispXPGA 125B/C \& ispXPGA 125EB/EC PFU Timing Parameters (Cont.)

Over Recommended Operating Conditions

Parameter	Description	-5^{1}		-4		-3		Units
		Min.	Max.	Min.	Max.	Min.	Max.	
Reset/Set								
tLASSRO	Asynchronous Set/Reset to Output	-	1.09	-	1.17	-	1.35	ns
thassRPW	Asynchronous Set/Reset Pulse Width	4.19	-	4.50	-	5.18	-	ns
tıASSRR	Asynchronous Set/Reset Recovery	-	0.51		0.55	-	0.63	ns
tLSSR_S	Synchronous Set/Reset Setup Time	-0.03	-	-0.03	-	-0.03	-	ns
tLSSR_H	Synchronous Set/Reset Hold Time	0.03	-	0.03	-	0.03	-	ns

1. Only available for ispXPGA 125B and ispXPGA 125EB (2.5V/3.3V) devices.
2. $t_{\text {LCTHRUL }}$ quoted bit by bit.

ispXPGA 125B/C \& ispXPGA 125EB/EC PIC Timing Parameters

Parameter	Description					-3		Units
		Min.	Max.	Min.	Max.	Min.	Max.	
Register/Latch Delays								
tio_co	Register Clock to Output Delay	-	0.89	T	0.96	-	1.10	ns
tio_s	Register Setup Time (Data before Clock)	0.05	-	0.05	-	0.06	-	ns
$\mathrm{t}_{\mathrm{O}-\mathrm{H}}$	Register Hold Time (Data after Clock)	0.06		0.06	-	0.07	-	ns
tioce_S	Register Clock Enable Setup Time	-0.03		-0.03	-	-0.03	-	ns
tioce_h	Register Clock Enable Hold Time	0.13		0.13	-	0.15	-	ns
tio_Go	Latch Gate to Output Delay	-	0.68	-	0.73	-	0.84	ns
tiol_s	Latch Setup Time	0.05	-	0.05	-	0.06	-	ns
tiol_h	Latch Hold Time	0.06	-	0.06	-	0.07	-	ns
tiolpd	Latch Propagation Delay (Transparent Mode)	-	0.09	-	0.10	-	0.12	ns
tioasro	Asynchronous Set/Reset to Output	-	1.00	-	1.08	-	1.24	ns
tioASRPW	Asynchronous Set/Reset Pulse Width	4.19	-	4.50	-	5.18	-	ns
$t_{\text {IOASRR }}$	Asynchronous Set/Reset Recovery Time	-	0.23	-	0.25	-	0.29	ns
Input/Output Delays								
tiobuF	Output Buffer Delay	-	0.97	-	1.04	-	1.20	ns
$\mathrm{t}_{\mathrm{IOIN}}$	Input Buffer Delay	-	0.57	-	0.61	-	0.70	ns
tioen	Output Enable Delay	-	0.53	-	0.57	-	0.66	ns
todis	Output Disable Delay	-	-0.14	-	-0.13	-	-0.11	ns
toFt	Feed-thru Delay	-	0.19	-	0.20	-	0.23	ns

[^2]
ispXPGA 125B/C \& ispXPGA 125EB/EC EBR Timing Parameters

Parameter	Description	-5^{1}		-4		-3		Units
		Min.	Max.	Min.	Max.	Min.	Max.	
Synchronous Write								
teBSWAD_S	Address Setup Delay	0.59	-	0.61		0.70	-	ns
tebswad_h	Address Hold Delay	-0.40	-	-0.39		-0.33	-	ns
$t_{\text {EBSWCPW }}$	Clock Pulse Width	3.16	-	3.40	-	3.91	-	ns
tebswWE_S	Write Enable Setup Time	-0.12	-	-0.12		-0.10	-	ns
$t_{\text {EBSWWE_H }}$	Write Enable Hold Time	0.16	-	0.16		0.18	-	ns
teBSWD_S	Data Setup Time	0.27	-	0.28	-	0.32	-	ns
tebswd_h	Data Hold Time	-0.27		-0.26	-	-0.22		ns
Synchronous Read								
tebsR_Co	Clock to Data Delay		2.04	-	2.19		2.52	ns
tebsrad_S	Address Setup Delay	0.10	-	0.10		0.12	-	ns
tebsrad_h	Address Hold Delay	-0.07	-	-0.07		-0.06	-	ns
tebSRCPW	Clock Pulse Width	3.16	-	3.40		3.91	-	ns
tebSRCE_S	Clock Enable Setup Time	-1.76	-	-1.71	-	-1.45	-	ns
teBSRCE_H	Clock Enable Hold Time	1.64		1.69		1.94	-	ns
teBSRWE_S	Write Enable Setup Time	-0.18	-	-0.17	-	-0.14	-	ns
tebsrwe_H	Write Enable Hold Time	0.12	-	0.12	-	0.14	-	ns
tebsrween	Write Enable to Data Enable Time		1.02	-	1.05	-	1.21	ns
tebsrwedis	Write Enable to Data Disable Time	-	0.99	-	1.02	-	1.17	ns
tebsRen	Output Enable to Data Enable Time	-	1.02	-	1.05	-	1.21	ns
tebsrdis	Output Enable to Data Disable Time		0.83	-	0.86	-	0.99	ns
Asynchronous Read								
tebarado	Address to New Valid Data Delay	-	2.39	-	2.46	-	2.83	ns
tebarad_h	Address to Previous Valid Data Delay	-	2.10	-	2.17	-	2.50	ns
tebarween	Write Enable to Data Enable Time	-	1.01	-	1.04	-	1.20	ns
tebarwedis	Write Enable to Data Disable Time	-	0.98	-	1.01	-	1.16	ns
tebaren	Output Enable to Data Enable Time	-	1.02	-	1.05	-	1.21	ns
tebardis	Output Enable to Data Disable Time	-	0.83	-	0.86	-	0.99	ns

ispXPGA 125B/C \& ispXPGA 125EB/EC Timing Adders

Parameter	Description	Base Parameter	-5 ${ }^{1}$		-4		-3		Units
			Min.	Max.	Min.	Max.	Min.	Max.	
Optional Adders									
tioindLy	Input Delay	-	-	4.28	-	4.6		5.29	ns
$\mathrm{t}_{\text {IOI }}$ Input Adjusters									
LVTTL_in	Using 3.3V TTL	$\mathrm{t}_{\text {IOIN }}$	-	0.5		0.5	-	0.5	ns
LVCMOS_18_in	Using 1.8V CMOS	$\mathrm{t}_{\mathrm{IOIN}}$	-	0.0		0.0	-	0.0	ns
LVCMOS_25_in	Using 2.5V CMOS	$\mathrm{t}_{\text {IOIN }}$	-	0.3		0.3	-	0.3	ns
LVCMOS_33_in	Using 3.3V CMOS	$\mathrm{t}_{\mathrm{IO} \text { IN }}$	-	0.5	-	0.5	-	0.5	ns
AGP_1X_in	Using AGP 1x	$\mathrm{t}_{\mathrm{IO} \text { IN }}$		1.0	-	1.0		1.0	ns
CTT25_in	Using CTT 2.5 V	$\mathrm{t}_{\text {IOIN }}$		1.0	-	1.0		1.0	ns
CTT33_in	Using CTT 3.3V	$\mathrm{t}_{\mathrm{IO} \text { IN }}$		1.0	-	1.0		1.0	ns
GTL+_in	Using GTL+	$\mathrm{t}_{\text {IOIN }}$	-	0.5	-	0.5		0.5	ns
HSTL_I_in	Using HSTL 2.5V, Class I	$\mathrm{t}_{\mathrm{IO} \text { IN }}$		0.5		0.5		0.5	ns
HSTL_III_in	Using HSTL 2.5V, Class III	toin	-	0.5	-	0.5	-	0.5	ns
LVDS_in	Using Low Voltage Differential Signaling (LVDS)	tioin	-	0.8		0.8	-	0.8	ns
BLVDS_in	Using Bus Low Voltage Differential Signaling (BLVDS)	$\mathrm{t}_{\mathrm{IO}, \mathrm{IN}}$		0.8		0.8	-	0.8	ns
LVPECL_in	Using Low Voltage PECL	tioin	-	0.8	-	0.8	-	0.8	ns
PCI_in	Using PCI	tioin		1.0	-	1.0	-	1.0	ns
SSTL2_I_in	Using SSTL 2.5V, Class I	tioin	-	0.8	-	0.8	-	0.8	ns
SSTL2_II_in	Using SSTL 2.5V, Class II	$\mathrm{t}_{\mathrm{IOIN}}$		0.5	-	0.5	-	0.5	ns
SSTL3_I_in	Using SSTL 3.3V, Class I	tioin	-	0.8	-	0.8	-	0.8	ns
SSTL3_II_in	Using SSTL 3.3V, Class II	tioin	-	0.8	-	0.8	-	0.8	ns
$\mathrm{t}_{\text {IOO }}$ Output Adjusters									
Slow Slew	Using Slow Slew (LVTTL and LVCMOS Outputs only)	tiobue tión	-	0.7	-	0.7	-	0.7	ns
LVTTL_out	Using 3.3V TTL Drive	tiobuf, tioen, tiodis	-	1.0	-	1.0	-	1.0	ns
LVCMOS 18 _4mA out	Using 1.8V CMOS Standard, 4 mA Drive	$t_{\text {IOBUF, }}$ tioen, tiodis	-	0.8	-	0.8	-	0.8	ns
LVCMOS_18_5.33mA_out	Using 1.8V CMOS Standard, 5.33 mA Drive	tiobuf, tioen, tiodis	-	0.6	-	0.6	-	0.6	ns
LVCMOS_18_8mA_out	Using 1.8V CMOS Standard, 8mA Drive	tiobuf, tioen, tiodis	-	0.0	-	0.0	-	0.0	ns
LVCMOS_18_12mA_out	Using 1.8V CMOS Standard, 12 mA Drive	tiobuf, tioen, tiodis	-	0.2	-	0.2	-	0.2	ns
LVCMOS_25_4mA_out	Using 2.5V CMOS Standard, 4 mA Drive	tiobuf, tioen, tiodis	-	0.7	-	0.7	-	0.7	ns
LVCMOS_25_5.33mA_out	Using 2.5V CMOS Standard, 5.33 mA Drive	tiobuf, tioen, tiodis	-	0.5	-	0.5	-	0.5	ns
LVCMOS_25_8mA_out	Using 2.5V CMOS Standard, 8mA Drive	tiobuf, tioen, tiodis	-	0.5	-	0.5	-	0.5	ns
LVCMOS_25_12mA_out	Using 2.5V CMOS Standard, 12mA Drive	$\begin{aligned} & \mathrm{t}_{\text {IIOBUF }} \mathrm{t}_{\text {IOEN }}, \\ & \mathrm{t}_{\text {IODIS }} \end{aligned}$	-	0.5	-	0.5	-	0.5	ns
LVCMOS_25_16mA_out	Using 2.5V CMOS Standard, 16mA Drive	tiobuf, tioen, tiodis	-	0.5	-	0.5	-	0.5	ns

ispXPGA 125B/C \& ispXPGA 125EB/EC Timing Adders (Cont.)

Parameter	Description	Base Parameter	-5^{1}		-4		-3		Units
			Min.	Max.	Min.	Max.	Min.	Max.	
LVCMOS_33_4mA_out	Using 3.3V CMOS Standard, 4mA Drive	tiobuf, tioen, tiodis	-	1.0	-			1.0	ns
LVCMOS_33_5.33mA_out	Using 3.3V CMOS Standard, 5.33mA Drive	tiobuf, tioen, tiodis	-	1.0		1.0		1.0	ns
LVCMOS_33_8mA_out	Using 3.3V CMOS Standard, 8mA Drive	tiobuf, tioen, tiodis	-	0.7				0.7	ns
LVCMOS_33_12mA_out	Using 3.3V CMOS Standard, 12mA Drive	$t_{\text {IOBUF }} \mathrm{t}_{\text {IOEN, }}$ tiodis	-	0.5			-	0.5	ns
LVCMOS_33_16mA_out	Using 3.3V CMOS Standard, 16mA Drive	$\mathrm{t}_{\text {IOBUF, }}$ tioen, tiodis		0.5		0.5			ns
LVCMOS_33_24mA_out	Using 3.3V CMOS Standard, 24mA Drive	tiobuf, tioen, tiodis		0.5				0.5	ns
AGP_1X_out	Using AGP 1x Standard	tiobuf, tioen, tiodis		0.5	-			0.5	ns
CTT25_out	Using CTT 2.5 V	tobuf, toen, tiODIS	$-$	0.5		0.5		0.5	ns
CTT33_out	Using CTT 3.3V	$t_{\text {IOBUF }} \text { tIOEN, }$ tiodis	-	0.5		0.5	-	0.5	ns
GTL+_out	Using GTL+	$\mathrm{t}_{\mathrm{IOBUF}}, \mathrm{t}_{\text {IOEN }}$ tiodis		0.5		0.5	-	0.5	ns
HSTL_I_out	Using HSTL 2.5V, Class I	tiobuf, tioen, tiodis		0.5	-	0.5	-	0.5	ns
HSTL_III_out	Using HSTL 2.5V, Class III	tiobuf, tioen, tiodis		0.5	-	0.5	-	0.5	ns
LVDS_out	Using Low Voltage Differential Signaling (LVDS)	tIOBUF, IIOEN, tiodis	$-$	1.0	-	1.0	-	1.0	ns
BLVDS_out	Using Bus Low Voltage Differential Signaling (BLVDS)	tiobuf, tioen, tiodis	-	1.0	-	1.0	-	1.0	ns
LVPECL_out	Using Low Voltage PECL	tiobuf, tioen, tiodis	-	1.0	-	1.0	-	1.0	ns
PCI_out	Using PCI Standard	tiobuf, tioen, tiodis	-	0.5	-	0.5	-	0.5	ns
SSTL2_1_out	Using SSTL 2.5V, Class I	${ }^{\text {tiobuf, tioen, }}$ tiodis	-	0.5	-	0.5	-	0.5	ns
SSTL2_II_out	Using SSTL 2.5V, Class II	$\mathrm{t}_{\text {Iobuf, }} \mathrm{t}_{\text {Ioen, }}$ tiodis	-	0.5	-	0.5	-	0.5	ns
SSTL3 I out	Using SSTL 3.3V, Class I	$t_{\text {IOBUF, }} \mathrm{t}_{\text {IOEN, }}$, tiodis	-	0.5	-	0.5	-	0.5	ns
SSTL3_II_out	Using SSTL 3.3V, Class II	tiobuf, tioen, tiodis	-	0.5	-	0.5	-	0.5	ns

1. Only available for ispXPGA 125B and ispXPGA 125EB (2.5V/3.3V) devices.
ispXPGA 200B/C \& ispXPGA 200EB/EC External Switching Characteristics
Over Recommended Operating Conditions

Parameter	Description	Conditions	-5^{1}		-4		-3		Units
			Min.	Max.	Min.	Max.	Min.	Max.	
t_{CO}	Global Clock Input to Output	PIO Output Register	-	5.5	-			6.8	ns
t_{s}	Global Clock Input Setup	PIO Input Register without input delay	-2.0	-				-	ns
t_{H}	Global Clock Input Hold	PIO Input Register without input delay	3.7		3.8		4.4	-	ns
$\mathrm{t}_{\text {SINDLY }}$	Global Clock Input Setup	PIO Input Register with input delay	3.8	-	3.		4.4		ns
$\mathrm{t}_{\text {HINDLY }}$	Global Clock Input Hold	PIO Input Register with input delay	0.0		0.0	-			
${ }^{\text {t }}$ OPPLL	Global Clock Input to Output	PIO Output Register using PLL without delay		3.3	-	3.6		4.2	ns
${ }^{\text {SPPLL }}$	Global Clock Input Setup	PIO Input Register without input delay using PLL without delay	0.2		-0.2				ns
$\mathrm{t}_{\mathrm{HPLL}}$	Global Clock Input Hold	PIO Input Register without input delay using PLL without delay	1.5	-	1.5			-	ns
${ }^{\text {S SINDLYPLL }}$	Global Clock Input Setup	PIO Input Register with input delay using PLL without delay	6.3				7.3	-	ns
$\mathrm{t}_{\text {HindLYPLL }}$	Global Clock Input Hold	PIO Input Register with input delay using PLL without delay	-2.7		2.6	-	-2.2	-	ns

ispXPGA 200B/C \& ispXPGA 200EB/EC PFU Timing Parameters

Over Recommended Operating Conditions

Parameter	Description	-5 ${ }^{1}$		-4		-3		Units
		Min.	Max.	Min.	Max.	Min.	Max.	
Functional Delays								
LUTs								
tLUT4	4-Input LUT Delay	-	0.41		0.44	-	0.51	ns
tLUT5	5-Input LUT Delay	-	0.73		0.79	-	0.91	ns
tut6	6-Input LUT Delay	-	0.86	-	0.93	-	1.07	ns
Shift Register (LUT)								
tLSR_S	Shift Register Setup Time	-0.64	-	-0.62	-	-0.53		ns
tLSR_H	Shift Register Hold Time	0.61		0.63	-	0.72		ns
tLSR_CO	Shift Register Clock to Output Delay		0.70	-	0.75		0.86	ns
Arithmetic Functions								
$\mathrm{t}_{\text {LCTHRUR }}$	MC (Macro Cell) Carry In to MC Carry Out Delay (Ripple)	-	0.08		0.09		0.10	ns
ticthrul ${ }^{2}$	MC Carry In to MC Carry Out Delay (Look Ahead)	-	0.05	-	0.05	-	0.06	ns
tıSTHRU	MC Sum In to MC Sum Out Delay		0.42		0.45	-	0.52	ns
tisincout	MC Sum In to MC Carry Out Delay	-	0.29		0.31	-	0.36	ns
thCINSOUTR	MC Carry In to MC Sum Out Delay (Ripple)	-	0.36	-	0.39	-	0.45	ns
thinsoutl	MC Carry In to MC Sum Out Delay (Look Ahead)		0.26	-	0.28	-	0.32	ns
Feed-thru								
$\mathrm{t}_{\text {LFT }}$	PFU Feed-Thru Delay	-	0.15	-	0.16	-	0.18	ns
Distributed RAM								
tLRAM_CO	Clock to RAM Output		1.24	-	1.33	-	1.53	ns
tLRAMAD_S	Address Setup Time $\quad \square$	-0.41	-	-0.40	-	-0.34	-	ns
tLRAMD_S	Data Setup Time	0.21	-	0.22	-	0.25	-	ns
tLRAMWE_S	Write Enable Setup Time	0.45	-	0.46	-	0.53	-	ns
tLRAMAD_H	Address Hold Time	0.58	-	0.60	-	0.69	-	ns
tLRAMD_H	Data Hold Time	0.11	-	0.11	-	0.13	-	ns
tlramwe_h	Write Enable Hold Time	0.12	-	0.12	-	0.14	-	ns
tlRamCPW	Clock Pulse Width (High or Low)	2.91	-	3.00	-	3.45	-	ns
tlramado	Address to Output Delay	-	0.86	-	0.93	-	1.07	ns

Register/Latch Delays

Registers

$t_{\text {L_CO }}$	Register Clock to Output Delay	-	0.58	-	0.62	-	0.71	ns
$t_{\text {L_S }}$	Register Setup Time (Data before Clock)	0.14	-	0.14	-	0.16	-	ns
$t_{\text {L_H }}$	Register Hold Time (Data after Clock)	-0.12	-	-0.12	-	-0.10	-	ns
$t_{\text {LCE_S }}$	Register Clock Enable Setup Time	-0.11	-	-0.11	-	-0.09	-	ns
$t_{\text {LCE_H }}$	Register Clock Enable Hold Time	0.11	-	0.11	-	0.13	-	ns

Latches

$t_{\text {L_GO }}$	Latch Gate to Output Delay	-	0.09	-	0.10	-	0.12	ns
$t_{\text {LL_S }}$	Latch Setup Time	0.14	-	0.14	-	0.16	-	ns
$t_{\text {LL_H }}$	Latch Hold Time	-0.12	-	-0.12	-	-0.10	-	ns
$\mathrm{t}_{\mathrm{LLPD}}$	Latch Propagation Delay (Transparent Mode)	-	0.09	-	0.10	-	0.12	ns

ispXPGA 200B/C \& ispXPGA 200EB/EC PFU Timing Parameters (Cont.)

Over Recommended Operating Conditions

Parameter	Description	-5 ${ }^{1}$		-4		-3		Units
		Min.	Max.	Min.	Max.	Min.	Max.	
Reset/Set								
thassro	Asynchronous Set/Reset to Output	-	1.09	-	. 17	-	1.35	ns
thassRPW	Asynchronous Set/Reset Pulse Width	4.19	-	4.50	-	5.18	-	ns
thassRR	Asynchronous Set/Reset Recovery	-	0.51		0.55	-	0.63	ns
tLSSR_S	Synchronous Set/Reset Setup Time	-0.03	-	-0.03	-	-0.03	-	ns
tLSSR_H	Synchronous Set/Reset Hold Time	0.03	-	0.03	-	0.03	-	ns

1. Only available for ispXPGA 200B and ispXPGA 200EB (2.5V/3.3V) devices.
2. $t_{\text {LCTHRUL }}$ quoted bit by bit.

ispXPGA 200B/C \& ispXPGA 200EB/EC PIC Timing Parameters

[^3]
ispXPGA 200B/C \& ispXPGA 200EB/EC EBR Timing Parameters

Parameter	Description	-5^{1}		-4		-3		Units
		Min.	Max.	Min.	Max.	Min.	Max.	
Synchronous Write								
tebswad_S	Address Setup Delay	0.59	-	0.61		0.70	-	ns
$\mathrm{t}_{\text {EBSWAD_H }}$	Address Hold Delay	-0.40	-	-0.39		-0.33	-	ns
$\mathrm{t}_{\text {EBSWCPW }}$	Clock Pulse Width	3.16	-	3.40	-	3.91	-	ns
tebswWE_S	Write Enable Setup Time	-0.12	-	-0.12		-0.10	-	ns
teBSWWE_H	Write Enable Hold Time	0.16	-	0.16		0.18	-	ns
teBSWD_S	Data Setup Time	0.27	-	0.28	-	0.32	-	ns
teBSWD_H	Data Hold Time	-0.27		-0.26	-	-0.22		ns
Synchronous Read								
tebsR_CO	Clock to Data Delay		2.04	-	2.19		2.52	ns
tebsrad_s	Address Setup Delay	0.10	-	0.10		0.12	∇	ns
tebSRAD_H	Address Hold Delay	-0.07	-	-0.07		-0.06	-	ns
tebsRCPW	Clock Pulse Width	3.16	-	3.40		3.91	-	ns
$\mathrm{t}_{\text {EBSRCE_S }}$	Clock Enable Setup Time	-1.76	-	-1.71	-	-1.45	-	ns
tebsRCE_H	Clock Enable Hold Time	1.64		1.69		1.94	-	ns
tebsRWE_S	Write Enable Setup Time	-0.18	-	-0.17	-	-0.14	-	ns
teBSRWE_H	Write Enable Hold Time	0.12	-	0.12	-	0.14	-	ns
tebsrween	Write Enable to Data Enable Time		1.02	-	1.05	-	1.21	ns
tebsrwedis	Write Enable to Data Disable Time	-	0.99	-	1.02	-	1.17	ns
tebsren	Output Enable to Data Enable Time	-	1.02	-	1.05	-	1.21	ns
tebSRDIS	Output Enable to Data Disable Time		0.83	-	0.86	-	0.99	ns
Asynchronous Read								
tebarado	Address to New Valid Data Delay	-	2.39	-	2.46	-	2.83	ns
tebarad_h	Address to Previous Valid Data Delay	-	2.10	-	2.17	-	2.50	ns
tebarween	Write Enable to Data Enable Time	-	1.01	-	1.04	-	1.20	ns
tebarwedis	Write Enable to Data Disable Time	-	0.98	-	1.01	-	1.16	ns
tebaren	Output Enable to Data Enable Time	-	1.02	-	1.05	-	1.21	ns
tebardis	Output Enable to Data Disable Time	-	0.83	-	0.86	-	0.99	ns

ispXPGA 200B/C \& ispXPGA 200EB/EC Timing Adders

Parameter	Description	Base Parameter	-5 ${ }^{1}$		-4		-3		Units
			Min.	Max.	Min.	Max.	Min.	Max.	
Optional Adders									
tioindLy	Input Delay	-	-	4.84	-	5.2		5.98	ns
$\mathrm{t}_{\text {IOI }}$ Input Adjusters									
LVTTL_in	Using 3.3V TTL	$\mathrm{t}_{\text {IOIN }}$	-	0.5		0.5	-	0.5	ns
LVCMOS_18_in	Using 1.8V CMOS	$\mathrm{t}_{\mathrm{IOIN}}$	-	0.0		0.0	-	0.0	ns
LVCMOS_25_in	Using 2.5V CMOS	$\mathrm{t}_{\text {IOIN }}$	-	0.3		0.3	-	0.3	ns
LVCMOS_33_in	Using 3.3V CMOS	$\mathrm{t}_{\mathrm{IO} \text { IN }}$	-	0.5	-	0.5	-	0.5	ns
AGP_1X_in	Using AGP 1x	$\mathrm{t}_{\mathrm{IO} \text { IN }}$		1.0	-	1.0		1.0	ns
CTT25_in	Using CTT 2.5 V	$\mathrm{t}_{\text {IOIN }}$		1.0	-	1.0		1.0	ns
CTT33_in	Using CTT 3.3V	$\mathrm{t}_{\mathrm{IO} \text { IN }}$		1.0	-	1.0		1.0	ns
GTL+_in	Using GTL+	$\mathrm{t}_{\text {IOIN }}$	-	0.5	-	0.5		0.5	ns
HSTL_I_in	Using HSTL 2.5V, Class I	$\mathrm{t}_{\mathrm{IO} \text { IN }}$		0.5		0.5		0.5	ns
HSTL_III_in	Using HSTL 2.5V, Class III	tioin	-	0.5	-	0.5	-	0.5	ns
LVDS_in	Using Low Voltage Differential Signaling (LVDS)	tioin	-	0.8		0.8	-	0.8	ns
BLVDS_in	Using Bus Low Voltage Differential Signaling (BLVDS)	$\mathrm{t}_{\mathrm{IO}, \mathrm{IN}}$		0.8		0.8	-	0.8	ns
LVPECL_in	Using Low Voltage PECL	tioin	-	0.8	-	0.8	-	0.8	ns
PCI_in	Using PCI	tioin		1.0	-	1.0	-	1.0	ns
SSTL2_I_in	Using SSTL 2.5V, Class I	tioin	-	0.8	-	0.8	-	0.8	ns
SSTL2_II_in	Using SSTL 2.5V, Class II	$\mathrm{t}_{\mathrm{IOIN}}$		0.5	-	0.5	-	0.5	ns
SSTL3_I_in	Using SSTL 3.3V, Class I	tioin	-	0.8	-	0.8	-	0.8	ns
SSTL3_II_in	Using SSTL 3.3V, Class II	${ }_{\text {toin }}$	-	0.8	-	0.8	-	0.8	ns
$\mathrm{t}_{\text {IOO }}$ Output Adjusters									
Slow Slew	Using Slow Slew (LVTTL and LVCMOS Outputs only)	tiobue tión	-	0.7	-	0.7	-	0.7	ns
LVTTL_out	Using 3.3V TTL Drive	tiobuf, tioen, tiodis	-	1.0	-	1.0	-	1.0	ns
LVCMOS 18 _4mA out	Using 1.8V CMOS Standard, 4 mA Drive	$\mathrm{t}_{\text {IOBUF, }} \mathrm{t}_{\text {IOEN, }}$ tiodis	-	0.8	-	0.8	-	0.8	ns
LVCMOS_18_5.33mA_out	Using 1.8V CMOS Standard, 5.33 mA Drive	tiobuf, tioen, tiodis	-	0.6	-	0.6	-	0.6	ns
LVCMOS_18_8mA_out	Using 1.8V CMOS Standard, 8mA Drive	tiobuf, tioen, tiodis	-	0.0	-	0.0	-	0.0	ns
LVCMOS_18_12mA_out	Using 1.8V CMOS Standard, 12 mA Drive	tiobuf, tioen, tiodis	-	0.2	-	0.2	-	0.2	ns
LVCMOS_25_4mA_out	Using 2.5V CMOS Standard, 4 mA Drive	tiobuf, tioen, tiodis	-	0.7	-	0.7	-	0.7	ns
LVCMOS_25_5.33mA_out	Using 2.5V CMOS Standard, 5.33 mA Drive	tiobuf, tioen, tiodis	-	0.5	-	0.5	-	0.5	ns
LVCMOS_25_8mA_out	Using 2.5V CMOS Standard, 8mA Drive	tiobuf, tioen, tiodis	-	0.5	-	0.5	-	0.5	ns
LVCMOS_25_12mA_out	Using 2.5V CMOS Standard, 12mA Drive	tiobuf, tioen, tiodis	-	0.5	-	0.5	-	0.5	ns
LVCMOS_25_16mA_out	Using 2.5V CMOS Standard, 16mA Drive	tiobuf, tioen, tiodis	-	0.5	-	0.5	-	0.5	ns

ispXPGA 200B/C \& ispXPGA 200EB/EC Timing Adders (Cont.)

Parameter	Description	Base Parameter	-5^{1}		-4		-3		Units
			Min.	Max.	Min.	Max.	Min.	Max.	
LVCMOS_33_4mA_out	Using 3.3V CMOS Standard, 4mA Drive	tiobuf, tioen, tiodis	-	1.0	-			1.0	ns
LVCMOS_33_5.33mA_out	Using 3.3V CMOS Standard, 5.33mA Drive	tiobuf, tioen, tiodis	-	1.0				1.0	ns
LVCMOS_33_8mA_out	Using 3.3V CMOS Standard, 8mA Drive	$\mathrm{t}_{\text {IOBUF, }} \mathrm{t}_{\text {IOEN, }}$ tiodis	-	0.7				0.7	ns
LVCMOS_33_12mA_out	Using 3.3V CMOS Standard, 12mA Drive	tiobuf, tioen, tiodis	-	0.5			-	0.5	ns
LVCMOS_33_16mA_out	Using 3.3V CMOS Standard, 16mA Drive	tiobuf, tioen, tiodis		0.5	\bar{J}	0.5		0.5	ns
LVCMOS_33_24mA_out	Using 3.3V CMOS Standard, 24mA Drive	$\mathrm{t}_{\text {IOBUF, }} \mathrm{t}_{\text {IOEN, }}$ tiodis		0.5				0.5	ns
AGP_1X_out	Using AGP 1x Standard	tiobuf, tioen, tiodis		0.5	-			0.5	ns
CTT25_out	Using CTT 2.5 V	tiobuf, tIOEN, tiodis	$-$	0.5		0.5		0.5	ns
CTT33_out	Using CTT 3.3V	tiobuf, tioen, tiodis	-	0.5		0.5	-	0.5	ns
GTL+_out	Using GTL+	${ }^{\mathrm{t}_{\mathrm{IOBU}}} \mathrm{t}_{\mathrm{IOEN}}$ tiodis				0.5	-	0.5	ns
HSTL_I_out	Using HSTL 2.5V, Class I	tiobuf, tioen, tiodis		0.5	-	0.5	-	0.5	ns
HSTL_III_out	Using HSTL 2.5V, Class III	tiobuf, tioen, tiodis		0.5	-	0.5	-	0.5	ns
LVDS_out	Using Low Voltage Differential Signaling (LVDS)	$\begin{aligned} & \mathrm{t}_{\text {IOBUF }} \text { IIOEN, } \\ & \mathrm{t}_{\text {IODIS }} \end{aligned}$	-	1.0	-	1.0	-	1.0	ns
BLVDS_out	Using Bus Low Voltage Differential Signaling (BLVDS)	tiobuF tioen, tiodis	-	1.0	-	1.0	-	1.0	ns
LVPECL_out	Using Low Voltage PECL	tiobuf, tioen, tiodis	-	1.0	-	1.0	-	1.0	ns
PCI_out	Using PCI Standard	tiobuf, tioen, tiodis	-	0.5	-	0.5	-	0.5	ns
SSTL2_L_out	Using SSTL 2.5V, Class I	$\mathrm{t}_{\text {IOBUF, }}$ tioen, tiodis	-	0.5	-	0.5	-	0.5	ns
SSTL2_ll_out	Using SSTL 2.5V, Class II	$\mathrm{t}_{\text {Iobuf, }} \mathrm{t}_{\text {Ioen, }}$ tiodis	-	0.5	-	0.5	-	0.5	ns
SSTL3_I_out	Using SSTL 3.3V, Class I	$\mathrm{t}_{\text {IOBUF, }} \mathrm{t}_{\text {IOEN }}$ tIODIS	-	0.5	-	0.5	-	0.5	ns
SSTL3_II_out	Using SSTL 3.3V, Class II	$\mathrm{t}_{\text {IOBUF, }}$ tioen, tiodis	-	0.5	-	0.5	-	0.5	ns

1. Only available for ispXPGA 200B and ispXPGA 200EB (2.5V/3.3V) devices.
ispXPGA 500B/C \& ispXPGA 500EB/EC External Switching Characteristics
Over Recommended Operating Conditions

Parameter	Description	Conditions	-5^{1}		-4		-3		Units
			Min.	Max.	Min.	Max.	Min.	Max.	
t_{CO}	Global Clock Input to Output	PIO Output Register	-	6.4	-			7.9	ns
t_{s}	Global Clock Input Setup	PIO Input Register without input delay	-2.9	-			2.3	-	ns
t_{H}	Global Clock Input Hold	PIO Input Register without input delay	3.6		3.9		4.5	-	ns
$\mathrm{t}_{\text {SINDLY }}$	Global Clock Input Setup	PIO Input Register with input delay	3.3	-			4.1		ns
$\mathrm{t}_{\text {HINDLY }}$	Global Clock Input Hold	PIO Input Register with input delay	0.0		0.0	-			
${ }^{\text {t }}$ OPPLL	Global Clock Input to Output	PIO Output Register using PLL without delay		3.2	-			3.9	ns
${ }^{\text {SPPLL }}$	Global Clock Input Setup	PIO Input Register without input delay using PLL without delay			0.2				ns
$\mathrm{t}_{\mathrm{HPLL}}$	Global Clock Input Hold	PIO Input Register without input delay using PLL without delay	0.8	-				-	ns
${ }^{\text {S SINDLYPLL }}$	Global Clock Input Setup	PIO Input Register with input delay using PLL without delay	6.7				8.3	-	ns
$\mathrm{t}_{\text {HindLYPLL }}$	Global Clock Input Hold	PIO Input Register with input delay using PLL without delay	-4.3		4.0	-	-3.4	-	ns

ispXPGA 500B/C \& ispXPGA 500EB/EC PFU Timing Parameters

Over Recommended Operating Conditions

Parameter	Description	-5 ${ }^{1}$		-4		-3		Units
		Min.	Max.	Min.	Max.	Min.	Max.	
Functional Delays								
LUTs								
tLUT4	4-Input LUT Delay	-	0.41		0.44	-	0.51	ns
tLUT5	5-Input LUT Delay	-	0.73		0.79	-	0.91	ns
tut6	6-Input LUT Delay	-	0.86	-	0.93	-	1.07	ns
Shift Register (LUT)								
tLSR_S	Shift Register Setup Time	-0.64	-	-0.62	-	-0.53		ns
tLSR_H	Shift Register Hold Time	0.61		0.63	-	0.72		ns
tLSR_CO	Shift Register Clock to Output Delay		0.70	-	0.75		0.86	ns
Arithmetic Functions								
$\mathrm{t}_{\text {LCTHRUR }}$	MC (Macro Cell) Carry In to MC Carry Out Delay (Ripple)	-	0.08		0.09		0.10	ns
ticthrul ${ }^{2}$	MC Carry In to MC Carry Out Delay (Look Ahead)	-	0.05	-	0.05	-	0.06	ns
tıSTHRU	MC Sum In to MC Sum Out Delay		0.42		0.45	-	0.52	ns
tisincout	MC Sum In to MC Carry Out Delay	-	0.29		0.31	-	0.36	ns
thCINSOUTR	MC Carry In to MC Sum Out Delay (Ripple)	-	0.36	-	0.39	-	0.45	ns
thinsoutl	MC Carry In to MC Sum Out Delay (Look Ahead)		0.26	-	0.28	-	0.32	ns
Feed-thru								
$\mathrm{t}_{\text {LFT }}$	PFU Feed-Thru Delay	-	0.15	-	0.16	-	0.18	ns
Distributed RAM								
tLRAM_CO	Clock to RAM Output		1.24	-	1.33	-	1.53	ns
tLRAMAD_S	Address Setup Time $\quad \square$	-0.41	-	-0.40	-	-0.34	-	ns
tLRAMD_S	Data Setup Time	0.21	-	0.22	-	0.25	-	ns
tLRAMWE_S	Write Enable Setup Time	0.45	-	0.46	-	0.53	-	ns
tLRAMAD_H	Address Hold Time	0.58	-	0.60	-	0.69	-	ns
tLRAMD_H	Data Hold Time	0.11	-	0.11	-	0.13	-	ns
tlramwe_h	Write Enable Hold Time	0.12	-	0.12	-	0.14	-	ns
tlRamCPW	Clock Pulse Width (High or Low)	2.91	-	3.00	-	3.45	-	ns
tlramado	Address to Output Delay	-	0.86	-	0.93	-	1.07	ns

Register/Latch Delays

Registers

$t_{\text {L_CO }}$	Register Clock to Output Delay	-	0.58	-	0.62	-	0.71	ns
$t_{\text {L_S }}$	Register Setup Time (Data before Clock)	0.14	-	0.14	-	0.16	-	ns
$t_{\text {L_H }}$	Register Hold Time (Data after Clock)	-0.12	-	-0.12	-	-0.10	-	ns
$t_{\text {LCE_S }}$	Register Clock Enable Setup Time	-0.11	-	-0.11	-	-0.09	-	ns
$t_{\text {LCE_H }}$	Register Clock Enable Hold Time	0.11	-	0.11	-	0.13	-	ns

Latches

$t_{\text {L_GO }}$	Latch Gate to Output Delay	-	0.09	-	0.10	-	0.12	ns
$\mathrm{t}_{\text {LL_ }} \mathrm{S}$	Latch Setup Time	0.14	-	0.14	-	0.16	-	ns
$\mathrm{t}_{\text {LL_ }} \mathrm{H}$	Latch Hold Time	-0.12	-	-0.12	-	-0.10	-	ns
$\mathrm{t}_{\mathrm{LLPD}}$	Latch Propagation Delay (Transparent Mode)	-	0.09	-	0.10	-	0.12	ns

ispXPGA 500B/C \& ispXPGA 500EB/EC PFU Timing Parameters (Cont.)
Over Recommended Operating Conditions

Parameter	Description	-5 ${ }^{1}$		-4		-3		Units
		Min.	Max.	Min.	Max.	Min.	Max.	
Reset/Set								
thassro	Asynchronous Set/Reset to Output	-	1.09		1.17	-	1.35	ns
thassRPW	Asynchronous Set/Reset Pulse Width	4.19	-	4.50	-	5.18	-	ns
thassRR	Asynchronous Set/Reset Recovery	-	0.51		0.55		0.63	ns
tLSSR_S	Synchronous Set/Reset Setup Time	-0.03	-	-0.03		-0.03	-	ns
tLSSR_H	Synchronous Set/Reset Hold Time	0.03	-	0.03	-	0.03	-	ns

2. $\mathrm{t}_{\text {LCTHRUL }}$ quoted bit by bit.

ispXPGA 500B/C \& ispXPGA 500EB/EC PIC Timing Parameters

	Description					${ }^{-3}$		Units
Parameter		Min.	Max.	Min.	Max.	Min.	Max.	
Register/Latch Delays						\checkmark		
tio_co	Register Clock to Output Delay	-	1.00	-	1.07	-	1.23	ns
tio_s	Register Setup Time (Data before Clock)	0.05	-	0.05		0.06	-	ns
tio_h	Register Hold Time (Data after Clock)	0.06		0.06	-	0.07	-	ns
tiOCE_S	Register Clock Enable Setup Time	-0.03		-0.03	-	-0.03	-	ns
tioce_h	Register Clock Enable Hold Time	0.13		0.13	-	0.15	-	ns
tio_GO	Latch Gate to Output Delay	-	0.78	-	0.84	-	0.97	ns
tiol_s	Latch Setup Time	0.05	-	0.05	-	0.06	-	ns
tiol_h	Latch Hold Time	0.06	-	0.06	-	0.07	-	ns
tiolpd	Latch Propagation Delay (Transparent Mode)	-	0.09	-	0.10	-	0.12	ns
tioasro	Asynchronous Set/Reset to Output	-	1.11	-	1.19	-	1.37	ns
tioasRPW	Asynchronous Set/Reset Pulse Width	4.19	-	4.50	-	5.18	-	ns
tioaskr	Asynchronous Set/Reset Recovery Time	-	0.23	-	0.25	-	0.29	ns
Input/Output	Delays							
$\mathrm{t}_{\text {IOBUF }}$	Output Buffer Delay	-	0.98	-	1.05	-	1.21	ns
$\mathrm{tIOIN}^{\text {a }}$	Input Buffer Delay	-	0.65	-	0.70	-	0.81	ns
tioen	Output Enable Delay	-	0.52	-	0.56	-	0.64	ns
todis	Output Disable Delay	-	-0.12	-	-0.11	-	-0.09	ns
tIOFT	Feed-thru Delay	-	0.19	-	0.20	-	0.23	ns

ispXPGA 500B/C \& ispXPGA 500EB/EC EBR Timing Parameters

Parameter	Description	-5^{1}		-4		-3		Units
		Min.	Max.	Min.	Max.	Min.	Max.	
Synchronous Write								
tebswad_S	Address Setup Delay	0.59	-	0.61		0.70	-	ns
$\mathrm{t}_{\text {EBSWAD_H }}$	Address Hold Delay	-0.40	-	-0.39		-0.33	-	ns
$\mathrm{t}_{\text {EBSWCPW }}$	Clock Pulse Width	3.16	-	3.40	-	3.91	-	ns
tebswWE_S	Write Enable Setup Time	-0.12	-	-0.12		-0.10	-	ns
teBSWWE_H	Write Enable Hold Time	0.16	-	0.16		0.18	-	ns
teBSWD_S	Data Setup Time	0.27	-	0.28	-	0.32	-	ns
teBSWD_H	Data Hold Time	-0.27		-0.26	-	-0.22		ns
Synchronous Read								
tebsR_CO	Clock to Data Delay		2.04	-	2.19		2.52	ns
tebsrad_s	Address Setup Delay	0.10	-	0.10		0.12	∇	ns
tebSRAD_H	Address Hold Delay	-0.07	-	-0.07		-0.06	-	ns
tebsRCPW	Clock Pulse Width	3.16	-	3.40		3.91	-	ns
$\mathrm{t}_{\text {EBSRCE_S }}$	Clock Enable Setup Time	-1.76	-	-1.71	-	-1.45	-	ns
tebsRCE_H	Clock Enable Hold Time	1.64		1.69		1.94	-	ns
tebsRWE_S	Write Enable Setup Time	-0.18	-	-0.17	-	-0.14	-	ns
teBSRWE_H	Write Enable Hold Time	0.12	-	0.12	-	0.14	-	ns
tebsrween	Write Enable to Data Enable Time		1.02	-	1.05	-	1.21	ns
tebsrwedis	Write Enable to Data Disable Time	-	0.99	-	1.02	-	1.17	ns
tebsren	Output Enable to Data Enable Time	-	1.02	-	1.05	-	1.21	ns
tebSRDIS	Output Enable to Data Disable Time		0.83	-	0.86	-	0.99	ns
Asynchronous Read								
tebarado	Address to New Valid Data Delay	-	2.39	-	2.46	-	2.83	ns
tebarad_h	Address to Previous Valid Data Delay	-	2.10	-	2.17	-	2.50	ns
tebarween	Write Enable to Data Enable Time	-	1.01	-	1.04	-	1.20	ns
tebarwedis	Write Enable to Data Disable Time	-	0.98	-	1.01	-	1.16	ns
tebaren	Output Enable to Data Enable Time	-	1.02	-	1.05	-	1.21	ns
tebardis	Output Enable to Data Disable Time	-	0.83	-	0.86	-	0.99	ns

ispXPGA 500B/C \& ispXPGA 500EB/EC Timing Adders

Parameter	Description	Base Parameter	-5 ${ }^{1}$		-4		-3		Units
			Min.	Max.	Min.	Max.	Min.	Max.	
Optional Adders									
tooindiy	Input Delay	-	-	5.21	-	5.60		6.44	ns
$\mathrm{t}_{\text {IOI }}$ Input Adjusters									
LVTTL_in	Using 3.3V TTL	$\mathrm{t}_{\text {IOIN }}$	-	0.5		0.5		0.5	ns
LVCMOS_18_in	Using 1.8V CMOS	$\mathrm{t}_{\text {IOIN }}$	-	0.0		0.0	-	0.0	ns
LVCMOS_25_in	Using 2.5V CMOS	$\mathrm{t}_{\text {IOIN }}$	-	0.3		0.3	-	0.3	ns
LVCMOS_33_in	Using 3.3V CMOS	$\mathrm{t}_{\text {IOIN }}$	-	0.5	-	0.5	-	0.5	ns
AGP_1X_in	Using AGP 1x	$\mathrm{t}_{\text {IOIN }}$		1.0	-	1.0		1.0	ns
CTT25_in	Using CTT 2.5 V	$\mathrm{t}_{\text {IOIN }}$		1.0	-	1.0		1.0	ns
CTT33_in	Using CTT 3.3V	$\mathrm{t}_{\text {IOIN }}$		1.0	-	1.0	-	1.0	ns
GTL+_in	Using GTL+	$\mathrm{t}_{\text {IOIN }}$	-	0.5	-	0.5		0.5	ns
HSTL_I_in	Using HSTL 2.5V, Class I	$\mathrm{t}_{\mathrm{IO} \text { IN }}$	-	0.5		0.5		0.5	ns
HSTL_III_in	Using HSTL 2.5V, Class III	tioin	-	0.5	-	0.5	-	0.5	ns
LVDS_in	Using Low Voltage Differential Signaling (LVDS)	tioin	-	0.8		0.8	-	0.8	ns
BLVDS_in	Using Bus Low Voltage Differential Signaling (BLVDS)	tioin	-	0.8		0.8	-	0.8	ns
LVPECL_in	Using Low Voltage PECL	tioin	-	0.8	-	0.8	-	0.8	ns
PCI_in	Using PCI	$\mathrm{t}_{\mathrm{IOIN}}$		1.0	-	1.0	-	1.0	ns
SSTL2_I_in	Using SSTL 2.5V, Class I	$\mathrm{t}_{\mathrm{IOIN}}$	-	0.8	-	0.8	-	0.8	ns
SSTL2_II_in	Using SSTL 2.5V, Class II	$\mathrm{t}_{\mathrm{IOIN}}$		0.5	-	0.5	-	0.5	ns
SSTL3_I_in	Using SSTL 3.3V, Class I	tioin	-	0.8	-	0.8	-	0.8	ns
SSTL3_II_in	Using SSTL 3.3V, Class II	tioln	-	0.8	-	0.8	-	0.8	ns
$\mathrm{t}_{\mathrm{IOO}}$ Output Adjusters									
Slow Slew	Using Slow Slew (LVTTL and LVCMOS Outputs only)	tiobuf tión	-	0.7	-	0.7	-	0.7	ns
LVTTL_out	Using 3.3V TTL Drive	tiobuf, tioen, tiodis	-	1.0	-	1.0	-	1.0	ns
LVCMOS_18_4mA_out	Using 1.8V CMOS Standard, 4mA Drive	tiobuf, tioen, tiodis	-	0.8	-	0.8	-	0.8	ns
LVCMOS_18_5.33mA_out	Using 1.8V CMOS Standard, 5.33 mA Drive	$\mathrm{t}_{\text {IOBUF, }}$ tioen, tiodis	-	0.6	-	0.6	-	0.6	ns
LVCMOS_18_8mA_out	Using 1.8V CMOS Standard, 8 mA Drive	tiobuf, tioen, tiodis	-	0.0	-	0.0	-	0.0	ns
LVCMOS_18_12mA_out	Using 1.8V CMOS Standard, 12 mA Drive	tiobuf, tioen, tiodis	-	0.2	-	0.2	-	0.2	ns
LVCMOS_25_4mA_out	Using 2.5V CMOS Standard, 4 mA Drive	tiobuf, tioen, tiodis	-	0.7	-	0.7	-	0.7	ns
LVCMOS_25_5.33mA_out	Using 2.5V CMOS Standard, 5.33 mA Drive	tiobuf, tioen, tiodis	-	0.5	-	0.5	-	0.5	ns
LVCMOS_25_8mA_out	Using 2.5V CMOS Standard, 8mA Drive	$\mathrm{t}_{\text {IOBUF, }} \mathrm{t}_{\text {IOEN, }}$ tiodis	-	0.5	-	0.5	-	0.5	ns
LVCMOS_25_12mA_out	Using 2.5V CMOS Standard, 12mA Drive	tiobuf, tioen, tiodis	-	0.5	-	0.5	-	0.5	ns
LVCMOS_25_16mA_out	Using 2.5V CMOS Standard, 16mA Drive	tiobuf, tioen, tiodis	-	0.5	-	0.5	-	0.5	ns

ispXPGA 500B/C \& ispXPGA 500EB/EC Timing Adders (Cont.)

Parameter	Description	Base Parameter	-5^{1}		-4		-3		Units
			Min.	Max.	Min.	Max.	Min.	Max.	
LVCMOS_33_4mA_out	Using 3.3V CMOS Standard, 4mA Drive	tiobuf, tioen, tiodis	-	1.0	-			1.0	ns
LVCMOS_33_5.33mA_out	Using 3.3V CMOS Standard, 5.33mA Drive	tiobuf, tioen, tiodis	-	1.0		1.0		1.0	ns
LVCMOS_33_8mA_out	Using 3.3V CMOS Standard, 8mA Drive	tiobuf, tioen, tiodis	-	0.7				0.7	ns
LVCMOS_33_12mA_out	Using 3.3V CMOS Standard, 12mA Drive	$t_{\text {IOBUF }} \mathrm{t}_{\text {IOEN, }}$ tiodis	-	0.5			-	0.5	ns
LVCMOS_33_16mA_out	Using 3.3V CMOS Standard, 16mA Drive	$\mathrm{t}_{\text {IOBUF, }}$ tioen, tiodis		0.5		0.5			ns
LVCMOS_33_24mA_out	Using 3.3V CMOS Standard, 24mA Drive	tiobuf, tioen, tiodis		0.5				0.5	ns
AGP_1X_out	Using AGP 1x Standard	tiobuf, tioen, tiodis		0.5	-			0.5	ns
CTT25_out	Using CTT 2.5 V	tobuf, toen, tiODIS	$-$	0.5		0.5		0.5	ns
CTT33_out	Using CTT 3.3V	$t_{\text {IOBUF }} \text { tIOEN, }$ tiodis	-	0.5		0.5	-	0.5	ns
GTL+_out	Using GTL+	$\mathrm{t}_{\mathrm{IOBUF}}, \mathrm{t}_{\text {IOEN }}$ tiodis		0.5		0.5	-	0.5	ns
HSTL_I_out	Using HSTL 2.5V, Class I	tiobuf, tioen, tiodis		0.5	-	0.5	-	0.5	ns
HSTL_III_out	Using HSTL 2.5V, Class III	tiobuf, tioen, tiodis		0.5	-	0.5	-	0.5	ns
LVDS_out	Using Low Voltage Differential Signaling (LVDS)	tIOBUF, IIOEN, tiodis	$-$	1.0	-	1.0	-	1.0	ns
BLVDS_out	Using Bus Low Voltage Differential Signaling (BLVDS)	tiobuf, tioen, tiodis	-	1.0	-	1.0	-	1.0	ns
LVPECL_out	Using Low Voltage PECL	tiobuf, tioen, tiodis	-	1.0	-	1.0	-	1.0	ns
PCI_out	Using PCI Standard	tiobuf, tioen, tiodis	-	0.5	-	0.5	-	0.5	ns
SSTL2_1_out	Using SSTL 2.5V, Class I	${ }^{\text {tiobuf, tioen, }}$ tiodis	-	0.5	-	0.5	-	0.5	ns
SSTL2_II_out	Using SSTL 2.5V, Class II	$\mathrm{t}_{\text {Iobuf, }} \mathrm{t}_{\text {Ioen, }}$ tiodis	-	0.5	-	0.5	-	0.5	ns
SSTL3 I out	Using SSTL 3.3V, Class I	$t_{\text {IOBUF, }} \mathrm{t}_{\text {IOEN, }}$, tiodis	-	0.5	-	0.5	-	0.5	ns
SSTL3_II_out	Using SSTL 3.3V, Class II	tiobuf, tioen, tiodis	-	0.5	-	0.5	-	0.5	ns

1. Only available for ispXPGA 500B and ispXPGA 500EB (2.5V/3.3V) devices.

ispXPGA 1200B/C \& ispXPGA 1200EB/EC External Switching Characteristics

Over Recommended Operating Conditions

Parameter	Description	Conditions	-5^{1}		-4		-3		Units
			Min.	Max.	Min.	Max.	Min.	Max.	
t_{CO}	Global Clock Input to Output	PIO Output Register	-	6.6				8.2	ns
t_{s}	Global Clock Input Setup	PIO Input Register without input delay	-2.7				-2.3	-	ns
t_{H}	Global Clock Input Hold	PIO Input Register without input delay	4.5	-	4.6		5.3	-	ns
$\mathrm{t}_{\text {SINDLY }}$	Global Clock Input Setup	PIO Input Register with input delay	3.8	-	3.8		4.4		ns
$\mathrm{t}_{\text {HINDLY }}$	Global Clock Input Hold	PIO Input Register with input delay	0.0		0.0		0.0		
${ }^{\text {t }}$ OPPLL	Global Clock Input to Output	PIO Output Register using PLL without delay	-	3.1	-			3.8	ns
${ }_{\text {tsPLL }}$	Global Clock Input Setup	PIO Input Register without input delay using PLL without delay	0.5	-	5				ns
$\mathrm{t}_{\text {HPLL }}$	Global Clock Input Hold	PIO Input Register without input delay using PLL without delay	0.8				1.0	-	ns
${ }^{\text {S SINDLYPLL }}$	Global Clock Input Setup	PIO Input Register with input delay using PLL without delay	7.6		7.6		8.8	-	ns
$\mathrm{t}_{\text {HindLYPLL }}$	Global Clock Input Hold	PIO Input Register with input delay using PLL without delay			-4.0	-	-3.4	-	ns

ispXPGA 1200B/C \& ispXPGA 1200EB/EC PFU Timing Parameters

Over Recommended Operating Conditions

Parameter	Description	-5 ${ }^{1}$		-4		-3		Units
		Min.	Max.	Min.	Max.	Min.	Max.	
Functional Delays								
LUTs								
tLUT4	4-Input LUT Delay	-	0.41		0.44	-	0.51	ns
tut5	5-Input LUT Delay	-	0.73		0.79	-	0.91	ns
tut6	6-Input LUT Delay	-	0.86		0.93	-	1.07	ns
Shift Register (LUT)								
thSR_S	Shift Register Setup Time	-0.64		-0.62	-	-0.53		ns
tLSR_H	Shift Register Hold Time	0.61		0.63	-	0.72	-	ns
tLSR_CO	Shift Register Clock to Output Delay		0.70	-	0.75		0.86	ns
Arithmetic Functions								
ticthrur	MC (Macro Cell) Carry In to MC Carry Out Delay (Ripple)	-	0.08		0.09	-	0.10	ns
tlCTHRUL ${ }^{2}$	MC Carry In to MC Carry Out Delay (Look Ahead)	-	0.05	-	0.05	-	0.06	ns
tısthru	MC Sum In to MC Sum Out Delay	-	0.42		0.45	-	0.52	ns
t ${ }_{\text {LSINCOUT }}$	MC Sum In to MC Carry Out Delay	-	0.29		0.31	-	0.36	ns
t LCINSOUTR	MC Carry In to MC Sum Out Delay (Ripple)	-	0.36	-	0.39	-	0.45	ns
tLCINSOUTL	MC Carry In to MC Sum Out Delay (Look Ahead)		0.26	-	0.28	-	0.32	ns
Feed-thru								
tLFT	PFU Feed-Thru Delay	-	0.15	-	0.16	-	0.18	ns
Distributed RAM								
tLRAM_CO	Clock to RAM Output	-	1.24	-	1.33	-	1.53	ns
tlRAMAD_S	Address Setup Time	-0.41	-	-0.40	-	-0.34	-	ns
tlRAMD_S	Data Setup Tíme	0.21	-	0.22	-	0.25	-	ns
tLRAMWE_S	Write Enable Setup Time	0.45	-	0.46	-	0.53	-	ns
tLRAMAD_H	Address Hold Time	0.58	-	0.60	-	0.69	-	ns
tLRAMD_H	Data Hold Time	0.11	-	0.11	-	0.13	-	ns
tlramwe_h	Write Enable Hold Time	0.12	-	0.12	-	0.14	-	ns
tLRAMCPW	Clock Pulse Width (High or Low)	2.91	-	3.00	-	3.45	-	ns
t LRAMADO	Address to Output Delay	-	0.86	-	0.93	-	1.07	ns
Register/Latch Delays								
Registers								
t-co	Register Clock to Output Delay	-	0.58	-	0.62	-	0.71	ns
tı_S	Register Setup Time (Data before Clock)	0.14	-	0.14	-	0.16	-	ns
tL_H	Register Hold Time (Data after Clock)	-0.12	-	-0.12	-	-0.10	-	ns
tLCE_S	Register Clock Enable Setup Time	-0.11	-	-0.11	-	-0.09	-	ns
tLCE_H	Register Clock Enable Hold Time	0.11	-	0.11	-	0.13	-	ns
Latches								
tı_GO	Latch Gate to Output Delay	-	0.09	-	0.10	-	0.12	ns
tLL_S	Latch Setup Time	0.14	-	0.14	-	0.16	-	ns
tLL_H	Latch Hold Time	-0.12	-	-0.12	-	-0.10	-	ns
tLLPD	Latch Propagation Delay (Transparent Mode)	-	0.09	-	0.10	-	0.12	ns

ispXPGA 1200B/C \& ispXPGA 1200EB/EC PFU Timing Parameters (Cont.)

Over Recommended Operating Conditions

Parameter	Description	-5^{1}		-4		-3		Units
		Min.	Max.	Min.	Max.	Min.	Max.	
Reset/Set								
tLASSRO	Asynchronous Set/Reset to Output	-	1.09		1.17	-	1.35	ns
tLASSRPW	Asynchronous Set/Reset Pulse Width	4.19	-	4.50	-	5.18	-	ns
thassRR	Asynchronous Set/Reset Recovery	-	0.51		0.55	-	0.63	ns
tLSSR_S	Synchronous Set/Reset Setup Time	-0.03	-	0.03	-	-0.03	-	ns
tLSSR_H	Synchronous Set/Reset Hold Time	0.03	-	0.03	-	0.03	-	ns

1. Only available for ispXPGA 1200B and ispXPGA 1200EB (2.5V/3.3V) devices.
2. $t_{\text {LCTHRUL }}$ quoted bit by bit.

ispXPGA 1200B/C \& ispXPGA 1200EB/EC PIC Timing Parameters

	Description	-5^{1}						Units
Parameter		Min.	Max.			Min.	Max.	
Register/Latch Delays								
tio_co	Register Clock to Output Delay	-	1.0	-	1.09	-	1.25	ns
tio_S	Register Setup Time (Data before Clock)	0.05	-	0.05	-	0.06	-	ns
tiO_H	Register Hold Time (Data after Clock)	0.06		0.06	-	0.07	-	ns
tiOCE_S	Register Clock Enable Setup Time	-0.03		-0.03	-	-0.03	-	ns
tiOCE_H	Register Clock Enable Hold Time	0.13		0.13	-	0.15	-	ns
tIo_GO	Latch Gate to Output Delay	-	0.85	-	0.91	-	1.05	ns
tiol_s	Latch Setup Time	0.05	-	0.05	-	0.06	-	ns
tiol_h	Latch Hold Time	0.06	-	0.06	-	0.07	-	ns
tiolpd	Latch Propagation Delay (Transparent Mode)	-	0.09	-	0.10	-	0.12	ns
tioasro	Asynchronous Set/Reset to Output	-	1.17	-	1.26	-	1.45	ns
tioasRPW	Asynchronous Set/Reset Pulse Width	4.19	-	4.50	-	5.18	-	ns
$\mathrm{t}_{\text {IOASRR }}$	Asynchronous Set/Reset Recovery Time	-	0.23	-	0.25	-	0.29	ns
Input/Output	Delays							
tIobuF	Output Buffer Delay	-	0.99	-	1.06	-	1.22	ns
toin	Input Buffer Delay	-	0.71	-	0.76	-	0.87	ns
tioen	Output Enable Delay	-	0.52	-	0.56	-	0.64	ns
tiodis	Output Disable Delay	-	-0.11	-	-0.10	-	-0.09	ns
tIOFT	Feed-thru Delay	-	0.19	-	0.20	-	0.23	ns

ispXPGA 1200B/C \& ispXPGA 1200EB/EC EBR Timing Parameters

Parameter	Description	-5^{1}		-4		-3		Units
		Min.	Max.	Min.	Max.	Min.	Max.	
Synchronous Write								
teBSWAD_S	Address Setup Delay	0.59	-	0.61		0.70	-	ns
tebswad_h	Address Hold Delay	-0.40	-	-0.39		-0.33	-	ns
$t_{\text {EBSWCPW }}$	Clock Pulse Width	3.16	-	3.40	-	3.91	-	ns
tebswWE_S	Write Enable Setup Time	-0.12	-	-0.12		-0.10	-	ns
$t_{\text {EBSWWE_H }}$	Write Enable Hold Time	0.16	-	0.16		0.18	-	ns
teBSWD_S	Data Setup Time	0.27	-	0.28	-	0.32	-	ns
tebswd_h	Data Hold Time	-0.27		-0.26	-	-0.22		ns
Synchronous Read								
tebsR_Co	Clock to Data Delay		2.04	-	2.19		2.52	ns
tebsrad_S	Address Setup Delay	0.10	-	0.10		0.12	-	ns
tebsrad_h	Address Hold Delay	-0.07	-	-0.07		-0.06	-	ns
tebSRCPW	Clock Pulse Width	3.16	-	3.40		3.91	-	ns
tebSRCE_S	Clock Enable Setup Time	-1.76	-	-1.71	-	-1.45	-	ns
teBSRCE_H	Clock Enable Hold Time	1.64		1.69		1.94	-	ns
teBSRWE_S	Write Enable Setup Time	-0.18	-	-0.17	-	-0.14	-	ns
tebsrwe_H	Write Enable Hold Time	0.12	-	0.12	-	0.14	-	ns
tebsrween	Write Enable to Data Enable Time		1.02	-	1.05	-	1.21	ns
tebsrwedis	Write Enable to Data Disable Time	-	0.99	-	1.02	-	1.17	ns
tebsRen	Output Enable to Data Enable Time	-	1.02	-	1.05	-	1.21	ns
tebsrdis	Output Enable to Data Disable Time		0.83	-	0.86	-	0.99	ns
Asynchronous Read								
tebarado	Address to New Valid Data Delay	-	2.39	-	2.46	-	2.83	ns
tebarad_h	Address to Previous Valid Data Delay	-	2.10	-	2.17	-	2.50	ns
tebarween	Write Enable to Data Enable Time	-	1.01	-	1.04	-	1.20	ns
tebarwedis	Write Enable to Data Disable Time	-	0.98	-	1.01	-	1.16	ns
tebaren	Output Enable to Data Enable Time	-	1.02	-	1.05	-	1.21	ns
tebardis	Output Enable to Data Disable Time	-	0.83	-	0.86	-	0.99	ns

ispXPGA 1200B/C \& ispXPGA 1200EB/EC Timing Adders

Parameter	Description	Base Parameter	-5 ${ }^{1}$		-4		-3		Units
			Min.	Max.	Min.	Max.	Min.	Max.	
Optional Adders									
tioindLy	Input Delay	-	-	5.58	-	6.0		6.90	ns
$\mathrm{t}_{\text {IOI }}$ Input Adjusters									
LVTTL_in	Using 3.3V TTL	$\mathrm{t}_{\text {IOIN }}$	-	0.5		0.5	-	0.5	ns
LVCMOS_18_in	Using 1.8V CMOS	$\mathrm{t}_{\mathrm{IOIN}}$	-	0.0		0.0	-	0.0	ns
LVCMOS_25_in	Using 2.5V CMOS	$\mathrm{t}_{\text {IOIN }}$	-	0.3		0.3	-	0.3	ns
LVCMOS_33_in	Using 3.3V CMOS	$\mathrm{t}_{\mathrm{IO} \text { IN }}$	-	0.5	-	0.5	-	0.5	ns
AGP_1X_in	Using AGP 1x	$\mathrm{t}_{\mathrm{IO} \text { IN }}$		1.0	-	1.0		1.0	ns
CTT25_in	Using CTT 2.5 V	$\mathrm{t}_{\text {IOIN }}$		1.0	-	1.0		1.0	ns
CTT33_in	Using CTT 3.3V	$\mathrm{t}_{\mathrm{IO} \text { IN }}$		1.0	-	1.0		1.0	ns
GTL+_in	Using GTL+	$\mathrm{t}_{\text {IOIN }}$	-	0.5	-	0.5		0.5	ns
HSTL_I_in	Using HSTL 2.5V, Class I	$\mathrm{t}_{\mathrm{IO} \text { IN }}$		0.5		0.5		0.5	ns
HSTL_III_in	Using HSTL 2.5V, Class III	toin	-	0.5	-	0.5	-	0.5	ns
LVDS_in	Using Low Voltage Differential Signaling (LVDS)	tioin	-	0.8		0.8	-	0.8	ns
BLVDS_in	Using Bus Low Voltage Differential Signaling (BLVDS)	$\mathrm{t}_{\mathrm{IO}, \mathrm{IN}}$		0.8		0.8	-	0.8	ns
LVPECL_in	Using Low Voltage PECL	tioin	-	0.8	-	0.8	-	0.8	ns
PCI_in	Using PCI	tioin		1.0	-	1.0	-	1.0	ns
SSTL2_I_in	Using SSTL 2.5V, Class I	tioin	-	0.8	-	0.8	-	0.8	ns
SSTL2_II_in	Using SSTL 2.5V, Class II	$\mathrm{t}_{\mathrm{IOIN}}$		0.5	-	0.5	-	0.5	ns
SSTL3_I_in	Using SSTL 3.3V, Class I	tioin	-	0.8	-	0.8	-	0.8	ns
SSTL3_II_in	Using SSTL 3.3V, Class II	tioin	-	0.8	-	0.8	-	0.8	ns
$\mathrm{t}_{\text {IOO }}$ Output Adjusters									
Slow Slew	Using Slow Slew (LVTTL and LVCMOS Outputs only)	tiobue tión	-	0.7	-	0.7	-	0.7	ns
LVTTL_out	Using 3.3V TTL Drive	tiobuf, tioen, tiodis	-	1.0	-	1.0	-	1.0	ns
LVCMOS 18 _4mA out	Using 1.8V CMOS Standard, 4 mA Drive	$t_{\text {IOBUF, }}$ tioen, tiodis	-	0.8	-	0.8	-	0.8	ns
LVCMOS_18_5.33mA_out	Using 1.8V CMOS Standard, 5.33 mA Drive	tiobuf, tioen, tiodis	-	0.6	-	0.6	-	0.6	ns
LVCMOS_18_8mA_out	Using 1.8V CMOS Standard, 8mA Drive	tiobuf, tioen, tiodis	-	0.0	-	0.0	-	0.0	ns
LVCMOS_18_12mA_out	Using 1.8V CMOS Standard, 12 mA Drive	tiobuf, tioen, tiodis	-	0.2	-	0.2	-	0.2	ns
LVCMOS_25_4mA_out	Using 2.5V CMOS Standard, 4 mA Drive	tiobuf, tioen, tiodis	-	0.7	-	0.7	-	0.7	ns
LVCMOS_25_5.33mA_out	Using 2.5V CMOS Standard, 5.33 mA Drive	tiobuf, tioen, tiodis	-	0.5	-	0.5	-	0.5	ns
LVCMOS_25_8mA_out	Using 2.5V CMOS Standard, 8mA Drive	tiobuf, tioen, tiodis	-	0.5	-	0.5	-	0.5	ns
LVCMOS_25_12mA_out	Using 2.5V CMOS Standard, 12mA Drive	$\begin{aligned} & \mathrm{t}_{\text {IIOBUF }} \mathrm{t}_{\text {IOEN }}, \\ & \mathrm{t}_{\text {IODIS }} \end{aligned}$	-	0.5	-	0.5	-	0.5	ns
LVCMOS_25_16mA_out	Using 2.5V CMOS Standard, 16mA Drive	tiobuf, tioen, tiodis	-	0.5	-	0.5	-	0.5	ns

ispXPGA 1200B/C \& ispXPGA 1200EB/EC Timing Adders (Cont.)

Parameter	Description	Base Parameter	-5^{1}		-4		-3		Units
			Min.	Max.	Min.	Max.	Min.	Max.	
LVCMOS_33_4mA_out	Using 3.3V CMOS Standard, 4mA Drive	$\begin{aligned} & \mathrm{t}_{\text {IOBUF }} \mathrm{t}_{\text {IOEN }} \\ & \mathrm{t}_{\text {IODIS }} \end{aligned}$	-	1.0	-			1.0	ns
LVCMOS_33_5.33mA_out	Using 3.3V CMOS Standard, 5.33mA Drive	tiobuf, tioen, tiodis	-	1.0	-			1.0	ns
LVCMOS_33_8mA_out	Using 3.3V CMOS Standard, 8mA Drive	tiobuf, tioen, tiodis	-	0.7				0.7	ns
LVCMOS_33_12mA_out	Using 3.3V CMOS Standard, 12mA Drive	tiobuf, tioen, tiodis	-	0.5			-	0.5	ns
LVCMOS_33_16mA_out	Using 3.3V CMOS Standard, 16mA Drive	tiobuf, tioen, tiodis		0.5		0.5		5	ns
LVCMOS_33_24mA_out	Using 3.3V CMOS Standard, 24mA Drive	tiobuf, tioen, tiodis		0.5				0.5	ns
AGP_1X_out	Using AGP 1x Standard	tiobuF tioen, tiodis		0.5	-	0.5		0.5	ns
CTT25_out	Using CTT 2.5 V	tiobuf, tioen, tIODIS	-	0.5		0.5		0.5	ns
CTT33_out	Using CTT 3.3V	tiobuf, tioen, tiodis	-	0.5		0.5	-	0.5	ns
GTL+_out	Using GTL+	$\begin{aligned} & \mathrm{t}_{\text {IOBUF }} \text { tIOEN, } \\ & \text { tIODIS } \end{aligned}$		0.5		0.5	-	0.5	ns
HSTL_I_out	Using HSTL 2.5V, Class I	tiobuf, tioen, tiodis		0.	-	0.5	-	0.5	ns
HSTL_III_out	Using HSTL 2.5V, Class III	${ }^{\text {tiobuF, toen, }}$ tiodis		0.5	-	0.5	-	0.5	ns
LVDS_out	Using Low Voltage Differential Signaling (LVDS)	$\mathrm{t}_{\text {IOBUF, }}$ IIOEN, tiodis		1.0	-	1.0	-	1.0	ns
BLVDS_out	Using Bus Low Voltage Differential Signaling (BLVDS)	tiobuf tioen, todis	-	1.0	-	1.0	-	1.0	ns
LVPECL_out	Using Low Voltage PECL	tiobuf, toen, tiodis	-	1.0	-	1.0	-	1.0	ns
PCI_out	Using PCI Standard	$\begin{aligned} & t_{\text {IIOBUF }} \text { tIOEN, } \\ & \text { tiodis } \end{aligned}$	-	0.5	-	0.5	-	0.5	ns
SSTL2_1_out	Using SSTL 2.5V, Class I	$\begin{aligned} & \hline \mathrm{t}_{\text {IOBUF }}, \mathrm{t}_{\text {IOEN }}, \\ & \mathrm{t}_{\text {IODIS }} \\ & \hline \end{aligned}$	-	0.5	-	0.5	-	0.5	ns
SSTL2_II_out	Using SSTL 2.5V, Class II	${ }_{t}^{t_{t}}$ tIODIS	-	0.5	-	0.5	-	0.5	ns
SSTL3 I out	Using SSTL 3.3V, Class I	$\mathrm{t}_{\text {IOBUF }}, \mathrm{t}_{\text {IOEN }}$ $t_{I O D I S}$	-	0.5	-	0.5	-	0.5	ns
SSTL3_II_out	Using SSTL 3.3V, Class II	$\mathrm{t}_{\text {IOBUF }}, \mathrm{t}_{\text {IOEN }}$ $t_{\text {IODIS }}$	-	0.5	-	0.5	-	0.5	ns

1. Only available for ispXPGA 1200B and ispXPGA 1200EB (2.5V/3.3V) devices.

sysHSI Block Timing

Figure 24 provides a graphical representation of the SERDES receiver input requirements. It provides guidance on a number of input parameters, including signal amplitude and rise time limits, noise and jitter limits, and P and N input skew tolerance.

Figure 24. Receive Data Eye Diagram Template (Differential)

The data pattern eye opening at the receive end of a link is considered the ultimate measure of received signal quality. Almost all detrimental characteristics of a transmit signal and the interconnection link design result in eye closure. This combined with the eye-opening limitations of the line receiver can provide a good indication of a link's ability to transfer error-free data.

Signal jitter is of special interest to system designers. It is often the primary limiting characteristic of long digital links and of systems with high noise level environments. An interesting characteristic of the clock and data recovery (CDR) portion of the ispXPGA SERDES receiver is its ability to filter incoming signal jitter that is below the clock recovery PLL bandwidth. For signals with high levels of low frequency jitter, the receiver can detect incoming data error free, with eye openings significantly less than that shown in Figure 24.
sysHSI Block AC Specifications
Operating Frequency Ranges

					-5				-3	3	
Symbol	Description	Mode	Condition	Device	Min.	Max.	Min.	Max.	Min.	Max.	Units
${ }^{\mathrm{f}} \mathrm{CLK}$	Reference Clock Frequency	SS:CAL		LFX125B/C	50	200	50	200	50	200	MHz
				LFX200B/C	50	188	50	188	50	188	
				LFX500B/C	50	188	50	188	50	188	
				LFX1200B/C	50	175	50	175	50	175	
		10B12B		LFX125B/C	33	67	33	67	33	67	MHz
				LFX200B/C	33	63	33	63	33	63	
				LFX500B/C	33	63	33	63	33	63	
				LFX1200B/C	33	58	33	58	33	58	
		8B10B		LFX125B/C	40	80	40	80	40	80	MHz
				LFX200B/C	40	75	40	75	40	75	
				LFX500B/C	40	75	40	75	40	75	
				LFX1200B/C	40	70	40	70	40	70	
fSIN^{2}	Serial Input	SS:CAL	with eoSIN	LFX125B/C	400	800	400	800	400	800	Mbps
				LFX200B/C	400	750	400	750	400	750	
				LFX500B/C	400	750	400	750	400	750	
				LFX1200B/C	400	700	400	700	400	700	
		10B12B	with eoSIN	LFX125B/C	400	800	400	800	400	800	Mbps
				LFX200B/C	400	750	400	750	400	750	
				LFX500B/C	400	750	400	750	400	750	
				LFX1200B/C	400	700	400	700	400	700	
			with eoSIN	LFX125B/C	400	800	400	800	400	800	Mbps
				LFX200B/C	400	750	400	750	400	750	
				LFX500B/C	400	750	400	750	400	750	
				LFX1200B/C	400	700	400	700	400	700	
fout^{2}		LVDS	$\begin{aligned} & C L=5 \mathrm{pF} \\ & \mathrm{RL}=100^{3 / 4} \\ & \mathrm{f}_{\mathrm{CLK}} \text { with no jit. } \\ & \text { ter } \end{aligned}$	LFX125B/C	400	800	400	800	400	800	Mbps
				LEX200B/C	400	750	400	750	400	750	
	rial Out			LFX500B/C	400	750	400	750	400	750	
				LFX1200B/C	400	700	400	700	400	700	

1. Only available for ispXPGA 125B, 200B, 500B and 1200B (2.5V/3.3V) devices.
2. $\mathrm{f}_{\text {SIN }}$ and $\mathrm{f}_{\text {SOUT }}$ speeds are supported at V_{CC} and $\mathrm{V}_{\mathrm{CCP}}$ at 1.7 V to 1.9 V for ispXPGA 1.8 V devices.

LOCKIN Time

Symbol	Description	Mode	Condition	Min	Max	Unit
tsCLOCK	CSPLL Lock Time	All	After input is stabilized		25	$\mu \mathrm{S}$
${ }^{\text {t CDRLOCK }}$	CDRPLL Lock-in Time	SS	With SS mode sync pattern		1024	$\mathrm{t}_{\mathrm{RCP}}{ }^{1}$
		10B12B	With 10B12B sync pattern		1024	$\mathrm{t}_{\mathrm{RCP}}$
		8B10B	With 8B10B idle pattern		960	$\mathrm{t}_{\mathrm{RCP}}$
$\mathrm{t}_{\text {SYNC }}$	SyncPat Length	SS		1200		$\mathrm{t}_{\mathrm{RCP}}$
$\mathrm{t}_{\text {CAL }}$	CAL Duration	SS		1100		$\mathrm{t}_{\mathrm{RCP}}$
tsusync	SyncPat Set-up Time to CAL	SS		50		$\mathrm{t}_{\mathrm{RCP}}$
$\mathrm{t}_{\text {HDSYNC }}$	SyncPat Hold Time from CAL	SS		50		$t_{\text {RCP }}$

1. REFCLK clock period.

REFCLK and SS_CLKIN Timing

Symbol	Description	Mode	Condition	Min	Max	Unit
t DREFCLK	Frequency Deviation Between TX REFCLK and CDRX REFCLK on One Link	$\begin{aligned} & \text { 8B10B/ } \\ & \text { 10B12B } \end{aligned}$		-100	100	ppm
tJPPREFCLK	REFCLK, SS_CLKIN Peak-to-Peak Period Jitter	All	Random Jitter		0.01	UIPP
tpWREFCLK	REFCLK, SS_CLKIN Pulse Width, (80\% to 80\% or 20% to 20%).	All	$40-100 \mathrm{MHz}$			ns
			100-200MHz			
trarefclk	REFCLK, SS_CLKIN Rise/Fall Time (20\% to 80\% or 80% to 20%)	All			2	ns

Serializer Timing ${ }^{2}$

Symbol	Description	Mode	Condition	Min	Max	Unit
tJPPSOUT	SOUT Peak-to-Peak Output Data Jitter	All	$\mathrm{f}_{\text {CLK }}$ with no jitter		0.25	UIPP
$\mathrm{t}^{\text {JPP8B10B }}$	SOUT Peak-to-Peak Random Jitter	8B10B	800 Mbps w/K28.7-		130	ps
	SOUT Peak-to-Peak Deterministic Jitter	8B10B	800 Mbps w/K28.5+		160	ps
$t_{\text {RFSOUT }}$	SOUT Output Data Rise/Fall Time (20\%, 80\%)	LVDS			700	ps
${ }^{\text {cososout }}$	REFCLK to SOUT Delay	SS/8B10B		$2 \mathrm{Bt}^{1}+2$	$2 \mathrm{Bt}{ }^{1}+10$	ns
		10B12B		$1 B t^{1}+2$	$1 \mathrm{Bt}^{1}+10$	ns
$\mathrm{t}_{\text {SKTX }}$	Skew of SOUT with Respect to SS_CLKOUT				300	ps
$\mathrm{t}_{\text {CKOSOUT }}$	SS_CLKOUT to bit0 of SOUT	SS		$2 \mathrm{Bt}{ }^{1}-\mathrm{t}_{\text {SKTX }}$	$2 B t^{1}+t_{S K T X}$	ns
$\mathrm{t}_{\text {HSIITXDDATAS }}$	TXD Data Setup Time	All	Note 3	1.5		ns
$\mathrm{t}_{\text {HSITXDDATAH }}$	TXD Data Hold Time	All	Note 3		1.0	ns

1. Bt: Bit Time Period. High Speed Serial Bit Time.
2. The SIN and SOUT jitter specifications listed above are under the condition that the clock tree that drives the REFCLK to sysHSI Block is in sysCLOCK PLL BYPASS mode.
3. Internal timing for reference only.

Deserializer Timing

Symbol	Description	Mode	Conditions	Min	Max	Units
$f_{\text {DSIN }}$	SIN Frequency Deviation from REFCLK	$\begin{aligned} & \hline 8 \mathrm{~B} 10 \mathrm{~B} / \\ & \text { 10B12B } \end{aligned}$		-100	100	ppm
$\mathrm{eO}_{\text {SIN }}$	SIN Eye Opening Tolerance	All	Notes 1, 2	0.45		UIPP
ber	Bit Error Rate	All			10^{-12}	Bits
thsioutvalidpre	RXD, SYDT Valid Time Before RECCLK Falling Edge	All	Note 3	$\mathrm{t}_{\mathrm{RCP}} / 2-0.7$		ns
$\mathrm{t}_{\text {HSIOUTVALIDPOST }}$	RXD, SYDT Valid Time After RECCLK Falling Edge	All	Note 3	$\mathrm{t}_{\mathrm{RCP}} / 2-0.7$		ns
$t_{\text {DSIN }}$	Bit 0 of SIN Delay to RXD Valid at RECCLK Falling edge	All		$\begin{gathered} 1.5 \mathrm{t}_{\mathrm{RCP}}+ \\ 4.5 \mathrm{Bt}+3 \end{gathered}$	$\begin{aligned} & 1.5 \mathrm{t}_{\mathrm{RCP}}+ \\ & 4.5 \mathrm{Bt}+15 \end{aligned}$	ns

[^4]
Lock-in Timing

CDRX_SS LOCK-IN (DE-SKEW) TIMING

CDR_10B12B LOCK-IN TIMING
SIN
SYDT
RXD(0:9)

SYDT Timing

SYDT TIMING FOR CDRX_10B12B
RECCLK

SYDT RXD(0:9)

SYDT TIMING FOR CDRX_8B10B
reccle
 $\square \square$

SYDT
RXD(0:9)

Serializer Timing

SS Mode SERIALIZER DELAY TIMING

Deserializer Timing

CDRX_SS DESERIALIZER DELAY TIMING

INTERNAL TIMING FOR sysHSI BLOCK

sysCLOCK PLL Timing

Over Recommended Operating Conditions

Symbol	Parameter	Conditions	Min	Max	Units
$\mathrm{t}_{\text {PWH }}$	Input clock, high time	80\% to 80\%	1.2	-	ns
$\mathrm{t}_{\text {PWL }}$	Input clock, low time	20\% to 20\%	1.2	-	ns
$\mathrm{t}_{\mathrm{R}}, \mathrm{t}_{\mathrm{F}}$	Input Clock, rise and fall time	20\% to 80\%	-	3.0	ns
$\mathrm{t}_{\text {INSTB }}$	Input clock stability, cycle to cycle (peak)		-	+1-250	ps
$\mathrm{f}_{\text {MDIVIN }}$	M Divider input, frequency range		10	320	MHz
${ }^{\text {f MDIVOUT }}$	M Divider output, frequency range		10	320	MHz
$\mathrm{f}_{\text {NDIVIN }}$	N Divider input, frequency range		10	320	MHz
$\mathrm{f}_{\text {NDIVOUT }}$	N Divider output, frequency range		10	320	MHz
$\mathrm{f}_{\text {VDIVIN }}$	V Divider input, frequency range		100	400	MHz
$\mathrm{f}_{\text {VDIVOUT }}$	V Divider output, frequency range		10	320	MHz
toutduty	output clock, duty cycle		40	60	\%
$\mathrm{t}_{\text {IIT }}$	Output clock, cycle to cycle jitter (peak)	Clean reference ${ }^{1}$ 10 MHz Ø $\mathrm{f}_{\text {MDIVOUT }}$ ð 40 MHz or 100 MHz Øf VDIVIN ${ }^{\text {§ }} 160 \mathrm{MHz}$		$+1-600$	ps
Jit(C)	Output clock, cycle to cycle jtter (peak)	Clean reference ${ }^{1}$ 40 MHz ð $\mathrm{f}_{\text {MDIVOUT }}$ ð 320 MHz and 160 MHz Ø $\mathrm{f}_{\text {VDIVIN }}$ Ø 400 MHz	-	+/- 150	ps
$\mathrm{t}_{\text {JIT(PER) }}{ }^{2}$	Output clock, period jitter (peak)	Clean reference ${ }^{1}$ 10 MHz ð $\mathrm{f}_{\text {MDIVOUT }}$ Ø 40 MHz or 100 MHz of folvin $\delta 160 \mathrm{MHz}$	-	+/- 600	ps
		Clean reference ${ }^{1}$ 40 MHz ठ $\mathrm{f}_{\text {MDIVOUT }}$ ठ 320 MHz and 160 MHz ð f $\mathrm{VDIVIN}^{\text {Ø }} 400 \mathrm{MHz}$	-	+/- 150	ps
${ }^{\text {t }}$ CLK_OUT_DELAY	Input clock to CLK_OUT delay	Internal feedback	-	3.0	ns
$\mathrm{t}_{\text {PHASE }}$	Input clock to external feedback delta	External feedback	-	1.5	ns
tock	Time to acquire phase lock after input stable		-	25	us
tpLL_DELAY	Delay increment (Lead/Lag)	Typical $=+/-250 \mathrm{ps}$	+/-120	+/- 550	ps
trange	Total output delay range (lead/lag)		+/- 0.84	+/-3.85	ns
tPLL_RSTW	Minimum reset pulse width		1.8	-	ns
$\mathrm{t}_{\text {CLK_IN }}{ }^{3}$	Global clock input delay		-	1.0	ns
tPLL_SEC DELAY	Secondary PLL output delay		-	1.5	ns

[^5]
ispXP sysCONFIG Port Timing Specifications

Symbol	Timing Parameter	Min.	Typ.	Max.	Units
sysCONFIG Write Cycle Timing					
$\mathrm{t}_{\text {SUCS }}$	Input setup time of CS to CCLK rise	10		-	ns
$\mathrm{t}_{\mathrm{HCS}}$	Hold time of CS to CCLK Rise	0			ns
tsuwd	Input setup time of write data to CCLK rise	12		-	ns
$\mathrm{t}_{\text {HWD }}$	Hold time of write data to CCLK rise	0		-	ns
$\mathrm{t}_{\text {PRGM }}$	Low time to reset device SRAM			50	ns
${ }^{\text {t WINIT }}$	INIT pulse width			5	ms
tiodiss	User I/O disable	-	-	30	ns
tioenss	User I/O enable		-		ns
${ }^{\text {WHH }}$	Write clock High pulse width	12	-		ns
t_{WL}	Write clock Low pulse width	12			ns
${ }_{\text {f MAXW }}$	Write $\mathrm{f}_{\text {MAX }}$	-			MHz
sysCONFIG Read Cycle Timing					
$t_{\text {Hread }}$	Hold time of READ to CCLK rise	0			ns
$t_{\text {SUREAD }}$	Input setup time of READ High to CCLK rise	30	-	-	ns
t_{RH}	READ clock high pulse width	12		-	ns
t_{RL}	READ clock low pulse width	15	-	-	ns
$\mathrm{f}_{\text {MAXR }}$	Read $\mathrm{f}_{\text {MAX }}$		-	33	MHz
${ }^{\text {t }}$ CORD	Clock to out for read data	-	-	25	ns

Boundary Scan Timing

Parameter	Description	Min.	Max.	Units
$\mathrm{t}_{\text {BTCP }}$	TCK [BSCAN] Clock Pulse Width	40	-	ns
$\mathrm{t}_{\text {BTCPH }}$	TCK [BSCAN] Clock Pulse Width High	20	-	ns
$\mathrm{t}_{\text {BTCPL }}$	TCK [BSCAN] Clock Pulse Width Low	20	-	ns
$\mathrm{t}_{\text {BTS }}$	TCK [BSCAN] Setup Time	8	-	ns
$\mathrm{t}_{\mathrm{BTH}}$	TCK [BSCAN] Hold Time	10	-	ns
$\mathrm{t}_{\text {BTRF }}$	TCK [BSCAN] Rise/Fall Time	50	-	$\mathrm{mV} / \mathrm{ns}$
$\mathrm{t}_{\mathrm{BTCO}}$	TAP Controller Falling Edge of Clock to Valid Output	-	18	ns
$\mathrm{t}_{\text {BTCODIS }}$	TAP Controller Falling Edge of Clock to Valid Disable	-	18	ns
tbtCoen	TAP Controller Falling Edge of Clock to Valid Enable	-	18	ns
$\mathrm{t}_{\text {BTCRS }}$	BSCAN Test Capture Register Setup Time	8	-	ns
	BSCAN Test Capture Register Hold Time	25	-	ns
t Butco	BSCAN Test Update Register, Falling Edge of Clock to Valid Output	-	45	ns
$\mathrm{t}_{\text {BTUODIS }}$	BSCAN Test Update Register, Falling Edge of Clock to Valid Disable	-	20	ns
tbtupoen	BSCAN Test Update Register, Falling Edge of Clock to Valid Enable	-	20	ns

Switching Test Conditions

Figure 25 shows the output test load that is used for AC testing. The specific values for resistance, capacitance, voltage, and other test conditions are shown in Table 7.

Figure 25. Output Test Load, LVTTL and LVCMOS Standards

${ }^{*} C_{L}$ includes test fixture and probe capacitance.
Table 7. Text Fixture Required Components

Test Condition	R_{1}	R_{2}	C_{L}	Timing Reference	VCCO
LVCMOS I/O, (L -> H, H -> L)	106	106		LVCMOS 3.3 $=\mathrm{V}_{\mathrm{CCO}} / 2$	LVCMOS $3.3=3.0 \mathrm{~V}$
				LVCMOS 2.5 = $\mathrm{V}_{\mathrm{CCO}} / 2$	LVCMOS $2.5=2.3 \mathrm{~V}$
				LVCMOS 1.8 = $\mathrm{V}_{\mathrm{CCO}} / 2$	LVCMOS $1.8=1.65 \mathrm{~V}$
Default LVCMOS 1.8 I/O (Z -> H)	\times	106	35pF	0.9 V	1.65 V
Default LVCMOS $1.8 \mathrm{I} / \mathrm{O}(\mathrm{Z} \mathrm{->} \mathrm{L)}$	106	\times	35pF	0.9 V	1.65 V
Default LVCMOS $1.8 \mathrm{I} / \mathrm{O}(\mathrm{H}->\mathrm{Z})$	x	106	5pF	$\mathrm{V}_{\mathrm{OH}}-0.3$	1.65 V
Default LVCMOS 1.8 I/O (L-> Z)	106	\times	5 pF	$\mathrm{V}_{\mathrm{OL}}+0.3$	1.65 V

Note: Output test conditions for all other interfaces are determined by the respective standards.

Signal Descriptions ${ }^{1}$

Signal Name	Signal Type	Description
General Purpose		
BKy_IOx ${ }^{1,2}$	Input/Output	General purpose I/O number x in I/O Bank y
GCLK n / In^{7}	Input	Global clock/input ${ }^{8}$
GSR	Input	Global Set/Reset
NC	-	No Connect
GND	GND	Ground
V_{CC}	VCC	Core logic power supply
$\mathrm{V}_{\text {CCJ }}$	VCC	IEEE 1149.1 TAP power supply
$\mathrm{V}_{\mathrm{CCO}}{ }^{2}$	VCC	I/O Bank y power supply
$\mathrm{V}_{\mathrm{REF},}{ }^{2}$	Input	I/O Bank y reference voltage
$\mathrm{D}_{\mathrm{XN},} \mathrm{D}_{\mathrm{XP}}$	Output	Temperature Sensing Diodes, provide a differential voltage, which corresponds to the temperature of the device.
Test and Program/Configuration		
TMS	Input	Test Mode Select
TCK	Input	Test Clock
TDI	Input	Test Data In
TDO	Output	Test Data Out
TOE	Input	Test Output Enable tri-states all I/O pins when driven low
CFGO	Input	Selects the SRAM memory configuration type (Peripheral or E^{2} CMOS Refresh)
PROGRAMb	Input	Initiates download from E^{2} CMOS or the peripheral port to SRAM memory (active low)
DONE	Bi-directional	Indicates when configuration is complete
INITb	Bi-directional	Indicates the device is ready for programming (active low)
READ	Input	Selects the READ operation when in sysCONFIG mode
CCLK	Input	sysCONFIG Configuration Clock
CSb	Input	sysCONFIG Chip Select (active low)
DATA[0:7]	Bi-directional	sysCONFIG Peripheral Port Data I/O
sysCLOCK PLL ${ }^{3}$		
PLL_FBKZ	Input	Optional external feedback
PLL_RSTz	Input	Optional external M divider reset
CLK_OUTz	Internal Signal	Clock output (routable to any I/O)
PLL_LOCKz	Internal Signal	Lock output (routable to any I/O)
$\mathrm{GND}_{\text {PO }}$	GND	Left side PLL Ground
$\mathrm{GND}_{\mathrm{P}_{1}}$	GND	Right side PLL Ground
$\mathrm{V}_{\text {CCPO }}$	VCC	Left side PLL power supply
$\mathrm{V}_{\text {CCP1 }}$	VCC	Right side PLL power supply
sysHSI Block ${ }^{4,5}$		
HSImA_SINP, HSImB_SINP	Input	P-side of differential serial data input
HSImA_SINN, HSImB_SINN	Input	N -side of differential serial data input
HSImA_SOUTP, HSImB_SOUTP	Output	P-side of differential serial data output
HSImA_SOUTN, HSImB_SOUTN	Output	N -side of differential serial data output
HSImA_SYDT, HSImB_SYDT	Internal Signal	Symbol alignment detect
HSImA_RECCLK, HSImB_RECCLK	Internal Signal	Recovered clock

Signal Descriptions ${ }^{1}$ (Cont.)

Signal Name	Signal Type	Description
HSImA_CDRRST, HSImB_CDRRST	Input	CDR Reset
HSIm_CSLOCK, HSIm_CSLOCK	Internal Signal	Indicates when the CSPLL circuit is locked
sysHSI Block (Source Synchronous Mode)		
SS_CLKINOP, SS_CLKIN1P	Input	P-side of differential clock input
SS_CLKINON, SS_CLKIN1N	Input	N-side of differential clock input
SS_CLKOUTOP, SS_CLKOUT1P	Output	P-side of differential clock output
SS_CLKOUTON, SS_CLKOUT1N	Output	N-side of differential clock output
CALO, CAL1	Input	Initiates source synchronous calibration sequence

1. x is a variable for the I/O number.
2. y is a variable for the I/O Bank.
3. z is a variable for the PLL number.
4. m is a variable for the sys HSI block number.
5. A and B refer to the sysHSI block channels.
6. 0 and 1 refer to Source Synchronous group 0 and 1
7. n is a variable for the GCLK and Input number
8. See Logic Signal Connections Table for differential pairing.

ispXPGA Power Supply and NC Connections ${ }^{1}$

Signal	256-Ball fpBGA ${ }^{3}$	516-Ball fpBGA ${ }^{3}$
V_{CC}	C3, C14, D4, D13, E5, E12, F6, F11, L6, L11, M5, M12, N4, N13, P3, P14	A9, A22, D4, D27, J1, J30, L11, L12, L15, L16, L19, L20, M11, M20, R11, R20, T11, T20, W11, W20, Y11, Y12, Y15, Y16, Y19, Y20, AB1, AB30, AG4, AG27, AK9, AK22
$\mathrm{V}_{\text {ccoo }}$	F5, G5	F4, J4, M4, N11, P4, P11
$\mathrm{V}_{\mathrm{CCO} 1}$	K5, L5	U4, U11, V11, W4, AB4, AE4
$\mathrm{V}_{\mathrm{CCO}}$	M6, M7	Y13, Y14, AG6, AG9, AG12, AG14
$\mathrm{V}_{\mathrm{CCO}}$	M10, M11	Y17, Y18, AG17, AG19, AG22, AG25
$\mathrm{V}_{\mathrm{CCO}}$	K12, L12	U20, U27, V20, W27, AB27, AE27
$\mathrm{V}_{\mathrm{CCO5}}$	G12, F12	F27, J27, M27, N20, P20, P27
$\mathrm{V}_{\mathrm{CCO6}}$	E10, E11	D17, D19, D22, D25, L17, L18
$\mathrm{V}_{\mathrm{CCO7}}$	E6, E7	D6, D9, D12, D14, L13, L14
$\mathrm{V}_{\text {CCP }}$	H3, J15	R4, T30
$\mathrm{V}_{\text {CCJ }}$	A2	C4
GND	A1, A16, B2, B15, F7, F8, F9, F10, G6, G7, G8, G9, G10, G11, H6, H7, H8, H9, H10, H11, J6, J7, J8, J9, J10, J11, K6, K7, K8, K9, K10, K11, L7, L8, L9, L10, R2, R15, T1, T16	A1, A30, B2, B29, C3, C28, M12, M13, M14, M15, M16, M17, M18, M19, N12, N13, N14, N15, N16, N17, N18, N19, P12, P13, P14, P15, P16, P17, P18, P19, R12, R13, R14, R15, R16, R17, R18, R19, T12, T13, T14, T15, T16, T17, T18, T19, U12, U13, U14, U15, U16, U17, U18, U19, V12, V13, V14, V15, V16, V17, V18, V19, W12, W13, W14, W15, W16, W17, W18, W19, AH3, AH28, AJ2, AJ29, AK1, AK30
$\mathrm{GND}_{\mathrm{P}}$	H15, J4	R29, T4
NC^{2}		LFX125: A10, A13, A16, A17, A24, A25, A26, A4, A5, A6, A7, AA1, AA2, AA28, AA29, AA3, AB28, AC1, AC28, AD1, AD27, AD4, AE28, AE29, AE3, AE30, AF27, AF28, AF29, AF3, AF4, AG1, AG10, AG11, AG15, AG2, AG20, AG23, AG24, AG29, AG3, AG8, AH1, AH15, AH19, AH2, AH20, AH23, AH24, AH30, AH7, AH8, AH9, AJ1, AJ12, AJ14, AJ15, AJ19, AJ20, AJ21, AJ23, AJ24, AJ25, AJ27, AJ30, AJ6, AJ7, AJ8, AK11, AK14, AK15, AK20, AK21, AK23, AK24, AK25, AK27, AK5, AK6, AK7, B10, B13, B16, B17, B18, B23, B24, B25, B5, B6, B7, C11, C13, C14, C16, C17, C22, C23, C24, C25, C6, C7, C8, D11, D16, D23, D24, D28, D29, D3, D7, D8, E30, E4, F1, F29, F30, G1, G2, G27, G28, G29, G30, H1, H2, H27, H28, H29, H30, J2, J28, J29, J3, K1, K2, K27, K28, K3, K4, L1, L2, L27, L3, L4, M1, M2, M29, M3, M30, V27, V28, V3, V4, W1, W30, Y1, Y27, Y28, Y3, Y30 LFX200: A26, A25, A24, A17, A10, A7, A6, A5, A4, B25, B24, B23, B17, B10, B7, B6, B5, C25, C24, C23, C22, C16, C11, C8, C7, C6, D24, D23, D16, D11, D8, D7, E30, F30, F29, F1, G30, G29, G28, G27, G2, G1, H30, H29, H28, H27, H2, H1, J29, J28, J3, J2, K28, K27, K4, K3, K2, K1, L27, L4, L3, L2, L1, M3, V28, V27, V4, V3, W30, W1, Y30, Y28, Y27, Y3, Y1, AA29, AA28, AA3, AA2, AA1, AD27, AD4, AE28, AE3, AF29, AF28, AF27, AF3, AG29, AG24, AG23, AG20, AG11, AG10, AG8, AG2, AG1, AH30, AH24, AH23, AH20, AH9, AH8, AH7, AH2, AH1, AJ30, AJ27, AJ25, AJ24, AJ23, AJ21, AJ15, AJ12, AJ8, AJ7, AJ6, AJ1, AK27, AK25, AK24, AK23, AK21, AK15, AK11, AK7, AK6, AK5

[^6]2. NC pins should not be connected to any active signals, V_{CC} or GND.
3. Balls for GND, V_{CC} and $\mathrm{V}_{\mathrm{CCOx}}$ are connected within the substrate to their respective common signals. Pin orientation A 1 starts from the upper left corner of the top side view with alphabetical order ascending vertically and numerical order ascending horizontally.

ispXPGA Power Supply and NC Connections ${ }^{1}$ (Continued)

Signal	680-Ball fpBGA ${ }^{3}$	900-Ball fpBGA ${ }^{3}$
V_{CC}	AE35, AE5, AL5, AR15, AR25, AR31, AR35, AR5, AT36, AT4, AU3, AU37, C3, C37, D36, D4, E15, E25, E35, E5, E9, J35, R35, R5	L11, L20, M12, M13, M14, M17, M18, M19, N12, N19, P12, P19, U12, U19, V12, V19, W12, W13, W14, W17, W18, W19, Y11, Y20
$\mathrm{V}_{\mathrm{CCOO}}$	E11, E12, E13, E17, E18, E7	K3, L10, M11, N11, N5, P11, R11, R12
$\mathrm{V}_{\mathrm{CCO} 1}$	E22, E23, E27, E29, E31, E33	AA3, T11, T12, U11, V11, V5, W11, Y10
$\mathrm{V}_{\mathrm{CCO} 2}$	G35, L35, M35, N35, U35, V35	AA11, AF13, AH10, W15, Y12, Y13, Y14, Y15
$\mathrm{V}_{\mathrm{CCO}}$	AB35, AC35, AG35, AJ35, AL35, AN35	AA20, AF18, AH21, W16, Y16, Y17, Y18, Y19
$\mathrm{V}_{\mathrm{CCO}}$	AR22, AR23, AR27, AR28, AR29, AR33	AA28, T19, T20, U20, V20, V26, W20, Y21
$\mathrm{V}_{\mathrm{CCO}}$	AR11, AR13, AR17, AR18, AR7, AR9	K28, L21, M20, N20, N26, P20, R19, R20
$\mathrm{V}_{\mathrm{CCO}}$	AB5, AC5, AG5, AH5, AJ5, AN5	C21, E18, K20, L16, L17, L18, L19, M16
$\mathrm{V}_{\mathrm{CCO}}$	G5, J5, L5, N5, U5, V5	C10, E13, K11, L12, L13, L14, L15, M15
$\mathrm{V}_{\text {CCP }}$	E20, AW22	R5, T26
$\mathrm{V}_{\text {CCJ }}$	D3	B3
GND	A1, A2, A20, A38, A39, AE3, AE37, AK3, AK37, AR36, AR4, AT20, AT35, AT5, AU10, AU14, AU20, AU26, AU30, AV1, AV2, AV20, AV38, AV39, AW1, AW2, AW20, AW38, AW39, B1, B2, B20, B38, B39, C10, C14, C20, C26, C30, D20, D35, D5, E36, E4, K3, K37, P37, R3, Y1, Y2, Y3, Y36, Y37, Y38, Y39, Y4	A1, A2, A29, A30, AB28, AB3, AG27, AG4, AH22, AH28, AH3, AH9, AJ1, AJ2, AJ29, AJ30, AK1, AK2, AK29, AK30, B1, B2, B29, B30, C22, C28, C3, C9, D27, D4, J28, J3, N13, N14, N15, N16, N17, N18, P13, P14, P15, P16, P17, P18, R13, R14, R15, R16, R17, R18, T13, T14, T15, T16, T17, T18, U13, U14, U15, U16, U17, U18, V13, V14, V15, V16, V17, V18
$\mathrm{GND}_{\mathrm{P}}$	AR20, A21	R28, T3

ispXPGA Power Supply and NC Connections ${ }^{1}$ (Continued)

Signal	680-Ball fpBGA ${ }^{3}$	900-Ball fpBGA ${ }^{3}$
NC^{2}	A3, B29, AW3, AV3, AW11, AV11, AV29, AW29, AW37, B3, AV37, C39, C38, AU39, AU38, AJ39 AJ38, N38, N39, C2, C1, AU1, AU2, AJ2, AJ1, N2 N1, B11, A11, A37, B37, A29	LFX500: A8, A9, A10, A11, A19, A20, A21, A22, B8, B9, B10, B11, B19, B20, B21, B22, C1, C2, C11, C12, C19, C20, C23, D3, D10, D11, D12, D19, D20, D21, D22, D23, E3, E5, E6, E10, E11, E12, E21, E22, E25, E26, E28, E29, E30, F1, F2, F6, F9, F10, F11, F12, F21, F22, F25, F26, F29, F30, G1, G2, G3, G4, G7, G8, G9, G10, G11, G12, G14, G15, G16, G17, G19, G20, G21, G22, G23, G24, G25, G26, G27, G28, G29, G30, H1, H2, H3, H4, H5, H6, H7, H8, H9, H10, H11, H12, H13, H14, H15, H16, H17, H18, H19, H2O, H21, H22, H23, H24, H27, H28, H29, H30, J1, J2, J4, J5, J6, J7, J8, J9, J10, J11, J12, J13, J14, J15, J16, J17, J18, J19, J20, J21, J22, J23, J24, J25, J26, J27, K6, K7, K8, K9, K10, K12, K13, K14, K15, K16, K17, K18, K19, K21, K22, K23, K24, K25, L7, L8, L9, L22, L23, L24, M7, M8, M9, M10, M21, M22, M23, M24, N8, N9, N10, N21, N22, N23, P7, P8, P9, P10, P21, P22, P23, P24, R8, R9, R10, R21, R22, R23, R24, R25, T6, T7, T8, T9, T10, T21, T22, T23, T24, T25, U7, U8, U9, U10, U21, U22, U23, U24, V8, V9, V10, V21, V22, V23, W7, W8, W9, W10, W21, W22, W23, W24, W25, W26, Y3, Y4, Y5, Y6, Y7, Y8, Y9, Y22, Y23, Y24, Y25, Y26, Y27, Y28, AA4, AA5, AA6, AA7, AA8, AA9, AA10, AA12, AA13, AA14, AA15, AA16, AA17, AA18, AA19, AA21, AA22, AA23, AA24, AA25, AA26, AA27, AB1, $A B 2, A B 4, A B 5, A B 6, A B 7, A B 8, A B 9, A B 10, A B 11, A B 12, A B 13$, $A B 14, A B 15, A B 16, A B 17, A B 18, A B 19, A B 20, A B 21, A B 22, A B 23$, AB24, AB25, AB26, AB27, AC1, AC2, AC3, AC4, AC5, AC6, AC7, AC8, AC9, AC10, AC11, AC12, AC13, AC14, AC15, AC16, AC17' AC18' AC19, AC20, AC21, AC22, AC23, AC24, AC27, AC28, AC29, AC30, AD1, AD2, AD7, AD8, AD9, AD10, AD11, AD12, AD14, AD15, AD16, AD17, AD19, AD20, AD21, AD22, AD23, AD24, AD29, AD30, AE6, AE9, AE10, AE11, AE12, AE19, AE20, AE21, AE22, AE25, AE29, AE30, AF5, AF6, AF10, AF11, AF12, AF19, AF20, AF21, AF22, AF25, AF26, AG10, AG11, AG12, AG19, AG20, AG21, AG22, AH11, AH12, AH19, AH20, AJ8, AJ9, AJ10, AJ11, AJ20, AJ21, AJ22, AK8, AK9, AK10, AK11, AK20, AK21, AK22 LFX1200: AA22, AA23, AA24, AA25, AB23, AC24, T21, T22, T23, T24, T25, U21, U22, U23, U24, V21, V22, V23, W21, W22, W23, W24, Y22, Y23, Y24, AA16, AA17, AA18, AA19, AA21, AB16, AB17, AB18, AB19, AB20, AB21, AB22, AC16, AC17, AC18, AC19, AC20, AC21, AC22, AC23, AD16, AD17, AD19, AD20, AD22, AD23, AD24, AE22, AE25, AF25, AF26, AA10, AA12, AA13, AA14, AA15, AB10, AB11, AB12, AB13, AB14, AB15, AB9, AC10, AC11, AC12, AC13, AC14, AC15, AC8, AC9, AD11, AD12, AD14, AD15, AD7, AD8, AD9, AE6, AE9, AF5, AF6, H24, J23, K22, K23, K24, K25, L22, L23, L24, M21, M22, M23, M24, N21, N22, N23, P21, P22, P23, P24, R21, R22, R23, R24, R25, AA6, AA7, AA8, AA9, AB8, AC7, T10, T6, T7, T8, T9, U10, U7, U8, U9, V10, V8, V9, W10, W7, W8, W9, Y7, Y8, Y9, H5, H6, H7, J8, K6, K7, K8, K9, L7, L8, L9, M10, M7, M8, M9, N10, N8, N9, P10, P7, P8, P9, R10, R8, R9, E25, E26, F22, F25, G16, G17, G19, G20, G22, G23, G24, H16, H17, H18, H19, H20, H21, H22, H23, J16, J17, J18, J19, J20, J21, J22, K16, K17, K18, K19, K21, E5, E6, F6, F9, G11, G12, G14, G15, G7, G8, G9, H10, H11, H12, H13, H14, H15, H8, H9, J10, J11, J12, J13, J14, J15, J9, K10, K12, K13, K14, K15

[^7]2. NC pins should not be connected to any active signals, V_{CC} or GND.
3. Balls for $G N D, V_{C C}$ and $\mathrm{V}_{\mathrm{CCOx}}$ are connected within the substrate to their respective common signals. Pin orientation A 1 starts from the upper left corner of the top side view with alphabetical order ascending vertically and numerical order ascending horizontally.

ispXPGA Logic Signal Connections: 256-Ball fpBGA

$\begin{gathered} 256-f p B G A \\ \text { Ball } \end{gathered}$	LFX200			LFX125		
	Signal Name	Second Function	LVDS Pair/ sysHSI Reserved ${ }^{2}$	Signal Name	Second Function	LVDS Pair/ sysHSI Reserved ${ }^{2}$
C2	BK0_IO2	HSIOA_SOUTP	1P/HSIO	BKO_IOO	HSIOA_SOUTP	0P
-	GND (Bank 0)	-	-	-	-	-
D2	BK0_IO3	HSIOA_SOUTN	1N/HSIO	BK0_IO1	HSIOA_SOUTN	ON
B1	BK0_IO6	HSIOA_SINP	3P/HSIO	BK0_IO4	HSIOA_SINP	2P/HSIO
-	-	-	-	GND (Bank 0)	,	-
C1	BK0_IO7	HSIOA_SINN	3N/HSIO	BK0_IO5	HSIOA_SINN	2N/HSIO
D3	BK0_IO8	-	4P/HSIO	BK0_IO6	- -	3P/HSIO
E3	BK0_IO9	VREF0	4N/HSIO	BKO_107	VREFO	3N/HSIO
D1	BK0_IO10	HSIOB_SOUTP	5P/HSIO	BKO_IO8	HSIOB_SOUTP	4P/HSIO
-	GND (Bank 0)	-	-			
E1	BK0_IO11	HSIOB_SOUTN	5N/HSIO	BKO_IO9	HSIOB SOUTN	4N/HSIO
E2	BK0_IO12	-	6P/HSIO	BK0_1010		5P/HSIO
F2	BK0_IO13	-	6N/HSIO	BKO_IO11		5N/HSIO
F1	BK0_IO14	HSIOB_SINP	7P/HSIO	BK0_IO12	HSIOB_SINP	6P/HSIO
-	-	-	-	GND (Bank 0)		-
G1	BK0_IO15	HSIOB_SINN	7N/HSIO	BK0_1013	HSIOB_SINN	6N/HSIO
F3	BK0_IO18	PLL_FBKO	9 P	BKO_IO14	PLL_FBK0	7P/HSIO
-	GND (Bank 0)			-	-	-
G2	BK0_IO19	PLL_RST1	9N	BKO_IO15	PLL_RST1	7N/HSIO
E4	BK0_IO20	-	10P	BK0_IO16	-	8P/HSIO
F4	BK0_IO21	PLL_FBK1	10 N	BK0_OO17	PLL_FBK1	8N/HSIO
H1	BK0_IO22	PLL_RST0	11P	BK0_IO18	PLL_RST0	9P
-				GND (Bank 0)	-	-
J1	BK0_IO23	,	11 N	BK0_IO19	-	9N
H2	BK0_IO24	CLK_OUT0	12P	BK0_IO20	CLK_OUT0	10P
G3	BKO_IO25	CLK_OUT1	12 N	BKO_IO21	CLK_OUT1	10N
	GND (Bank 0)	-	-	-	-	-
G4	GCLK0		LVDS PairOP	GCLK0	-	LVDS PairOP
H4	GCLK1		LVDS PairON	GCLK1	-	LVDS PairON
H3	VCCP0		-	VCCP0	-	-
J4	GNDP0		-	GNDP0	-	-
J2	GCLK2	-	LVDS Pair1P	GCLK2	-	LVDS Pair1P
J3	GCLK3	-	LVDS Pair1N	GCLK3	-	LVDS Pair1N
-	GND (Bank 1)	-	-	-	-	-
H5	BK1_1O0	CLK_OUT2	13P	BK1_IO0	CLK_OUT2	11P
J5	BK1_IO1	CLK_OUT3	13N	BK1_IO1	CLK_OUT3	11 N
K1	BK1_IO2	SS_CLKOUTOP	14P	BK1_IO2	SS_CLKOUTOP	12P
-	-	-	-	GND (Bank 1)	-	-
L1	BK1_1O3	SS_CLKOUTON	14N	BK1_IO3	SS_CLKOUTON	12N
K4	BK1_IO4	PLL_FBK2	15P	BK1_IO4	PLL_FBK2	13P
L4	BK1_IO5	PLL_FBK3	15N	BK1_IO5	PLL_FBK3	13N
K3	BK1_IO6	SS_CLKINOP	16P	BK1_IO6	SS_CLKINOP	14P

ispXPGA Logic Signal Connections: 256-Ball fpBGA (Cont.)

$\underset{\text { Ball }}{\substack{256-\text { fpBGA }}}$	LFX200			LFX125		
	Signal Name	Second Function	LVDS Pair/ sysHSI Reserved ${ }^{2}$	Signal Name	Second Function	LVDS Pair/ sysHSI Reserved ${ }^{2}$
-	GND (Bank 1)	-	-	-	-	-
L3	BK1_IO7	SS_CLKINON	16N	BK1_IO7	SS_CLKIN	14 N
K2	BK1_IO8	-	17P	BK1_IO8		15P
-	-	-	-	GND (Bank 1)		-
L2	BK1_IO9	-	17N	BK1_IO9		15N
M1	BK1_IO10	HSI1A_SOUTP	18P/HSI1	BK1_IO10		16P
N1	BK1_IO11	HSI1A_SOUTN	18N/HSI1	BK1_IO11		16 N
M3	BK1_IO12	PLL_RST2	19P/HSI1	BK1_1012	PLL_RST2	17P
M4	BK1_IO13	PLL_RST3	19N/HSI1	BK1_IO13	PLL_RST3	17N
-	GND (Bank 1)	-	-			
M2	BK1_IO16 ${ }^{1}$	VREF1	-	BK1 $1014{ }^{1}$	VREF1	-
P1	BK1_IO18	HSI1B_SOUTP	22P/HS11	BK1_1016	-	19P
-	-	-		GND (Bank 1)	-	-
R1	BK1_IO19	HSI1B_SOUTN	22N/HSI1	BK1_IO17	-	19N
N3	BK1_IO20 ${ }^{1}$	-	\bigcirc	BK1_IO18 ${ }^{1}$		-
N2	BK1_IO22	HSI1B_SINP	24P/HS/1	BK1_1O20	-	21P
-	GND (Bank 1)	-		- -	-	-
P2	BK1_IO23	HSI1B_SINN	24N/HSI1	BK1_1O21	-	21N
P4	TCK		-	TCK	-	-
T2	TMS	-	$\rangle-$	TMS	-	-
T3	TOE			TOE	-	-
R3	BK2_IO0		26P	BK2_IO0	-	22P
R4	BK2_101		26N	BK2_IO1	-	22N
N5	BK2_102		27P	BK2_IO2	-	23P
-	GND (Bank 2)	-		-	-	-
P5	BK2_IO3		27N	BK2_IO3	-	23N
				GND (Bank 2)	-	-
T4	BK2,106		29P	BK2_IO6	-	25P
T5	BK2_IO7		29N	BK2_IO7	-	25N
N6	BK2_IO8	-	30P	BK2_IO8	-	26P
P6	BK2_IO9	VREF2	30N	BK2_IO9	VREF2	26N
R5	BK2_1010		31P	BK2_IO10	-	27P
	GND (Bank 2)	\checkmark -	-	-	-	-
R6	BK2_IO11	-	31 N	BK2_IO11	-	27N
N7	BK2_1012	-	32P	BK2_IO12	-	28P
-	-	-	-	GND (Bank 2)	-	-
P7	BK2_IO13	-	32N	BK2_IO13	-	28N
T6	BK2_IO14	-	33 P	BK2_IO14	-	29P
T7	BK2_IO15	-	33N	BK2_IO15	-	29N
M8	BK2_IO16	-	34P	BK2_IO16	-	30P
M9	BK2_IO17	-	34 N	BK2_IO17	-	30N
R7	BK2_IO18	-	35P	BK2_IO18	-	31P

ispXPGA Logic Signal Connections: 256-Ball fpBGA (Cont.)

$\begin{gathered} \text { 256-fpBGA } \\ \text { Ball } \end{gathered}$	LFX200			LFX125		
	Signal Name	Second Function	LVDS Pair/ sysHSI Reserved ${ }^{2}$	Signal Name	Second Function	LVDS Pair/ sysHSI Reserved ${ }^{2}$
-	GND (Bank 2)	-	-	GND (Bank 2)	-	-
R8	BK2_IO19	-	35N	BK2_IO19		31 N
N8	BK2_IO20	-	36P	BK2_IO20		32P
P8	BK2_IO21	-	36N	BK2_IO21		32N
-	GND (Bank 2)	-	-	-		-
-	GND (Bank 3)	-	-	-	-	-
T8	BK3_100	-	39P	BK3_IO0		33P
T9	BK3_IO1	-	39N	BK3_101	-	33 N
R9	BK3_IO2	-	40P	BK3_102		34P
-	-	-	-	GND (Bank 3)		
R10	BK3_IO3	-	40N	BK3_1O3		34 N
P9	BK3_IO4	-	41 P	BK3_104	-	35P
N9	BK3_1O5	-	41 N	BK3_IO5	,	35N
T10	BK3_IO6	-	42 P	BK3_IO6	-	36P
-	GND (Bank 3)	-	-			-
T11	BK3_IO7	-	42N	BK3_107		36N
P10	BK3_IO8	-	43 P	BK3_108	-	37P
-	-		-	GND (Bank 3)	-	-
N10	BK3_109		43N	BK3_IO9	-	37N
R11	BK3_IO14	-	46P	BK3_IO10	-	38P
-	GND (Bank 3)			-	-	-
R12	BK3_IO15		46 N	BK3_IO11	-	38 N
P11	BK3_1016	VREF3	47P	BK3_IO12	VREF3	39P
N11	BK3_1017		47 N	BK3_IO13	-	39N
T12	BK3_1018	-	48P	BK3_IO14	-	40P
T13	BK3_IO19		48 N	BK3_IO15	-	40N
R13	BK3_IO20		49P	BK3_IO16	-	41P
	-		-	GND (Bank 3)	-	-
R14	BK3_IO21		49N	BK3_IO17	-	41 N
P12	BK3_IO22		50P	BK3_IO18	-	42 P
	GND (Bank 3)		-	-	-	-
N12	BK3_1023		50N	BK3_IO19	-	42N
T14	GSR	- -	-	GSR	-	-
T15	DXP	-	-	DXP	-	-
P13	DXN	-	-	DXN	-	-
P15	BK4_IO0	-	52P/HSI2	BK4_IO0	-	44P
N14	BK4_IO1	-	52N/HSI2	BK4_IO1	-	44N
R16	BK4_IO2	HSI2A_SINP	53P/HSI2	BK4_IO2	-	45P
-	GND (Bank 4)	-	-	-	-	-
P16	BK4_IO3	HSI2A_SINN	53N/HSI2	BK4_IO3	-	45N
N15	BK4_IO4	-	54P/HSI2	BK4_IO4	-	46P
-	-	-	-	GND (Bank 4)	-	-

ispXPGA Logic Signal Connections: 256-Ball fpBGA (Cont.)

$\underset{\text { Ball }}{256 \text {-fpBGA }}$	LFX200			LFX125		
	Signal Name	Second Function	LVDS Pair/ sysHSI Reserved ${ }^{2}$	Signal Name	Second Function	LVDS Pair/ sysHSI Reserved ${ }^{2}$
M15	BK4_IO5	-	54N/HSI2	BK4_IO5	-	46N
M14	BK4_IO8	-	56P/HSI2	BK4_IO6		47P
M13	BK4_IO9	VREF4	56N/HSI2	BK4_IO7	VREF4	47N
-	GND (Bank 4)	-	-	-		-
L13	BK4_IO12	PLL_RST4	58P/HSI2	BK4_IO8	PLL_RST4	48P
L14	BK4_IO13	PLL_RST5	58N/HSI2	BK4_IO9	PLL_RST5	48N
N16	BK4_IO14	HSI2B_SOUTP	59P/HSI2	BK4_IO10		49P
M16	BK4_IO15	HSI2B_SOUTN	59N/HSI2	BK4_1011	-	49N
-	-	-	-	GND (Bank 4)		
L15	BK4_IO18	SS_CLKIN1P	61P	BK4_IO14	SS_CLKIN1P	51 P
-	GND (Bank 4)	-	-			
K15	BK4_IO19	SS_CLKIN1N	61 N	BK4_IO15	SS_CLKIN1N	51 N
K14	BK4_IO20	PLL_FBK4	62 P	BK4_IO16	PLL_FBK4	52P
K13	BK4_IO21	PLL_FBK5	62 N	BK4_IO17	PLL_FBK5	52 N
L16	BK4_IO22	SS_CLKOUT1P	63P	BK4_IO18	SS_CLKOUT1P	53P
-	-	-		GND (Bank 4)	-	-
K16	BK4_IO23	SS_CLKOUT1N	63 N	BK4_IO19	SS_CLKOUT1N	53N
J13	BK4_IO24	CLK_OUT4	64 P	BK4_IO20	CLK_OUT4	54P
J12	BK4_IO25	CLK_OUT5	64N	BK4_IO21	CLK_OUT5	54N
-	GND (Bank 4)	-	-		-	-
J14	GCLK4		LVDS Pair2P	GCLK4	-	LVDS Pair2P
H14	GCLK5		LVDS Pair2N	GCLK5	-	LVDS Pair2N
J15	VCCP1			VCCP1	-	-
H15	GNDP1			GNDP1	-	-
J16	GCLK6	-	LVDS Pair3P	GCLK6	-	LVDS Pair3P
H16	GCLK7		LVDS Pair3N	GCLK7	-	LVDS Pair3N
	GND (Bank 5)		-	-	-	-
H12	BK5-100	CLK_OUT6	65P	BK5_IO0	CLK_OUT6	55P
H13	BK5_IO1	CLK_OUT7	65N	BK5_IO1	CLK_OUT7	55N
G14	BK5_IO2		66P	BK5_IO2	-	56P
	-		-	GND (Bank 5)	-	-
G15	BK5_103	PLL_RST7	66N	BK5_IO3	PLL_RST7	56N
G13	BK5_106	PLL_RST6	68P	BK5_IO6	PLL_RST6	58P/HSI1
-	GND (Bank 5)	-	-	-	-	-
F13	BK5_IO7	PLL_FBK7	68N	BK5_IO7	PLL_FBK7	58N/HSI1
G16	BK5_IO10	HSI3A_SINP	70P	BK5_IO8	HSIIA_SINP	59P/HSI1
-	-	-	-	GND (Bank 5)	-	-
F16	BK5_IO11	HSI3A_SINN	70N/HSI3	BK5_IO9	HSIIA-SINN	59N/HSI1
F14	BK5_IO12	-	71P/HSI3	BK5_IO10	-	60P/HSI1
F15	BK5_IO13	-	71N/HSI3	BK5_IO11	-	60N/HSI1
E16	BK5_IO14	HSI3A_SOUTP	72P/HSI3	BK5_IO12	HSI1A_SOUTP	61P/HSI1
-	GND (Bank 5)	-	-	-	-	-

ispXPGA Logic Signal Connections: 256-Ball fpBGA (Cont.)

ispXPGA Logic Signal Connections: 256-Ball fpBGA (Cont.)

256-fpBGA Ball	LFX200			LFX125		
	Signal Name	Second Function	LVDS Pair/ sysHSI Reserved ${ }^{2}$	Signal Name	Second Function	LVDS Pair/ sysHSI Reserved ${ }^{2}$
C8	BK7_IO1	-	91N	BK7_IO1	-	77N
B8	BK7_IO2	-	92P	BK7_IO2		78P
B7	BK7_IO3	-	92N	BK7_IO3	-	78 N
A9	BK7_IO6	-	94P	BK7_IO4		79P
-	GND (Bank 7)	-	-	-		-
A8	BK7_IO7	-	94N	BK7_IO5		79N
C7	BK7_IO10	-	96P	BK7_IO6		80P
D7	BK7_IO11	-	96N	BK7_107	-	80N
D6	BK7_IO12	-	97P	BK7_108		81P
-	-	-	-	GND (Bank 7)		-
C6	BK7_IO13	-	97N	BK7_109		81 N
B6	BK7_IO14	-	98P	BK7_1010		82P
-	GND (Bank 7)	-		-	-	-
B5	BK7_IO15	-	98 N	BK7_IO11	-	82N
A7	BK7_IO16	VREF7	99P	BK7_IO12	VREF 7	83P
A6	BK7_IO17	-	99N	BK7_1013	-	83N
D5	BK7_IO18		100P	BK7_1014	-	84P
C5	BK7_IO19		100N	BK7_1015	-	84N
A5	BK7_IO20		101P	BK7_IO16	-	85P
-	-	-	-	GND (Bank 7)	-	-
A4	BK7_IO21		101N	BK7_1017	-	85N
B4	BK7_IO22		102 P	BK7_IO18	-	86P
-	GND (Bank 7)			-	-	-
B3	BK7_1023	-	102 N	BK7_IO19	-	86N
A3	TDO	-	-	TDO	-	-
A2	VCCJ			VCCJ	-	-
C4	TDI	-	,	TDI	-	-

1. Not available for differential pairs.
2. If a sysHSI Block is used, the indicated sysHSI reserved pins are unavailable for general purpose I/O use.

ispXPGA Logic Signal Connections: 516-Ball fpBGA

	LFX500			LFX200			LFX125		
$\begin{aligned} & 516 \text {-Ball } \\ & \text { BGA Ball } \end{aligned}$	Signal Name	Second Function	LVDS Pair/ sysHSI Reserved ${ }^{1}$	Signal Name	Second Function	LVDS Pair/ sysHSI Reserved ${ }^{1}$	Signal Name	Second Function	LVDS Pair/ sysHSI Reserved ${ }^{1}$
E4	BKO_IOO	-	OP	BKO_IOO	-	OP/HSIO	NC		-
D3	BKO_IO1	-	ON	BKO_IO1	-	ON/HSIO	NC	-	-
E3	BKO_IO2	HSIOA_SOUTP	1P/HSIO	BKO_IO2	HSIOA_SOUTP	1P/HSIO	BKO_100	HSIOA_SOUTP	OP
-	GND (Bank 0)	-	-	GND (Bank 0)	-	-			-
F3	BKO_IO3	HSIOA_SOUTN	1N/HSIO	BKO_IO3	HSIOA_SOUTN	1N/HSIO	BKO_101	HSIOA_SOUTN	ON
C2	BKO_IO4	-	2P/HSIO	BKO_IO4	-	2P/HSIO	BKO_IO2	-	1P/HSIO
B1	BKO_IO5	-	2N/HSIO	BKO_IO5	-	2N/HSIO	BKO_IO3	-	1N/HSIO
G4	BKO_IO6	HSIOA_SINP	3P/HSIO	BKO_IO6	HSIOA_SINP	3P/HSIO	BKO_IO4	HSIOA_SINP	2P/HSIO
-	-	-	-	-	-		GND (Bank 0)		-
G3	BKO_IO7	HSIOA_SINN	3N/HSIO	BK0_IO7	HSIOA_SINN	3N/HSIO	BKO_IO5	HSIOA_SINN	2N/HSIO
C1	BKO_IO8	-	4P/HSIO	BKO_IO8	-	4P/HSIO	BKO_IO6		$3 \mathrm{P} / \mathrm{HSIO}$
D2	BKO_IO9	VREFO	4N/HSIO	BKO_IO9	VREFO	4N/HSIO	BKO_IO7	VREFO	3N/HSIO
H4	BKO_IO10	HSIOB_SOUTP	5P/HSIO	BK0_IO10	HSIOB_SOUTP	5P/HSIO	BKO_IO8	HSIOB_SOUTP	4P/HSIO
-	GND (Bank 0)	-	-	GND (Bank 0)	-	-		-	-
H3	BK0_IO11	HSIOB_SOUTN	5N/HSIO	BK0_IO11	HSIOB SOUTN	5N/HSIO	BK0_109	HSIOB_SOUTN	4N/HSIO
D1	BK0_IO12	-	6P/HSIO	BKO_IO12		6P/HSIO	BKO_IO10	-	5P/HSIO
E1	BK0_IO13	-	6N/HSIO	BKO_1013		6N/HSIO	BK0_1011	-	5N/HSIO
E2	BKO_IO14	HSIOB_SINP	7P/HSIO	BKO_IO14	HSIOB_SINP	7P/HSIO	BKO_IO12	HSIOB_SINP	6P/HSIO
-	-	-	-		-		GND (Bank 0)	-	-
F2	BKO_IO15	HSIOB_SINN	7N/HSIO	BKO_IO15	HSIOB_SINN	7N/HSIO	BK0_IO13	HSIOB_SINN	6N/HSIO
G2	BKO_IO16	-	8P/HSIO	NC			NC	-	-
F1	BKO_IO17	-	8N/HSIO	NC		-	NC	-	-
J3	BK0_1018	HSI1A_SOUTP	9 P	NC		-	NC	-	-
-	GND (Bank 0)			-		-	-	-	-
K3	BKO_IO19	HSI1A_SOUTN	9 N	NC		-	NC	-	-
K4	BKO_IO20		10P	NC	\cdots	-	NC	-	-
L4	BKO_IO21		10 N	NC	-	-	NC	-	-
H2	BK0_IO22	HSIIA_SINP	11P	NC		-	NC	-	-
J2	BKO_IO23	HSITA_SINN	11 N	NC	-	-	NC	-	-
G1	BKO_IO24		12P	NC	-	-	NC	-	-
H1	BKO_IO25		12 N	NC	-	-	NC	-	-
L3	BKO_IO26	HSI1B_SOUTP	13 P	NC	-	-	NC	-	-
	GND (Bank 0)	-	-	-	-	-	-	-	-
M3	BKO_IO27	HSI1B_SOUTN	13 N	NC	-	-	NC	-	-
K2	BKO_1028		14P	NC	-	-	NC	-	-
L2	BKO_IO29		14 N	NC	-	-	NC	-	-
K1	BK0_IO30	HSITB_SINP	${ }_{15} \mathrm{P}$	NC	-	-	NC	-	-
L1	BK0_IO31	HSI1B_SINN	15 N	NC	-	-	NC	-	-
M2	BK0_IO32	$-$	16P	BKO_IO16	-	8P	NC	-	-
M1	BKO_1033	-	16 N	BKO_IO17	-	8 N	NC	-	-
N3	BK0_1034	PLL_FBKO	17P	BKO_IO18	PLL_FBK0	9 P	BKO_IO14	PLL_FBK0	7P/HSIO
-	GND (Bank 0)		-	GND (Bank 0)	-	-	-	-	-
N4	BKO_IO35	PLL_RST1	17N	BKO_IO19	PLL_RST1	9N	BKO_IO15	PLL_RST1	7N/HSIO
N2	BKO_IO36	-	18P	BKO_IO20	-	10P	BKO_IO16	-	8P/HSIO
N1	BKO_IO37	PLL_FBK1	18 N	BKO_IO21	PLL_FBK1	10N	BKO_IO17	PLL_FBK1	8N/HSIO
P1	BK0_IO38	PLL_RST0	19P	BKO_IO22	PLL_RST0	11P	BKO_IO18	PLL_RST0	9 P
-	-	-	-	-	-	-	GND (Bank 0)	-	-
R1	BKO_IO39	-	19N	BKO_IO23	-	11 N	BKO_IO19	-	9 N
P3	BKO_IO40	CLK_OUTO	20P	BKO_IO24	CLK_OUTO	12P	BKO_IO20	CLK_OUTO	10P
-	GND (Bank 0)	-	-	-	-	-	-	-	-
P2	BKO_IO41	CLK_OUT1	20N	BKO_IO25	CLK_OUT1	12 N	BKO_IO21	CLK_OUT1	10N

ispXPGA Logic Signal Connections: 516-Ball fpBGA (Cont.)

	LFX500			LFX200			LFX125		
516-Ball BGA Ball	Signal Name	Second Function	LVDS Pair/ sysHSI Reserved ${ }^{1}$	Signal Name	Second Function	LVDS Pair/ sysHSI Reserved ${ }^{1}$	Signal Name	Second Function	LVDS Pair/ sysHSI Reserved ${ }^{1}$
-	-	-	-	GND (Bank 0)	-	-	-	-	-
R2	GCLKO	-	LVDS PairOP	GCLK0	-	LVDS PairOP	GCLKO		LVDS PairOP
R3	GCLK1	-	LVDS PairON	GCLK1	-	LVDS PairON	GCLK1		LVDS PairON
R4	VCCP0	-	-	VCCP0	-	-	VCCPO	-	-
T4	GNDP0	-	-	GNDP0	-	-	GNDP0		-
T3	GCLK2	-	LVDS Pair1P	GCLK2	-	LVDS Pair1P	GCLK2	-	LVDS Pair1P
T2	GCLK3	-	LVDS Pair1N	GCLK3	-	LVDS Pair1N	GCLK3	-	LVDS Pair1N
-	-	-	-	GND (Bank 1)	-		\checkmark	-	-
T1	BK1_IO0	CLK_OUT2	21P	BK1_IO0	CLK_OUT2	13P	BK1_IO0	CLK_OUT2	11P
-	GND (Bank 1)	-	-	-	-				
U1	BK1_1O1	CLK_OUT3	21N	BK1_1O1	CLK_OUT3	13 N	BK1_1O1	CLK_OUT3	11 N
U2	BK1_IO2	SS_CLKOUTOP	22P	BK1_IO2	SS_CLKOUTOP	14 P	BK1_IO2	SS_CLKOUTOP	12P
-	-	-	-	-		-	GND (Bank 1)	- -	-
U3	BK1_IO3	SS_CLKOUTON	22N	BK1_1O3		$14 \mathrm{~N}$	BK1_103	$\begin{gathered} \text { SS_CLKOUTO } \\ N \end{gathered}$	12N
V1	BK1_IO4	PLL_FBK2	23P	BK1_IO4	PLL_FBK2	15P	BK1_IO4	PLL_FBK2	13P
V2	BK1_IO5	PLL_FBK3	23N	BK1_105	PLL_FBK3	15N	BK1_IO5	PLL_FBK3	13 N
V3	BK1_IO6	-	24P	NC			NC	-	-
-	GND (Bank 1)	-	-				-	-	-
V4	BK1_IO7	-	24N	,	-		NC	-	-
W1	BK1_1O8	-	25P	NC	-		NC	-	-
Y1	BK1_IO9	-	25 N	NC			NC	-	-
W2	BK1_IO10	SS_CLKINOP	26P	BK1_1O6	SS_CLKINOP	16P	BK1_IO6	SS_CLKINOP	14P
-	-	-		GND (Bank 1)			-	-	-
W3	BK1_IO11	SS_CLKINON	26N	BK1_107	SS_CLKINON	16 N	BK1_IO7	SS_CLKINON	14N
Y2	BK1_IO12		27P	BK1_108		17 P	BK1_1O8	-	15P
-	-		-			-	GND (Bank 1)	-	-
Y4	BK1_IO13		27N	BK1_IO9		17N	BK1_IO9	-	15 N
Y3	BK1_IO14		28P	NC		-	NC	-	-
-	GND (Bank 1)		-	-	-	-	-	-	-
AA1	BK1_IO15		28N	NC	-	-	NC	-	-
AA2	BK1_IO16		29P	NC	-	-	NC	-	-
AA3	BK1_1017	-	29 N	NC	-	-	NC	-	-
AB2	BK1_1018	HSI2A_SOUTP	30P	BK1_IO10	HSIIA_SOUTP	18P/HSI1	BK1_IO10	-	16P
AC2	BK1_O19	HSI2A_SOUTN	30 N	BK1_IO11	HSIIA_SOUTN	18N/HSI1	BK1_IO11	-	16 N
AB3	BK1_O20	PLL_RST2	31 P	BK1_IO12	PLL_RST2	19P/HSI1	BK1_IO12	PLL_RST2	17P
AA4	BK1_IO21	PLL_RST3	31 N	BK1_IO13	PLL_RST3	19N/HSI1	BK1_IO13	PLL_RST3	17N
AC1	BK1_IO22	HSI2A SINP	32P	BK1_IO14	HSI1A_SINP	20P/HSI1	NC	-	-
	GND (Bank 1)		-	GND (Bank 1)	-	-	-	-	-
AD1	BK1_1023	HSI2A_SINN	32 N	BK1_IO15	HSI1A_SINN	20N/HSI1	NC	-	-
AE1	BK1_1024	VREF1	33P/HSI2	BK1_IO16	VREF1	21P/HSI1	BK1_IO14	VREF1	18P
AF1	BK1_IO25	-	33N/HSI2	BK1_IO17	-	21N/HSI1	BK1_IO15	-	18 N
AC3	BK1_IO26	HSI2B_SOUTP	34P/HSI2	BK1_IO18	HSI1B_SOUTP	22P/HSI1	BK1_IO16	-	19P
-	-	\checkmark	-	-	- -	-	GND (Bank 1)	-	-
AC4	BK1_IO27	HSI2B_SOUTN	34N/HSI2	BK1_IO19	HSI1B_SOUTN	22N/HSI1	BK1_IO17	-	19N
AD2	BK1_IO28	-	35P/HSI2	BK1_IO20	-	23P/HSI1	BK1_IO18	-	20P
AD3	BK1_IO29	-	35N/HSI2	BK1_IO21	-	23N/HSI1	BK1_IO19	-	20N
AE2	BK1_IO30	HSI2B_SINP	36P/HSI2	BK1_IO22	HSI1B_SINP	24P/HSI1	BK1_IO20	-	21P
-	GND (Bank 1)	-	-	GND (Bank 1)	-	-	-	-	-
AF2	BK1_IO31	HSI2B_SINN	36N/HSI2	BK1_IO23	HSI1B_SINN	24N/HSI1	BK1_IO21	-	21N
AD4	BK1_IO32	-	37P/HSI2	NC	-	-	NC	-	-

ispXPGA Logic Signal Connections: 516-Ball fpBGA (Cont.)

516-Ball BGA Ball	LFX500			LFX200			LFX125		
	Signal Name	Second Function	LVDS Pair/ sysHSI Reserved ${ }^{1}$	Signal Name	Second Function	LVDS Pair/ sysHSI Reserved ${ }^{1}$	Signal Name	Second Function	LVDS Pair/ sysHSI Reserved ${ }^{1}$
AE3	BK1_IO33	-	37N/HSI2	NC	-	-	NC	-	-
AG1	BK1_IO34	-	38P/HSI2	NC	-	-	NC		-
AH1	BK1_IO35	-	38N/HSI2	NC	-	-	NC	-	-
AG2	BK1_IO36	-	39P/HSI2	NC	-	-	NC		-
AF3	BK1_IO37	-	39N/HSI2	NC	-	-	NC		-
AJ1	BK1_IO38	-	40P/HSI2	NC	-	-	NC	-	-
-	GND (Bank 1)	-	-	-	-		,		-
AH2	BK1_IO39	-	40N/HSI2	NC	-		NC	-	-
AG3	BK1_IO40	-	41P	BK1_IO24	-	25P/HSII	NC		-
AF4	BK1_IO41	-	41 N	BK1_IO25	-	$25 \mathrm{~N} / \mathrm{HSI} 1$	NC		-
AK2	TCK	-	-	TCK	-		TCK		-
AJ3	TMS	-	-	TMS		-	TMS	,	-
AG5	TOE	-	-	TOE			TOE		-
AH4	BK2_100	-	42P	BK2_IOO		26P	BK2_100		22P
AK3	BK2_IO1	-	42N	BK2_IO1		26N	BK2_101		22N
AJ4	BK2_IO2	-	43 P	BK2_IO2		27P	BK2_IO2	-	23 P
-	GND (Bank 2)	-	-	GND (Bank 2)				-	-
AH5	BK2_IO3	-	43 N	BK2_103		27N	BK2_103	-	23N
AK4	BK2_IO4	-	44P	BK2_IO4	-	28P	BK2_IO4	-	24P
-	-	-	-		-		GND (Bank 2)	-	-
AJ5	BK2_IO5	-	44 N	BK2_IO5	-	28N	BK2_IO5	-	24N
AG7	BK2_IO6	-	45P	BK2_106		29P	BK2_IO6	-	25P
AH6	BK2_IO7	-	45 N	BK2_IO7		29N	BK2_1O7	-	25N
AK5	BK2_IO8	-	46 P	NC		-	NC	-	-
AJ6	BK2_IO9		46N	NC		,	NC	-	-
AG8	BK2_IO10		47P	NC	-	-	NC	-	-
-	GND (Bank 2)		-		-	-	-	-	-
AH7	BK2_IO11		47N	NC	-	-	NC	-	-
AK6	BK2_1012		48 P	NC	-	-	NC	-	-
AJ7	BK2_IO13		48 N	NC	-	-	NC	-	-
AH8	BK2_IO14		49 P	NC	-	-	NC	-	-
AG10	BK2_IO15	-	49 N	NC	-	-	NC	-	-
AK7	BK2_1016	-	50P	NC	-	-	NC	-	-
AJ8	BK2_1017	-	50 N	NC	-	-	NC	-	-
AH9	BK2_1018		51P	NC	-	-	NC	-	-
-	GND (Bank 2)		,	-	-	-	-	-	-
AG11	BK2_IO19	-	51 N	NC	-	-	NC	-	-
AK8	BK2_IO20		52 P	BK2_1O8	-	30P	BK2_1O8	-	26P
Ad9	BK2_IO21	VREF2	52 N	BK2_IO9	VREF2	30 N	BK2_IO9	VREF2	26N
AH10	BK2_O22		53P	BK2_1010	-	31 P	BK2_1O10	-	27P
-	-	-	-	GND (Bank 2)	-	-	-	-	-
AH11	BK2_1023	-	53N	BK2_1011	-	31 N	BK2_IO11	-	27N
AJ10	BK2_IO24	-	54P	BK2_IO12		32 P	BK2_IO12	-	28P
AK10	BK2_IO25	-	54N	BK2_IO13	-	32 N	BK2_IO13	-	28N
AH12	BK2_IO26	-	55P	BK2_IO14	-	33 P	BK2_IO14	-	29P
-	GND (Bank 2)	-	-	-	-	-	-	-	-
AJ11	BK2_IO27	-	55N	BK2_IO15	-	33N	BK2_IO15	-	29N
AK11	BK2_IO28	-	56P	NC	-	-	NC	-	-
AJ12	BK2_IO29	-	56N	NC	-	-	NC	-	-
AG13	BK2_IO30	-	57P	BK2_IO16	-	34 P	BK2_IO16	-	30P
AH13	BK2_IO31	-	57N	BK2_IO17	-	34 N	BK2_IO17	-	30 N

ispXPGA Logic Signal Connections: 516-Ball fpBGA (Cont.)

	LFX500			LFX200			LFX125		
516-Ball BGA Ball	Signal Name	Second Function	LVDS Pair/ sysHSI Reserved ${ }^{1}$	Signal Name	Second Function	LVDS Pair/ sysHSI Reserved ${ }^{1}$	Signal Name	Second Function	LVDS Pair/ sysHSI Reserved ${ }^{1}$
AJ13	BK2_IO32	-	58P	BK2_IO18	-	35P	BK2_IO18	-	31P
-	-	-	-	GND (Bank 2)	-	-	GND (Bank 2)		-
AK12	BK2_IO33	-	58 N	BK2_IO19	-	35N	BK2_1019		31 N
AK13	BK2_IO34	-	59P	BK2_IO20	-	36P	BK2_1O20	-	32P
-	GND (Bank 2)	-	-	-	-	-			-
AH14	BK2_IO35	-	59N	BK2_IO21	-	36N	BK2_1021	-	32N
AJ14	BK2_IO36	-	60P	BK2_IO22	-	37 P	NC	-	-
AK14	BK2_IO37	-	60N	BK2_IO23	-	37 N	NC	-	-
AG15	BK2_IO38	-	61P	BK2_IO24	-	38 P	NC		-
AH15	BK2_IO39	-	61 N	BK2_IO25	-	38 N	NC		-
AJ15	BK2_IO40	-	62 P	NC	-		NC	-	-
AK15	BK2_IO41	-	62N	NC	-	-	NC		-
-	GND (Bank 2)	-	-	GND (Bank 2)		-			-
-	GND (Bank 3)	-	-	GND (Bank 3)		-	-		-
AK16	BK3_IO0	-	63P	BK3_IO0	$-$	39P	BK3_100		33P
AJ16	BK3_IO1	-	63N	BK3_IO1	-	39N	BK3_IO1	-	33N
AH16	BK3_IO2	-	64P	BK3_IO2		40P	BK3 IO2	-	34 P
AG16	BK3_IO3	-	64 N	BK3_IO3		40 N	BK3_103	-	34 N
AK17	BK3_IO4	-	65P	BK3_IO4	-	41 P	BK3_IO4	-	35P
AJ17	BK3_IO5	-	65N	BK3_IO5	-	41 N	BK3_IO5	-	35 N
AH17	BK3_IO6	-	66 P	ВK3_106	-	42P	BK3_IO6	-	36P
-	GND (Bank 3)	-		GND (Bank 3)			-	-	-
AJ18	BK3_IO7	-	66 N	BK3_IO7	-	42 N	BK3_1O7	-	36N
AH18	BK3_IO8	-	67 P	BK3_IO8	-	43P	BK3_IO8	-	37P
-	-		-	-		-	GND (Bank 3)	-	-
AG18	BK3_IO9		67N	BK3_1O9		43N	BK3_IO9	-	37N
AK18	BK3_IO10		68 P	BK3_IO10	-	44 P	BK3_IO10	-	38P
AK19	BK3_IO11		68 N	BK3_IO11	-	44 N	BK3_IO11	-	38 N
AJ19	BK3_IO12		69P	BK3_IO12	-	45P	NC	-	-
AH19	BK3_IO13		69N	BK3_IO13		45N	NC	-	-
AK20	BK3_IO14		70P	BK3_IO14	-	46P	NC	-	-
-	GND (Bank 3)	-	-	GND (Bank 3)	-	-	-	-	-
AJ20	BK3_1015	-	70 N	BK3_IO15	-	46N	NC	-	-
AH20	BK3_1016	-	71P	NC	-	-	NC	-	-
AG20	BK3_1017		71 N	NC	-	-	NC	-	-
AK21	BK3_1018		72 P	NC	-	-	NC	-	-
AJ21	BK3_IO19	-	72 N	NC	-	-	NC	-	-
AH21	BK3_IO20	VREF3	73 P	BK3_IO16	VREF3	47P	BK3_IO12	VREF3	39P
AG21	BK3_IO21		73N	BK3_IO17	-	47N	BK3_IO13	-	39N
AJ22	BK3_1022	-	74P	BK3_IO18	-	48P	BK3_IO14	-	40P
-	GND (Bank 3)	-	-	-	-	-	-	-	-
AH22	BK3_IO23	-	74N	BK3_IO19	-	48N	BK3_IO15	-	40N
AK23	BK3_IO24	-	75P	NC	-	-	NC	-	-
AJ23	BK3_IO25	-	75N	NC	-	-	NC	-	-
AH23	BK3_IO26	-	76P	NC	-	-	NC	-	-
AK24	BK3_IO27	-	76N	NC	-	-	NC	-	-
AJ24	BK3_1O28	-	77P	NC	-	-	NC	-	-
AG23	BK3_IO29	-	77N	NC	-	-	NC	-	-
AH24	BK3_IO30	-	78P	NC	-	-	NC	-	-
-	GND (Bank 3)	-	-		-	-	-	-	-
AK25	BK3_IO31	-	78N	NC	-	-	NC	-	-

ispXPGA Logic Signal Connections: 516-Ball fpBGA (Cont.)

	LFX500			LFX200			LFX125		
516-Ball BGA Ball	Signal Name	Second Function	LVDS Pair/ sysHSI Reserved ${ }^{1}$	Signal Name	Second Function	LVDS Pair/ sysHSI Reserved ${ }^{1}$	Signal Name	Second Function	LVDS Pair/ sysHSI Reserved ${ }^{1}$
AJ25	BK3_IO32	-	79P	NC	-	-	NC	-	-
AG24	BK3_IO33	-	79 N	NC	-	-	NC		-
AK26	BK3_IO34	-	80P	BK3_IO20	-	49P	BK3_1016	-	41P
-	-	-	-	-	-	-	GND (Bank 3)	-	-
AH25	BK3_IO35	-	80N	BK3_IO21	-	49N	BK3_IO17	-	41 N
AJ26	BK3_IO36	-	81P	BK3_1O22	-	50P	BK3_1018	-	42P
-	-	-	-	GND (Bank 3)	-			-	-
AH26	BK3_IO37	-	81 N	BK3_IO23	-	50 N	BK3_IO19	-	42N
AK27	BK3_IO38	-	82P	NC	-		NC		-
-	GND (Bank 3)	-	-	-	-	-	-		
AJ27	BK3_IO39	-	82N	NC	-		NC		-
AG26	BK3_IO40	-	83P	BK3_IO24	-	51P	BK3_IO20	\cdots	43P
AH27	BK3_IO41	-	83N	BK3_IO25	-	51 N	BK3_IO21		43N
AK28	GSR	-	-	GSR		-	GSR		-
AJ28	DXP	-	-	DXP		-	DXP		-
AK29	DXN	-	-	DXN	,	-	DXN	-	-
AH29	BK4_IO0	-	84P	BK4_IO0		52P/HSI2	BK4 IO0	-	44P
AG28	BK4_IO1	-	84N	BK4_IO1		52N/HSI2	BK4_101	-	44N
AF27	BK4_IO2	-	85P/HSI3	NC	-		NC	-	-
-	GND (Bank 4)	-	-		-	-	\square	-	-
AF28	BK4_IO3	-	85N/HSI3	NC	-		NC	-	-
AJ30	BK4_IO4	-	86P/HSI3	NC			NC	-	-
AH30	BK4_IO5	-	86N/HSI3	NC		-	NC	-	-
AG29	BK4_IO6	-	87P/HSI3	NC	-	-	NC	-	-
AF29	BK4_IO7		87N/HSI3	NC	-	$>-$	NC	-	-
AE28	BK4_IO8		88P/HSI3	NC		-	NC	-	-
AD27	BK4_IO9		88N/HSI3	NC	-	-	NC	-	-
AG30	BK4_IO10	HSI3A SINP	89P/HSI3	BK4_IO2	HSI2A_SINP	53P/HSI2	BK4_IO2	-	45P
-	GND (Bank 4)		-	GND (Bank 4)	-	-	-	-	-
AF30	BK4_IO11	HSI3A SINN	89N/HSI3	BK4_IO3	HSI2A_SINN	53N/HSI2	BK4_IO3	-	45N
AD28	BK4_IO12		90P/HSI3	BK4_IO4	-	54P/HSI2	BK4_IO4	-	46P
-			,		-	-	GND (Bank 4)	-	-
AC27	BK4_IO13	\square -	90N/HSI3	BK4_IO5	-	54N/HSI2	BK4_IO5	-	46N
AE29	BK4_1014	HSI3A_SOUTP	91P/HSI3	BK4_IO6	HSI2A_SOUTP	55P/HSI2	NC	-	-
AE30	BK4_1015	HSI3A_SOUTN	91N/HSI3	BK4_IO7	HSI2A_SOUTN	55N/HSI2	NC	-	-
AD29	BK4_IO16		92P/HSI3	BK4_IO8	-	56P/HSI2	BK4_IO6	-	47P
AD30	BK4_IO17	VREF4	92N/HSI3	BK4_IO9	VREF4	56N/HSI2	BK4_IO7	VREF4	47N
AC28	BK4_IO18	HSI3B_SINP	93P	BK4_IO10	HSI2B_SINP	57P/HSI2	NC	-	-
\cdots	GND (Bank 4)		-	GND (Bank 4)	-	-	-	-	-
AB28	BK4_1019	HSI3B_SINN	93N	BK4_IO11	HSI2B_SINN	57N/HSI2	NC	-	-
AA27	BK4_1020	PLL_RST4	94P	BK4_IO12	PLL_RST4	58P/HSI2	BK4_IO8	PLL_RST4	48P
AB29	BK4_IO21	PLL_RST5	94N	BK4_IO13	PLL_RST5	58N/HSI2	BK4_IO9	PLL_RST5	48N
AC29	BK4_IO22	HSI3B_SOUTP	95P	BK4_IO14	HSI2B_SOUTP	59P/HSI2	BK4_IO10	-	49P
AC30	BK4_IO23	HSI3B_SOUTN	95N	BK4_IO15	HSI2B_SOUTN	59N/HSI2	BK4_IO11	-	49N
AA28	BK4_IO24	-	96P	NC	-	-	NC	-	-
Y27	BK4_IO25	-	96N	NC	-	-	NC	-	-
Y28	BK4_IO26	-	97P	NC	-	-	NC	-	-
-	GND (Bank 4)	-	-	-	-	-	-	-	-
AA29	BK4_IO27	-	97N	NC	-	-	NC	-	-
Y29	BK4_IO28	-	98P	BK4_IO16	-	60P	BK4_IO12	-	50P
-	-	-	-	-	-	-	GND (Bank 4)	-	-

ispXPGA Logic Signal Connections: 516-Ball fpBGA (Cont.)

	LFX500			LFX200			LFX125		
$\begin{aligned} & \text { 516-Ball } \\ & \text { BGA Ball } \end{aligned}$	Signal Name	Second Function	LVDS Pair/ sysHSI Reserved ${ }^{1}$	Signal Name	Second Function	LVDS Pair/ sysHSI Reserved ${ }^{1}$	Signal Name	Second Function	LVDS Pair/ sysHSI Reserved ${ }^{1}$
AA30	BK4_IO29	-	98N	BK4_IO17	-	60N	BK4_IO13	-	50N
W28	BK4_IO30	SS_CLKIN1P	99P	BK4_IO18	SS_CLKIN1P	61 P	BK4_IO14	SS_CLKIN1P	51P
-	-	-	-	GND (Bank 4)	-	-	\cdots	-	-
W29	BK4_IO31	SS_CLKIN1N	99N	BK4_IO19	SS_CLKIN1N	61 N	BK4_1015	SS_CLKIN1N	51N
Y30	BK4_IO32	-	100P	NC	-	-	NC		-
W30	BK4_IO33	-	100N	NC	-	-	NC	\checkmark -	-
V27	BK4_IO34	-	101P	NC	-		NC	-	-
-	GND (Bank 4)	-	-	-	-			-	-
V28	BK4_IO35	-	101N	NC	-		NC		-
V29	BK4_IO36	PLL_FBK4	102P	BK4_IO20	PLL_FBK4	62P	BK4_IO16	PLL_FBK4	52 P
V30	BK4_IO37	PLL_FBK5	102N	BK4_IO21	PLL_FBK5	62 N	BK4_IO17	PLL_FBK5	52 N
U30	BK4_IO38	SS_CLKOUT1P	103P	BK4_IO22	SS_CLKOUT1P	63 P	BK4_IO18	SS_CLKOUT1P	53P
U29	BK4_IO39	SS_CLKOUT1N	103N	BK4_IO23	SS CLKOUT1N	63 N	BK4_IO19	SS_CLKOUT1N	53 N
U28	BK4_IO40	CLK_OUT4	104P	BK4_IO24	CLK_OUT4	64P	BK4_1020	CLK_OUT4	54P
-	GND (Bank 4)	-	-	-	-	-	-		-
T27	BK4_IO41	CLK_OUT5	104N	BK4_IO25	CLK_OUT5	64N	BK4_IO21	CLK_OUT5	54 N
-	-	-	-	GND (Bank 4)		-		- -	-
T28	GCLK4	-	LVDS Pair2P	GCLK4		LVDS Pair2P	GCLK4	-	LVDS Pair2P
T29	GCLK5	-	LVDS Pair2N	GCLK5	-	LVDS Pair2N	GCLK5	-	LVDS Pair2N
T30	VCCP1	-	-	VCCP1	-	-	VCCP1	-	-
R29	GNDP1	-		GNDP1	-		GNDP1	-	-
R28	GCLK6	-	LVDS Pair3P	GCLK6		LVDS Pair3P	GCLK6	-	LVDS Pair3P
R27	GCLK7	-	LVDS Pair3N	GCLK7	-	LVDS Pair3N	GCLK7	-	LVDS Pair3N
-	-	-		GND (Bank 5)		-	-	-	-
R30	BK5_IO0	CLK_OUT6	105P	BK5_IO0	CLK_OUT6	65P	BK5_IO0	CLK_OUT6	55P
-	GND (Bank 5)			-		-	-	-	-
P30	BK5_IO1	CLK_OUT7	105 N	BK5_101	CLK_OUT7	65N	BK5_IO1	CLK_OUT7	55N
P29	BK5_IO2	-	106P	BK5_IO2	- -	66P	BK5_IO2	-	56P
-	-		-	-		-	GND (Bank 5)	-	-
P28	BK5_IO3	PLL_RST7	106N	BK5_IO3	PLL_RST7	66N	BK5_IO3	PLL_RST7	56N
N30	BK5_IO4	PLL_FBK6	107P	BK5_IO4	PLL_FBK6	67P	BK5_IO4	PLL_FBK6	57P/HSI1
N29	BK5 IO5	-	107 N	BK5_105	-	67 N	BK5_IO5	-	57N/HSI1
N28	BK5_106	PLL-RST6	108P	BK5_IO6	PLL_RST6	68P	BK5_IO6	PLL_RST6	58P//HSI1
	GND (Bank 5)	-		GND (Bank 5)	-	-	-	-	-
N27	BK5_107	PLL_FBK7	108N	BK5_IO7	PLL_FBK7	68N	BK5_IO7	PLL_FBK7	58N/HSI1
M30	BK5_IO8		109P/HSI4	BK5_IO8	-	69P	NC	-	-
M29	BK5_IO9	-	109N/HSI4	BK5_IO9	-	69N	NC	-	-
L30	BK5_IO10	HSI4A_SINP	110P/HSI4	BK5_IO10	HSI3A_SINP	70P/HSI3	BK5_IO8	HSI1A_SINP	59P/HSI1
-		-	-	-	-	-	GND (Bank 5)	-	-
L29	BK5_1011	HSI4A SINN	110N/HSI4	BK5_IO11	HSI3A_SINN	70N/HSI3	BK5_IO9	HSI1A_SINN	59N/HSI1
M28	BK5_1012	-	111P/HSI4	BK5_IO12	-	71P/HSI3	BK5_IO10	-	60P/HSI1
L28	BK5_IO13		111N/HSI4	BK5_IO13		71N/HSI3	BK5_IO11	-	60N/HSI1
K30	BK5_IO14	HSI4A_SOUTP	112P/HSI4	BK5_IO14	HSI3A_SOUTP	72P/HSI3	BK5_IO12	HSI1A_SOUTP	61P/HSI1
-	GND (Bank 5)	-	-	GND (Bank 5)	-	-	-	-	-
K29	BK5_IO15	HSI4A_SOUTN	112N/HSI4	BK5_IO15	HSI3A_SOUTN	72N/HSI3	BK5_IO13	HSI1A_SOUTN	61N/HSI1
L27	BK5_IO16	-	113P/HSI4	NC	-	-	NC	-	-
K28	BK5_IO17	-	113N/HSI4	NC	-	-	NC	-	-
H30	BK5_IO18	HSI4B_SINP	114P/HSI4	NC	-	-	NC	-	-
G30	BK5_IO19	HSI4B_SINN	114N/HSI4	NC	-	-	NC	-	-
J28	BK5_IO20	-	115P/HSI4	NC	-	-	NC	-	-
K27	BK5_IO21	-	115N/HSI4	NC	-	-	NC	-	-

ispXPGA Logic Signal Connections: 516-Ball fpBGA (Cont.)

	LFX500			LFX200			LFX125		
516-Ball BGA Ball	Signal Name	Second Function	LVDS Pair/ sysHSI Reserved ${ }^{1}$	Signal Name	Second Function	LVDS Pair/ sysHSI Reserved ${ }^{1}$	Signal Name	Second Function	LVDS Pair/ sysHSI Reserved ${ }^{1}$
J29	BK5_IO22	HSI4B_SOUTP	116P/HSI4	NC	-	-	NC	-	-
-	GND (Bank 5)	-	-	-	-	-	-	-	-
H29	BK5_IO23	HSI4B_SOUTN	116N/HSI4	NC	-	-	NC	-	-
F30	BK5_IO24	-	117P/HSI5	NC	-	-	NC	-	-
G29	BK5_IO25	-	117N/HSI5	NC	-	-	NC		-
H28	BK5_IO26	HSI5A_SINP	118P/HSI5	NC	-	-	NC	-	-
H27	BK5_IO27	HSI5A_SINN	118N/HSI5	NC	-		NC		-
E30	BK5_IO28	-	119P/HSI5	NC	-		NC		-
F29	BK5_IO29	-	119N/HSI5	NC	-		NC		
G28	BK5_IO30	HSISA_SOUTP	120P/HSI5	NC	-		NC		-
-	GND (Bank 5)	-	-	-	-		-		-
G27	BK5_IO31	HSISA_SOUTN	120N/HSI5	NC	-	,	NC	\cdots	-
E29	BK5_IO32	VREF5	121P/HSI5	BK5_1O16	VREF5	73P/HSI3	BK5_IO14	VREF5	62P/HSI1
F28	BK5_IO33	-	121N/HSI5	BK5_IO17	-	73N/HSI3	BK5_1015		62N/HSI1
D30	BK5_IO34	HSI5B_SINP	122P/HSI5	BK5_IO18	HSI3B_SINP	74P/HSI3	BK5_1016	HSI1B_SINP	63P/HSI1
-	-	-	-)	-	GND (Bank 5)		-
C30	BK5_IO35	HSI5B_SINN	122N/HSI5	BK5_1019	HSI3B_SINN	74N/HSI3	BK5_IO17	HSI1B_SINN	63N/HSI1
D29	BK5_IO36	-	123P/HSI5	BK5_1O20		75P/HSI3	NC	-	-
D28	BK5_IO37	-	123N/HSI5	BK5_IO21		$75 \mathrm{~N} / \mathrm{HSI} 3$	- NC	-	-
E28	BK5_IO38	HSI5B_SOUTP	124P/HSI5	BK5_1022	HSI3B_SOUTP	76P/HSI3	BK5_1O20	HSI1B_SOUTP	65P/HSI1
-	GND (Bank 5)	-		GND (Bank 5)	-	-	-	-	-
E27	BK5_IO39	HSI5B_SOUTN	124N/HSI5	BK5_IO23	HSI3B_SOUTN	$76 \mathrm{~N} / \mathrm{HSI3}$	BK5_IO21	HSI1B_SOUTN	65N/HSI1
C29	BK5_IO40	-	125 P	BK5_IO24		77P/HSI3	BK5_IO18	-	64P/HSI1
B30	BK5_IO41	-	125N	BK5_IO25	-	$77 \mathrm{~N} / \mathrm{HSI} 3$	BK5_IO19	-	64N/HSI1
A29	CFGO			CFGO		\triangle -	CFGO	-	-
B28	DONE		-	DONE	-	-	DONE	-	-
A28	PROGRAMb		-	PROGRAMb	-2	-	PROGRAMb	-	-
D26	BK6_IO0	INITb	126P	BK6_IO0	INITb	78P	BK6_IO0	INITb	66P
C27	BK6_101	CCLK	126 N	BK6_101	CCLK	78 N	BK6_IO1	CCLK	66 N
B27	BK6_IO2		127P	BK6_IO2	-	79P	BK6_IO2	-	67P
-	GND (Bank 6)		\cdots	GND (Bank 6)	-	-	-	-	-
A27	BK6_IO3	-	127 N	BK6_103	-	79N	BK6_IO3	-	67N
C26	BK6_104	CSb	128P	BK6_IO4	CSb	80P	BK6_IO4	CSb	68P
	- -	-		-	-	-	GND (Bank 6)	-	-
B26	BK6_105	Read	128 N	BK6_IO5	Read	80N	BK6_IO5	Read	68 N
A26	BK6_IO6		129P	NC	-	-	NC	-	-
C25	BK6_IO7	-	129 N	NC	-	-	NC	-	-
D24	BK6_IO8		130 P	NC	-	-	NC	-	-
B25	BK6_109		130 N	NC	-	-	NC	-	-
A25	BK6_1010		131P	NC	-	-	NC	-	-
-	GND (Bank 6)	-	-	-	-	-	-	-	-
C24	BK6_IO11		131N	NC	-	-	NC	-	-
D23	BK6_IO12	-	132P	NC	-	-	NC	-	-
B24	BK6_IO13	-	132 N	NC	-	-	NC	-	-
C23	BK6_IO14	-	133P	NC	-	-	NC	-	-
A24	BK6_IO15	-	133 N	NC	-	-	NC	-	-
C22	BK6_IO16	-	134P	NC	-	-	NC	-	-
B23	BK6_IO17	-	134 N	NC	-	-	NC	-	-
B22	BK6_IO18	DATA7	135P	BK6_IO6	DATA7	81P	BK6_IO6	DATA7	69P
-	GND (Bank 6)	-	-	-	-	-	-	-	-
A23	BK6_IO19	DATA6	135 N	BK6_107	DATA6	81 N	BK6_107	DATA6	69N

ispXPGA Logic Signal Connections: 516-Ball fpBGA (Cont.)

516-Ball BGA Ball	LFX500			LFX200			LFX125		
	Signal Name	Second Function	LVDS Pair/ sysHSI Reserved ${ }^{1}$	Signal Name	Second Function	LVDS Pair/ sysHSI Reserved ${ }^{1}$	Signal Name	Second Function	LVDS Pair/ sysHSI Reserved ${ }^{1}$
D21	BK6_IO20	-	136P	BK6_108	-	82P	BK6_108	-	70P
C21	BK6_IO21	VREF6	136 N	BK6_109	VREF6	82N	BK6_IO9	VREF6	70 N
B21	BK6_IO22	DATA5	137P	BK6_1O10	DATA5	83P	BK6_1010	DATAS	71P
-	-	-	-	GND (Bank 6)	-	-	-	,	-
A21	BK6_IO23	DATA4	137N	BK6_IO11	DATA4	83N	BK6_1011	DATA4	71 N
D20	BK6_IO24	-	138P	BK6_IO12	-	84P	BK6_1012	-	72P
-	-	-	-	-	-	-	GND (Bank 6)	-	-
C20	BK6_IO25	-	138N	BK6_IO13	-	84N	BK6_IO13	-	72N
B20	BK6_IO26	DATA3	139P	BK6_IO14	DATA3	85P	BK6_IO14	DATA3	73P
-	GND (Bank 6)	-	-	-	-	-			
A20	BK6_IO27	DATA2	139N	BK6_IO15	DATA2	85 N	BK6_IO15	DATA2	73 N
C19	BK6_IO28	-	140P	BK6_IO16		86P	BK6_IO16		74P
B19	BK6_IO29	-	140N	BK6_IO17		86 N	BK6_1017	-	74 N
A19	BK6_IO30	DATA1	141P	BK6_IO18	DATA1	87P	BK6_1018	DATA1	75P
-	-	-	-	GND (Bank 6)	-7	-	GND (Bank 6)		-
A18	BK6_IO31	DATAO	141N	BK6_1019	DATAO	87N	BK6_IO19	DATAO	75N
D18	BK6_IO32	-	142P	BK6_1020		88 P	BK6_IO20	-	76P
C18	BK6_IO33	-	142 N	BK6_1O21		88N	BK6_IO21	-	76 N
B18	BK6_IO34	-	143P	BK6_IO22		89P	- NC	-	-
-	GND (Bank 6)	-	,		-	-	${ }^{-}$	-	-
C17	BK6_IO35	-	143 N	BK6_IO23		89 N	NC	-	-
B17	BK6_IO36	-	144 P	NC			NC	-	-
A17	BK6_IO37	-	144 N	NC		\checkmark	NC	-	-
D16	BK6_IO38	-	145P	NC		-	NC	-	-
C16	BK6_IO39		145 N	NC			NC	-	-
B16	BK6_IO40		146P	BK6_1024	-	90P	NC	-	-
A16	BK6_IO41		146 N	BK6_1025	-	90 N	NC	-	-
-	GND (Bank 6)		-	GND (Bank 6)	-	-	-	-	-
-	GND (Bank 7)		-	GND (Bank 7)	-	-	-	-	-
A15	BK7_100		147P	BK7_100	-	91P	BK7_IO0	-	77P
B15	BK7_101		147 N	BK7_IO1	-	91 N	BK7_1O1	-	77N
C15	BK7_IO2	-	148 P	BK7_102	-	92P	BK7_IO2	-	78P
		-	-	-	-	-	GND (Bank 7)	-	-
D15	BK7_103	-	148 N	BK7_1O3	-	92N	BK7_IO3	-	78N
A14	BK7_104		149P	BK7_104	-	93P	BK7_IO4	-	79P
B14	BK7_IO5		149 N	BK7_IO5	-	93N	BK7_IO5	-	79N
C14	BK7_IO6	-	150P	BK7_IO6	-	94P	NC	-	-
-	GND (Bank 7)		-	GND (Bank 7)	-	-	-	-	-
A13	BK7_107		150N	BK7_107	-	94N	NC	-	-
B13	BK7_108		151P	BK7_108	-	95P	NC	-	-
C13	BK7_IO9	-	151N	BK7_IO9	-	95N	NC	-	-
D13	BK7_1010		152P	BK7_1010	-	96P	BK7_IO6	-	80P
B12	BK7_IO11	-	152 N	BK7_IO11	-	96 N	BK7_IO7	-	80N
C12	BK7_IO12	-	153P	BK7_IO12	-	97P	BK7_108	-	81P
-	-	-	-	-	-	-	GND (Bank 7)	-	-
A12	BK7_IO13	-	153N	BK7_1013		97N	BK7_109	-	81 N
A11	BK7_1014	-	154P	BK7_1014	-	98P	BK7_1O10	-	82P
-	GND (Bank 7)	-	-	GND (Bank 7)	-	-	-	-	-
B11	BK7_IO15	-	154N	BK7_1015	-	98N	BK7_IO11	-	82N
C11	BK7_IO16	-	155P	NC	-	-	NC	-	-
D11	BK7_IO17	-	155 N	NC	-	-	NC	-	-

ispXPGA Logic Signal Connections: 516-Ball fpBGA (Cont.)

	LFX500			LFX200			LFX125		
516-Ball BGA Ball	Signal Name	Second Function	LVDS Pair/ sysHSI Reserved ${ }^{1}$	Signal Name	Second Function	LVDS Pair/ sysHSI Reserved ${ }^{1}$	Signal Name	Second Function	LVDS Pair/ sysHSI Reserved ${ }^{1}$
A10	BK7_IO18	-	156P	NC	-	-	NC	-	-
B10	BK7_IO19	-	156N	NC	-	-	NC		-
C10	BK7_IO20	VREF7	157P	BK7_IO16	VREF7	99P	BK7_1012	VREF7	83P
D10	BK7_IO21	-	157N	BK7_IO17	-	99N	BK7, 1013	-	83N
B9	BK7_IO22	-	158P	BK7_IO18	-	100P	BK7_IO14	-	84P
-	GND (Bank 7)	-	-	-	-	-	-	-	-
C9	BK7_IO23	-	158N	BK7_IO19	-	100 N	BK7_IO15	-	84N
A8	BK7_IO24	-	159P	BK7_IO20	-	101P	BK7_IO16	-	85P
-	-	-	-	-	-		GND (Bank 7)		-
B8	BK7_IO25	-	159N	BK7_IO21	-	101 N	BK7_IO17		85N
C8	BK7_IO26	-	160P	NC	-		NC	-	-
D8	BK7_IO27	-	160 N	NC		-	NC		-
A7	BK7_IO28	-	161P	NC		-	NC		-
B7	BK7_IO29	-	161 N	NC		-	NC		-
C7	BK7_IO30	-	162P	NC		-	NC		-
-	GND (Bank 7)	-	-	-	-	-	-	-	-
D7	BK7_IO31	-	162N	NC		-	NC	-	-
A6	BK7_IO32	-	163P	NC	-	-	NC	-	-
B6	BK7_IO33	-	163 N	NC	-	-	NC	-	-
B5	BK7_IO34	-	164P	NC	-	-	NC	-	-
C6	BK7_IO35	-	164 N	NC	-		NC	-	-
A5	BK7_IO36	-	165 P	NC			NC	-	-
A4	BK7_IO37	-	165 N	NC		- $>$	NC	-	-
B4	BK7_IO38	-	166P	BK7_IO22	-	102P	BK7_IO18	-	86P
-	GND (Bank 7)		-	GND (Bank 7)		-	-	-	-
C5	BK7_IO39		166N	BK7_IO23		102N	BK7_IO19	-	86N
A3	BK7_IO40		167P	BK7_IO24	-	103P	BK7_IO20	-	87P
A2	BK7_IO41		167N	BK7_IO25	-	103N	BK7_IO21	-	87 N
D5	TDO		-	TDO	$>$	-	TDO	-	-
C4	VCCJ		-	VCCJ	-	-	VCCJ	-	-
B3	TDI	-	-	TDI	-	-	TDI	-	-

1. If a sysHSI Block is used, the indicated sysHSI reserved pins are unavailable for general purpose I/O use.

ispXPGA Logic Signal Connections: 680-Ball fpBGA

LFX1200			
680-Ball fpBGA	Signal Name	Second Function	LVDS Pair/sysHSI Reserved ${ }^{1}$
C4	BK0_IO0	-	OP
B4	BK0_IO1	-	ON
E6	BK0_IO2	-	1 P
-	GND (Bank 0)	-	
D6	BK0_IO3	-	1 N
A4	BK0_IO4	-	2 P
E8	BK0_IO5	-	2N
C5	BK0_IO6	HSIOA_SOUTP	3 P
C6	BK0_IO7	HSIOA_SOUTN	3N
A6	BK0_IO8	-	4 P
A5	BK0_IO9	-	4 N
B6	BK0_IO10	HSIOA_SINP	5P/HSIO
-	GND (Bank 0)	- -	
B5	BK0_IO11	HSIOA_SINN	5N/HSIO
B7	BK0_IO12	VREFO	6P/HSIO
A7	BK0_IO13	-	6N/HSIO
D8	BK0_IO14	HSIOB_SOUTP	$\geq 7 \mathrm{P} / \mathrm{HSIO}$
D7	BK0_IO15	HSIOB_SOUTN	7N/HSIO
D9	BK0_IO16	-	8P/HSIO
E10	BKO_IO17		8N/HSIO
C8	BK0_1018	HSIOB_SINP	9P/HSIO
-	GND (Bank 0)	-	-
C7	BK0_1019	HSIOB_SINN	9N/HSIO
A8	BKO_IO20	$\cdots-$	10P/HSIO
A9	BK0 1021		10N/HSIO
C9	BKO_IO22	HSI1A_SOUTP	11P/HSIO
B8	BK0_IO23	HS[1A_SOUTN	11N/HSIO
B9	BK0_IO24	-	12P/HSIO
B10	BK0_1025	${ }^{-}$	12N/HSIO
D11	BKO_IO26	HSIIA_SINP	13P/HSI1
\cdots	GND (Bank 0)	-	-
D10	BKO_IO27	HSIIA_SINN	13N/HSI1
- A10	BKO_IO28	-	14P/HSI1
C12	BK0_IO29	-	14N/HSI1
D12	BKO_IO30	HSI1B_SOUTP	15P/HSI1
C11	BK0_IO31	HSI1B_SOUTN	15N/HSI1
A12	BK0_IO32	-	16P/HSI1
A13	BK0_IO33	-	16N/HSI1
B13	BK0_IO34	HSI1B_SINP	17P/HSI1
-	GND (Bank 0)	-	-
B12	BK0_IO35	HSI1B_SINN	17N/HSI1
E14	BK0_IO36	-	18P/HSI1

ispXPGA Logic Signal Connections: 680-Ball fpBGA (Cont.)

LFX1200			
680-Ball fpBGA	Signal Name	Second Function	LVDS Pair/sysHSI Reserved ${ }^{1}$
D14	BK0_IO37	-	18N/HSI1
C13	BK0_IO38	HSI2A_SOUTP	19P/HSI1
D13	BK0_IO39	HSI2A_SOUTN	19N/HSI1
B14	BK0_IO40	-	20P/HSI1
A14	BK0_IO41	-	20N/HSI1
C15	BKO_IO42	HSI2A_SINP	21P/HSI2
-	GND (Bank 0)	-	- -
D15	BK0_IO43	HSI2A_SINN	21N/HSI2
A15	BKO_IO44	-	22P/HSI2
C16	BK0_IO45	-	22N/HSI2
B15	BK0_IO46	HSI2B_SOUTP	23P/HS12
B16	BK0_IO47	HSI2B_SOUTN	23N/HSI2
A16	BK0_IO48		24P/HSI2
B17	BK0_IO49	-	24N/HSI2
D16	BK0_IO50	HSI2B_SINP	25P/HSI2
-	GND (Bank 0)	- -	-
E16	BK0_IO51	HSI2B_SINN	25N/HSI2
D17	BK0_IO52	\bigcirc -	26P/HSI2
C17	BK0_IO53	-	26N/HSI2
A18	BK0_IO54	PLL_RST0	27P/HSI2
D18	BK0_1055	PLL_RST1	27N/HSI2
A17	BKO_IO56		28P/HSI2
E19	BK0_IO57	-	28N/HSI2
A19	BKO_IO58	PLL_FBKO	29P
-	GND (Bank 0)	-	-
B19	BK0_1O59	PLL_FBK1	29N
C18	BK0_IO60	CLK_OUT0	30P
B18	BK0_IO61	CLK_OUT1	30N
-	GND (Bank 0)	-	-
D19	GCLKO	-	LVDS PairOP
C19	GCLK1	-	LVDS PairON
E20	VCCPO	-	-
A21	GNDPO	-	-
B21	GCLK2	-	LVDS Pair1P
C21	GCLK3	-	LVDS Pair1N
B23	BK1_IO0	CLK_OUT2	31P
C23	BK1_IO1	CLK_OUT3	31 N
B22	BK1_IO2	SS_CLKOUTOP	32P
-	GND (Bank 1)	-	-
C22	BK1_IO3	SS_CLKOUTON	32N
D21	BK1_IO4	PLL_FBK2	33P
E21	BK1_IO5	PLL_FBK3	33N
B24	BK1_IO6	SS_CLKINOP	34P

ispXPGA Logic Signal Connections: 680-Ball fpBGA (Cont.)

LFX1200			
680-Ball fpBGA	Signal Name	Second Function	LVDS Pair/sysHSI Reserved ${ }^{1}$
C24	BK1_IO7	SS_CLKINON	34 N
A22	BK1_IO8	-	35 P
D22	BK1_IO9	-	35 N
A23	BK1_IO10	-	36P
-	GND (Bank 1)	-	$\square \quad-$
B25	BK1_IO11	-	36 N
D23	BK1_IO12	PLL_RST2	37P
A24	BK1_IO13	PLL_RST3	37N
A25	BK1_IO14	-	38P
E24	BK1_IO15	-	38N
D24	BK1_IO16		39 P
A26	BK1_IO17		39N
D25	BK1_IO18		40P
-	GND (Bank 1)		-
C25	BK1_IO19	-	40N
B26	BK1_IO20	-	41P/HSI3
B27	BK1_IO21	-	- 41N/HSI3
D26	BK1_IO22	- -	42P/HSI3
A27	BK1_IO23	-	42N/HSI3
A28	BK1_IO24		43P/HSI3
E26	BK1_1025		43N/HSI3
C27	BK1_IO26	HSI3A_SOUTP	44P/HSI3
-	GND (Bank 1)	-	-
D27	BK1_IO27	HSI3A_SOUTN	44N/HSI3
B28	BK1 1028	--	45P/HSI3
A30	BK1_1O29	-	45N/HSI3
C28	BK1_IO30	HSI3A_SINP	46P/HSI3
D28	BK1_IO31	HSI3A_SINN	46N/HSI3
A31	BK1_IO32	-	47P/HSI3
B30	BK1_1033	-	47N/HSI3
E28	BK1_IO34	HSI3B_SOUTP	48P/HSI3
-	GND (Bank 1)	-	-
- D29	BK1_IO35	HSI3B_SOUTN	48N/HSI3
C29	BK1_1O36	-	49P/HSI4
B31	BK1_IO37	-	49N/HSI4
D30	BK1_IO38	HSI3B_SINP	50P/HSI4
E30	BK1_IO39	HSI3B_SINN	50N/HSI4
A32	BK1_IO40	-	51P/HSI4
C31	BK1_IO41	-	51N/HSI4
D31	BK1_IO42	HSI4A_SOUTP	52P/HSI4
-	GND (Bank 1)	-	-
C32	BK1_IO43	HSI4A_SOUTN	52N/HSI4
B32	BK1_IO44	-	53P/HSI4

ispXPGA Logic Signal Connections: 680-Ball fpBGA (Cont.)

LFX1200			
680-Ball fpBGA	Signal Name	Second Function	LVDS Pair/sysHSI Reserved ${ }^{1}$
A33	BK1_IO45	-	53N/HSI4
C33	BK1_IO46	HSI4A_SINP	54P/HSI4
B33	BK1_IO47	HSI4A_SINN	54N/HSI4
A34	BK1_IO48	-	55P/HSI4
A35	BK1_IO49	VREF1	55N/HSI4
D32	BK1_IO50	HSI4B_SOUTP	56P/HSI4
-	GND (Bank 1)	-	- -
D33	BK1_IO51	HSI4B_SOUTN	56N/HSI4
E32	BK1_IO52	-	57P
C34	BK1_IO53	-	57N
B34	BK1_IO54	HSI4B_SINP	58 P
B35	BK1_IO55	HSI4B_SINN	58N
A36	BK1_IO56		59 P
D34	BK1_IO57	-	59N
C35	BK1_IO58		60P
-	GND (Bank 1)	-	-
E34	BK1_IO59	-	> 60N
B36	BK1_IO60	- -	61P
C36	BK1_IO61	-	61 N
D39	TCK		-
D37	TMS		-
D38	TOE	-	-
E37	BK2_100	\cdots	62P
F35	BK2_IO1	-	62N
E39	BK2_102		63 P
-	GND (Bank 2)	-	-
F39	BK2_IO3	-	63N
F36	BK2_IO4	-	64P
E38	BK2_105	-	64N
G38	BK2_106	-	65P
F37	BK2_107	-	65N
G36	BK2 IO8	-	66P
G39	BK2_IO9	-	66N
H35	BK2_1010	-	67P
-	GND (Bank 2)	-	-
F38	BK2_IO11	-	67N
J37	BK2_IO12	VREF2	68P
H36	BK2_IO13	-	68 N
G37	BK2_IO14	-	69P
H37	BK2_IO15	-	69N
H39	BK2_IO16	-	70P
K35	BK2_IO17	-	70N
J36	BK2_IO18	-	71P

ispXPGA Logic Signal Connections: 680-Ball fpBGA (Cont.)

LFX1200			
680-Ball fpBGA	Signal Name	Second Function	LVDS Pair/sysHSI Reserved ${ }^{1}$
-	GND (Bank 2)	-	-
K36	BK2_IO19	-	71 N
H38	BK2_IO20	-	72P
J38	BK2_IO21	-	72N
J39	BK2_IO22	-	73 P
L36	BK2_IO23	-	-73N
K38	BK2_IO24	-	74P
M36	BK2_IO25	-	74N
L37	BK2_IO26	-	75P
-	GND (Bank 2)	-	
K39	BK2_IO27		75 N
L38	BK2_IO28	-	76 P
P35	BK2_IO29		76 N
N36	BK2_IO30	-	77 P
M37	BK2_IO31	-	77N
L39	BK2_IO32	-	-78P
M38	BK2_IO33	-	- 78 N
M39	BK2_IO34	\bigcirc -	79P
-	GND (Bank 2)	-	-
P36	BK2_IO35		79N
R36	BK2_1036		80P
N37	BK2_IO37	-	80N
P38	BK2_IO38	-	81P
T35	BK2_1039		81N
R37	BK2_1040		82P
R38	BK2_1041	-	82N
P39	BK2_IO42	-	83P
-	GND (Bank 2)	-	-
R39	BK2_1043	-	83N
T38	BK2_1044	-	84P
T36	BK2_1045	-	84N
- T37	BK2 1046	-	85P
U36	BK2_1047	-	85N
U37	BK2_1048	-	86P
T39	BK2_IO49	-	86N
V36	BK2_IO50	-	87P
-	GND (Bank 2)	-	-
U38	BK2_IO51	-	87N
U39	BK2_IO52	-	88P
V38	BK2_IO53	-	88N
V37	BK2_IO54	-	89P
W36	BK2_IO55	-	89N
W35	BK2_IO56	-	90P

ispXPGA Logic Signal Connections: 680-Ball fpBGA (Cont.)

LFX1200			
680-Ball fpBGA	Signal Name	Second Function	LVDS Pair/sysHSI Reserved ${ }^{1}$
V39	BK2_IO57	-	90N
W37	BK2_IO58	-	91P
-	GND (Bank 2)	-	
W38	BK2_IO59	-	91 N
W39	BK2_IO60	-	-92P
AA39	BK2_IO61	-	92N
-	GND (Bank 2)	-	
-	GND (Bank 3)	-	
AA38	BK3_IO0	-	93P
Y35	BK3_IO1	-	93N
AA37	BK3_IO2		94 P
-	GND (Bank 3)		
AA35	BK3_IO3		94 N
AB39	BK3_IO4	-	95P
AB38	BK3_IO5		95 N
AA36	BK3_IO6	-	- 96P
AB37	BK3_IO7	-	- 96N
AC39	BK3_IO8	- -	97P
AC38	BK3_IO9	-	97N
AB36	BK3_IO10		98P
-	GND (Bank 3)		-
AC37	BK3_1011	-	98N
AC36	BK3_IO12	-	99P
AD39	BK3_1013		99N
AD37	BK3_1014		100P
AD36	BK3_1015	-	100N
AD35	BK3_IO16	-	101P
AE38	BK3_IO17	-	101N
AD38	BK3_IO18	-	102P
-	GND (Bank 3)	-	-
AE39	BK3_1019	-	102N
AF38	BK3_1020	-	103P
AF37	BK3_IO21	-	103N
AF39	BK3_1022	-	104P
AE36	BK3_IO23	-	104N
AF36	BK3_IO24	-	105P
AG38	BK3_IO25	-	105N
AG39	BK3_IO26	-	106P
-	GND (Bank 3)	-	-
AG37	BK3_IO27	-	106N
AH37	BK3_1O28	-	107P
AH38	BK3_IO29	-	107N
AG36	BK3_IO30	-	108P

ispXPGA Logic Signal Connections: 680-Ball fpBGA (Cont.)

LFX1200			
680-Ball fpBGA	Signal Name	Second Function	LVDS Pair/sysHSI Reserved ${ }^{1}$
AH39	BK3_IO31	-	108N
AK39	BK3_IO32	-	109 P
AK38	BK3_IO33	-	109N
AF35	BK3_IO34	-	110P
-	GND (Bank 3)	-	
AJ37	BK3_IO35	-	110 N
AH36	BK3_IO36	-	111P
AM39	BK3_IO37	-	111N
AL38	BK3_IO38	-	112P
AL39	BK3_IO39	-	112 N
AJ36	BK3_IO40		113 P
AH35	BK3_IO41	-	113 N
AL37	BK3_IO42		114P
-	GND (Bank 3)		-
AN38	BK3_IO43	-	- 114 N
AM38	BK3_IO44	-	-115P
AK36	BK3_IO45	-	> 115N
AM37	BK3_IO46		116P
AN37	BK3_IO47	-	116N
AN39	BK3_1O48		117P
AL36	BK3_1049	VREF3	117N
AK35	BK3_1O50	-	118P
-	GND (Bank 3)	$-$	-
AP39	BK3_IO51		118N
AM36	BK3_1052		119P
AP38	BK3_1053	-	119 N
AR39	BK3_IO54	-	120P
AN36	BK3_IO55	-	120N
AM35	BK3_IO56	-	121P
AR38	BK3_1057	-	121N
AP37	BK3_1058	-	122P
- -	GND (Bank 3)	-	-
AT39	BK3_1059	-	122N
AR37	BK3_1060	-	123P
AP36	BK3_IO61	-	123N
AT38	GSR	-	-
AP35	DXP	-	-
AT37	DXN	-	-
AU36	BK4_IO0	-	124P
AV36	BK4_IO1	-	124N
AR34	BK4_IO2	-	125P
-	GND (Bank 4)	-	-
AW36	BK4_IO3	-	125N

ispXPGA Logic Signal Connections: 680-Ball fpBGA (Cont.)

LFX1200			
680-Ball fpBGA	Signal Name	Second Function	LVDS Pair/sysHSI Reserved ${ }^{1}$
AW35	BK4_IO4	-	126P
AV35	BK4_IO5	-	126 N
AV34	BK4_IO6	HSI5A_SINP	127 P
AU34	BK4_IO7	HSI5A_SINN	127 N
AT34	BK4_IO8	-	128 P
AU35	BK4_IO9	-	128N
AT33	BK4_IO10	HSI5A_SOUTP	129P/HSI5
-	GND (Bank 4)	-	
AU33	BK4_IO11	HSI5A_SOUTN	129N/HSI5
AW34	BK4_IO12	VREF4	130P/HSI5
AV33	BK4_IO13	-	130N/HSI5
AR32	BK4_IO14	HSI5B_SINP	131P/HSI5
AT32	BK4_IO15	HSI5B_SINN	$131 \mathrm{~N} / \mathrm{HS} 15$
AU32	BK4_IO16		132P/HSI5
AW33	BK4_IO17	-	132N/HSI5
AV32	BK4_IO18	HSI5B_SOUTP	133P/HSI5
-	GND (Bank 4)	-	-
AV31	BK4_IO19	HSI5B_SOUTN	133N/HSI5
AU31	BK4_IO20	-	134P/HSI5
AW32	BK4_IO21		134N/HSI5
AR30	BK4_1022	HSI6A_SINP	135P/HSI5
AT31	BK4_IO23	HSI6A_SINN	135N/HSI5
AW31	BK4_IO24	-	136P/HSI5
AV30	BK4_IO25	- -	136N/HSI5
AT30	BK4_1O26	HSI6A_SOUTP	137P/HSI6
-	GND (Bank 4)	-	-
AT29	BK4_IO27	HSI6A_SOUTN	137N/HSI6
AW30	BK4_IO28	-	138P/HSI6
AU29	BK4_IO29	-	138N/HSI6
AT28	BK4_1030	HSI6B_SINP	139P/HSI6
AU28	BK4_IO31	HSI6B_SINN	139N/HSI6
AV28	BK4_IO32	-	140P/HSI6
AT27	BK4_IO33	$\stackrel{-}{ }$	140N/HSI6
AU27	BK4_IO34	HSI6B_SOUTP	141P/HSI6
-	GND (Bank 4)	-	-
AV27	BK4_IO35	HSI6B_SOUTN	141N/HSI6
AW28	BK4_IO36	-	142P/HSI6
AR26	BK4_IO37	-	142N/HSI6
AW27	BK4_IO38	-	143P/HSI6
AT26	BK4_IO39	-	143N/HSI6
AV26	BK4_IO40	-	144P/HSI6
AR24	BK4_IO41	-	144N/HSI6
AT25	BK4_IO42	-	145P/HSI6

ispXPGA Logic Signal Connections: 680-Ball fpBGA (Cont.)

LFX1200			
680-Ball fpBGA	Signal Name	Second Function	LVDS Pair/sysHSI Reserved ${ }^{1}$
-	GND (Bank 4)	-	-
AW26	BK4_IO43	-	145 N
AV25	BK4_IO44	-	146P
AT24	BK4_IO45	-	146 N
AU24	BK4_IO46	-	147P
AU25	BK4_IO47	-	147 N
AW25	BK4_IO48	PLL_RST4	148P
AW24	BK4_IO49	PLL_RST5	148N
AU23	BK4_IO50	-	149P
-	GND (Bank 4)	-	
AT23	BK4_IO51		149 N
AV24	BK4_IO52	-	150P
AW23	BK4_IO53		150 N
AV23	BK4_IO54	SS_CLKIN1P	151P
AU22	BK4_IO55	SS_CLKIN1N	151 N
AR21	BK4_IO56	PLL_FBK4	-152P
AT22	BK4_IO57	PLL_FBK5	- 152 N
AV22	BK4_IO58	SS_CLKOUT1P	153P
-	GND (Bank 4)	-	-
AV21	BK4_IO59	SS_CLKOUT1N	153N
AT21	BK4_1060	CLK_OUT4	154P
AU21	BK4_IO61	CLK_OUT5	154N
-	GND (Bank 4)	\cdots	-
AT19	GCLK4		LVDS Pair2P
AU19	GCLK5		LVDS Pair2N
AW22	VCCP1	-	-
AR20	GNDP1	-	-
AU18	GCLK6	-	LVDS Pair3P
AT18	GCLK7	-	LVDS Pair3N
-	GND (Bank 5)	-	-
AV17	BK5_100	CLK_OUT6	155P
AV18	BK5 IO1	CLK_OUT7	155 N
AW21	BK5_102	PLL_FBK6	156P
-	GND (Bank 5)	-	-
AV19	BK5_IO3	PLL_FBK7	156N
AR19	BK5_IO4	-	157P/HSI7
AW19	BK5_IO5	-	157N/HSI7
AW18	BK5_IO6	PLL_RST6	158P/HSI7
AW17	BK5_IO7	PLL_RST7	158N/HSI7
AT17	BK5_IO8	-	159P/HSI7
AV16	BK5_IO9	-	159N/HSI7
AU17	BK5_IO10	HSITA_SINP	160P/HSI7
-	GND (Bank 5)	-	-

ispXPGA Logic Signal Connections: 680-Ball fpBGA (Cont.)

LFX1200			
680-Ball fpBGA	Signal Name	Second Function	LVDS Pair/sysHSI Reserved ${ }^{1}$
AT16	BK5_IO11	HSI7A_SINN	160N/HSI7
AW16	BK5_IO12	-	161P/HSI7
AU16	BK5_IO13	-	$161 \mathrm{~N} / \mathrm{HS} 17$
AV14	BK5_IO14	HSI7A_SOUTP	162P/HSI7
AV15	BK5_IO15	HSITA_SOUTN	162N/HSI7
AU15	BK5_IO16	-	163P/HSI7
AW15	BK5_IO17	-	163N/HSI7
AT15	BK5_IO18	HSI7B_SINP	164P/HSI7
-	GND (Bank 5)	-	
AR16	BK5_IO19	HSI7B_SINN	164N/HSI7
AW14	BK5_IO20	-	165P/HSI8
AW13	BK5_IO21	-	165N/HSI8
AR14	BK5_IO22	HSITB_SOÚTP	166P/HS18
AT14	BK5_IO23	HSI7B_SOUTN	166N/HSI8
AT13	BK5_IO24		167P/HSI8
AV13	BK5_IO25	-	167N/HSI8
AU12	BK5_IO26	HSI8A_SINP	168P/HSI8
-	GND (Bank 5)	- -	-
AU13	BK5_IO27	HSI8A_SINN	168N/HSI8
AV12	BK5_IO28		169P/HSI8
AT12	BK5_1029		169N/HSI8
AR12	BK5_1O30	HSI8A_SOUTP	170P/HSI8
AT11	BK5_IO31	HSIBA SOUTN	170N/HSI8
AW12	BK5_IO32		171P/HSI8
AU11	BK5_1033	-	171N/HSI8
AV9	BK5_1O34	HSI8B_SINP	172P/HSI8
	GND (Bank 5)	- -	-
AV10	BK5_IO35	HSI8B_SINN	172N/HSI8
AW10	BK5_IO36	-	173P/HSI9
AW9	BK5_1037	-	173N/HSI9
AT10	BK5_1038	HSI8B_SOUTP	174P/HSI9
AU9	BK5_IO39	HSI8B_SOUTN	174N/HSI9
AT9	BK5_1040	-	175P/HSI9
AR10	BK5_IO41	-	175N/HSI9
AU8	BK5_IO42	HSI9A_SINP	176P/HSI9
-	GND (Bank 5)	-	-
AV8	BK5_IO43	HSI9A_SINN	176N/HSI9
AW8	BK5_IO44	-	177P/HSI9
AW7	BK5_IO45	-	177N/HSI9
AU7	BK5_IO46	HSI9A_SOUTP	178P/HSI9
AT8	BK5_IO47	HSI9A_SOUTN	178N/HSI9
AV7	BK5_IO48	-	179P/HSI9
AW6	BK5_IO49	VREF5	179N/HSI9

ispXPGA Logic Signal Connections: 680-Ball fpBGA (Cont.)

LFX1200			
680-Ball fpBGA	Signal Name	Second Function	LVDS Pair/sysHSI Reserved ${ }^{1}$
AU6	BK5_IO50	HSI9B_SINP	180P/HSI9
-	GND (Bank 5)	-	-
AV6	BK5_IO51	HSI9B_SINN	180N/HS19
AR8	BK5_IO52	-	181P
AT7	BK5_IO53	-	181 N
AU5	BK5_IO54	HSI9B_SOUTP	- 182P
AV5	BK5_IO55	HSI9B_SOUTN	182N
AW5	BK5_IO56	-	183P
AW4	BK5_IO57	-	183N
AT6	BK5_IO58	-	184 P
-	GND (Bank 5)	-	\square
AV4	BK5_IO59	-	184 N
AR6	BK5_IO60	-	185P
AU4	BK5_IO61		185 N
AT1	CFG0		- -
AT3	DONE	-	$\bigcirc-$
AT2	PROGRAMb	-)
AP4	BK6_IO0	INITb	186P
AP5	BK6_IO1	CCLK	186N
AR3	BK6_IO2		187P
-	GND (Bank 6)		-
AR2	BK6_IO3	-	187N
AP3	BK6_IO4	CSb	188P
AR1	BK6_IO5	Read	188N
AP2	BK6-106	-	189P
AP1	BK6_107	-	189N
AN4	BK6_IO8		190P
AM5	BK6_IO9	-	190N
AN3	BK6_1010	-	191P
-	GND (Bank 6)	-	-
AN2	BK6_1011	-	191N
- AM4	BK6_IO12	VREF6	192P
AM3	BK6_1013	-	192N
AN1	BK6_IO14	-	193P
AM2	BK6_IO15	-	193N
AL4	BK6_IO16	-	194P
AK5	BK6_IO17	-	194N
AM1	BK6_IO18	-	195P
-	GND (Bank 6)	-	-
AK4	BK6_IO19	-	195N
AL3	BK6_IO20	-	196P
AL2	BK6_IO21	-	196N
AL1	BK6_IO22	-	197P

ispXPGA Logic Signal Connections: 680-Ball fpBGA (Cont.)

LFX1200			
680-Ball fpBGA	Signal Name	Second Function	LVDS Pair/sysHSI Reserved ${ }^{1}$
AK2	BK6_IO23	-	197N
AK1	BK6_IO24	-	198 P
AJ4	BK6_IO25	-	198 N
AJ3	BK6_IO26	-	199P
-	GND (Bank 6)	-	$\checkmark \quad-$
AH4	BK6_IO27	-	-199N
AH3	BK6_IO28	-	200P
AH2	BK6_IO29	-	200N
AH1	BK6_IO30	-	201P
AG4	BK6_IO31	-	201 N
AF5	BK6_IO32	DATA7	202P
AG3	BK6_IO33	DATA6	202N
AG2	BK6_IO34	-	203P
-	GND (Bank 6)		-
AF4	BK6_IO35	-	- 203 N
AF3	BK6_IO36	DATA5	- 204P
AG1	BK6_IO37	DATA4	- 204N
AE2	BK6_IO38	-	205P
AF1	BK6_IO39	-	205N
AF2	BK6_IO40		206P
AE1	BK6_1041		206N
AE4	BK6_1O42	-	207P
-	GND (Bank 6)	\cdots	-
AD4	BK6_1043	- -	207N
AD5	BK6_1044		208P
AD3	BK6_1O45	-	208N
AD2	BK6_IO46		209P
AD1	BK6_IO47	-	209N
AC4	BK6_IO48	-	210P
AC3	BK6_1049	-	210N
AC2	BK6_1050	DATA3	211P
- -	GND (Bank 6)	-	-
AC1	BK6_1051	DATA2	211N
AB3	BK6_IO52	-	212P
AB4	BK6_IO53	-	212N
AB2	BK6_IO54	DATA1	213P
AB1	BK6_IO55	DATAO	213N
AA3	BK6_IO56	-	214P
AA4	BK6_IO57	-	214N
AA5	BK6_IO58	-	215P
-	GND (Bank 6)	-	-
AA2	BK6_IO59	-	215N
AA1	BK6_IO60	-	216P

ispXPGA Logic Signal Connections: 680-Ball fpBGA (Cont.)

LFX1200			
680-Ball fpBGA	Signal Name	Second Function	LVDS Pair/sysHSI Reserved ${ }^{1}$
Y5	BK6_IO61	-	216N
-	GND (Bank 6)	-	-
-	GND (Bank 7)	-	
W3	BK7_IO0	-	217P
W1	BK7_IO1	-	217 N
W2	BK7_IO2	-	- 218 P
-	GND (Bank 7)	-	
W4	BK7_IO3	-	218N
V1	BK7_IO4	-	219P
V2	BK7_IO5	-	219 N
V3	BK7_IO6	-	220P
V4	BK7_IO7	-	220 N
W5	BK7_IO8		221P
U1	BK7_IO9	-	221 N
U2	BK7_IO10	-	222 P
-	GND (Bank 7)	-	- -
U3	BK7_IO11	-	- 222 N
U4	BK7_IO12	-	223P
T1	BK7_IO13	-	223N
T2	BK7_IO14		224P
T3	BK7_1015		224N
R1	BK7_1016	-	225P
R2	BK7_1017	-	225N
T4	BK7_1018		226P
-	GND (Bank 7)	-	-
P1	BK7_1019	-	226N
P2	BK7_IO20	-	227P
P3	BK7_IO21	-	227N
R4	BK7_IO22	-	228P
T5	BK7_1023	-	228N
M1	BK7_1024	-	229P
M2	BK7_1025	-	229N
N3	BK7_IO26	-	230P
-	GND (Bank 7)	-	-
P4	BK7_IO27	-	230N
L1	BK7_IO28	-	231P
M3	BK7_IO29	-	231N
L2	BK7_IO30	-	232P
N4	BK7_IO31	-	232N
K1	BK7_IO32	-	233P
K2	BK7_IO33	-	233N
P5	BK7_IO34	-	234P
-	GND (Bank 7)	-	-

ispXPGA Logic Signal Connections: 680-Ball fpBGA (Cont.)

LFX1200			
680-Ball fpBGA	Signal Name	Second Function	LVDS Pair/sysHSI Reserved ${ }^{1}$
L3	BK7_IO35	-	234N
J1	BK7_IO36	-	235 P
J2	BK7_IO37	-	235 N
M4	BK7_IO38	-	236P
H1	BK7_IO39	-	236N
J3	BK7_IO40	-	237P
L4	BK7_IO41	-	- 237 N
M5	BK7_IO42	-	238P
-	GND (Bank 7)	-	- -
H2	BK7_IO43	-	238N
K4	BK7_IO44		239P
G1	BK7_IO45	-	239 N
H3	BK7_IO46	-	240 P
J4	BK7_IO47	VREF7	240 N
K5	BK7_IO48	-	- 241 P
G3	BK7_IO49	-	- 241 N
H4	BK7_IO50	-	- 242 P
-	GND (Bank 7)	-	- -
F2	BK7_IO51	-	242N
G2	BK7_IO52		243P
H5	BK7_1053		243N
F3	BK7_IO54	-	244P
F1	BK7_1055		244N
G4	BK7_IO56		245P
E1	BK7_1057		245N
F4	BK7 _1058	-	246P
-	GND (Bank 7)		-
E2	BK7_IO59	-	246N
F5	BK7_1060	-	247P
E3	BK7_1061	-	247N
D2	TDO	-	-
D3	VCCJ	-	-
D1	TDI		-

1. If a sysHSI Block is used, the indicated sysHSI reserved pins are unavailable for general purpose I/O use.

ispXPGA Logic Signal Connections: 900-Ball fpBGA

$\underset{\text { Ball }}{900 \mathrm{fpBA}}$	LFX1200			LFX500		
	Signal Name	Second Function	LVDS Pair/ sysHSI Reserved'	Signal Name	Second Function	LVDS Pair/ sysHSI Reserved ${ }^{1}$
D3	BKO_IO0	-	OP	NC	,	-
E3	BK0_IO1	-	ON	NC		-
C2	BKO_IO2	-	1P	NC	,	-
-	GND (Bank 0)	-	-	-		-
C1	BK0_IO3	-	1 N	NC		-
E4	BKO_IO4	-	2 P	BKO_100		OP
F5	BK0_IO5	-	2N	BK0_IO1		ON
D2	BKO_IO6	HSIOA_SOUTP	3 P	BKO_IO2	HSIOA_SOUTP	1P/HSIO
-	-	-	-	GND (Bank 0)		-
D1	BK0_IO7	HSIOA_SOUTN	3N	BK0_103	HSIOA_SOUTN	1N/HSIO
F4	BK0_IO8	-	4P	BKO_IO4		2P/HSIO
F3	BK0_IO9	-	4N	BK0_IO5		2N/HSIO
E2	BK0_IO10	HSIOA_SINP	5P/HSIO	BK0_IO6	HSIOA_SINP	3P/HSIO
-	GND (Bank 0)	-		-	-	-
E1	BK0_IO11	HSIOA_SINN	5N/HSIO	BK0_IO7	HSIOA SINN	3N/HSIO
G6	BK0_IO12	VREFO	6P/HSIO	BKO_IO9	VREFO	4N/HSIO
G5	BK0_IO13	-	6N/HSIO	BKO_IO8		4P/HSIO
F1	BK0_IO14	HSIOB SOUTP	7P/HSIO	NC	-	-
F2	BK0_IO15	HSIOB_SOUTN	7N/HSIO	NC	-	-
G4	BKO_IO16		8P/HSIO	NC	-	-
G3	BK0_IO17	-	8N/HSIO	NC	-	-
G2	BK0_1O18	HSIOB_SINP	9P/HSIO	NC	-	-
-	GND (Bank 0)	- -		-	-	-
G1	BK0_1019	HSIOB_SINN	9N/HSIO	NC	-	-
H3	BKO_1020	-	10P/HSIO	NC	-	-
H4	BK0_1021		10N/HSIO	NC	-	-
H 1	BKO_1O22	HSIIA_SOUTP	11P/HSIO	NC	-	-
H2	BKO_IO23	HSIIA_SOUTN	11N/HSIO	NC	-	-
5	BK0_IO24		12P/HSIO	NC	-	-
J6	BKO_IO25		12N/HSIO	NC	-	-
J1	BK0_1O26	HSI1A_SINP	13P/HSI1	NC	-	-
	GND (Bank 0)	-	-	-	-	-
J2	BKO_IO27	HSIIA_SINN	13N/HSI1	NC	-	-
J4	BKO_IO28	-	14P/HSI1	NC	-	-
J5	BKO_1O29	-	14N/HSI1	NC	-	-
K1	BK0_1030	HSI1B_SOUTP	15P/HSI1	BK0_IO10	HSIOB_SOUTP	5P/HSIO
-	-	-	-	GND (Bank 0)	-	-
K2	BK0_IO31	HSI1B_SOUTN	15N/HSI1	BK0_IO11	HSIOB_SOUTN	5N/HSIO
K5	BK0_IO32	-	16P/HSI1	BK0_IO12	-	6P/HSIO
K4	BK0_IO33	-	16N/HSI1	BK0_IO13	-	6N/HSIO
L1	BK0_IO34	HSI1B_SINP	17P/HSI1	BK0_IO14	HSIOB_SINP	7P/HSIO
-	GND (Bank 0)	-	-	-	-	-

ispXPGA Logic Signal Connections: 900-Ball fpBGA (Cont.)

$\underset{\text { Ball }}{900 \mathrm{fpBGA}}$	LFX1200			LFX500		
	Signal Name	Second Function	LVDS Pair/ sysHSI Reserved	Signal Name	Second Function	LVDS Pair/ sysHSI Reserved
L2	BK0_IO35	HSI1B_SINN	17N/HSI1	BK0_IO15	HSIOB_SINN	7N/HSIO
L6	BK0_IO36	-	18P/HSI1	BK0_IO16		8P/HSIO
L5	BK0_IO37	-	18N/HSI1	BK0_IO17		8N/HSIO
M1	BK0_IO38	HSI2A_SOUTP	19P/HSI1	BK0_IO18	HSI1A_SOUTP	9P/HSI1
-	-	-	-	GND (Bank 0)		-
M2	BK0_IO39	HSI2A_SOUTN	19N/HSI1	BK0_IO19	HSI1A_SOUTN	9N/HSI1
L3	BK0_IO40	-	20P/HSI1	BK0_1O20	-	10P/HSI1
L4	BK0_IO41	-	20N/HSI1	BKO_IO21	,	10N/HSI1
M6	BK0_IO42	HSI2A_SINP	21P/HSI2	BKO_IO22	HSI1A_SINP	11P/HSI1
-	GND (Bank 0)	-	-			
M5	BK0_IO43	HSI2A_SINN	21N/HSI2	BKO_IO23	HSIIA_SINN	11N/HSI1
M4	BK0_IO44	-	22P/HSI2	BKO_IO24		12P/HSI1
M3	BK0_IO45	-	22N/HSI2	BK0_IO25		12N/HSI1
N1	BKO_IO46	HSI2B_SOUTP	23P/HSI2	BK0_IO26	HSI1B_SOUTP	13P/HSI1
-	-	-		GND (Bank 0)		-
N2	BK0_IO47	HSI2B_SOUTN	23N/HSI2	BKO_IO27	HSI1B_SOUTN	13N/HSI1
N7	BK0_IO48		24P/HSI2	BKO_1O28	\square	14P/HSI1
N6	BK0_IO49		24N/HSI2	BKO_IO29	-	14N/HSI1
P1	BKO_IO50	HSI2B_SINP	25P/HSI2	BK0_1030	HSI1B_SINP	15P/HSI1
-	GND (Bank 0)			-	-	-
P2	BK0_IO51	HSI2B_SINN	25N/HSI2	BKO_IO31	HSI1B_SINN	15N/HSI1
N3	BK0_1O52	- -	26P/HSI2	BK0_IO32	-	16P/HSI1
N4	BK0_1053	-	26N/HSI2	BK0_IO33	-	16N/HSI1
P6	BKO_1054	PLL_RST0	27P/HSI2	BK0_IO38	PLL_RST0	19P
P5	BKO_IO55	PLL_RST1	27N/HSI2	BK0_IO35	PLL_RST1	17N
P3	BK0_1056	\square	28P/HSI2	BK0_IO36	-	18P
P4	BKO_lO57		28N/HSI2	BK0_IO39	-	19N
R7	BKO_IO58	PLL FBKO	29P	BK0_IO34	PLL_FBK0	17P
	GND (Bank 0)		-	GND (Bank 0)	-	-
R6	BK0_IO59	PLL_FBK1	29N	BK0_IO37	PLL_FBK1	18 N
R1	BKO_1060	CLK_OUTO	30P	BK0_IO40	CLK_OUT0	20P
	-	-	-	GND (Bank 0)	-	-
R2	BK0_IO61	CLK_OUT1	30N	BK0_IO41	CLK_OUT1	20N
-	GND (Bank 0)	-	-	-	-	-
R3	GCLKO	-	LVDS PairOP	GCLKO	-	LVDS PairOP
R4	GCLK1	-	LVDS PairON	GCLK1	-	LVDS PairON
R5	VCCPO	-	-	VCCPO	-	-
T3	GNDP0	-	-	GNDP0	-	-
T4	GCLK2	-	LVDS Pair1P	GCLK2	-	LVDS Pair1P
T5	GCLK3	-	LVDS Pair1N	GCLK3	-	LVDS Pair1N
-	GND (Bank 1)	-	-	-	-	-
T2	BK1_IO0	CLK_OUT2	31P	BK1_IO0	CLK_OUT2	21P

ispXPGA Logic Signal Connections: 900-Ball fpBGA (Cont.)

$\underset{\text { Ball }}{900 \mathrm{fpBGA}}$	LFX1200			LFX500		
	Signal Name	Second Function	LVDS Pair/ sysHSI Reserved	Signal Name	Second Function	LVDS Pair/ sysHSI Reserved
-	-	-	-	GND (Bank 1)	\square	-
T1	BK1_IO1	CLK_OUT3	31 N	BK1_IO1	CLK_OUT3	21N
U2	BK1_IO2	SS_CLKOUTOP	32P	BK1_IO2	SS_CLKOUTOP	22P
-	GND (Bank 1)	-	-	-		-
U1	BK1_IO3	SS_CLKOUTON	32N	BK1_IO3	SS_CLKOUTON	22N
U3	BK1_IO4	PLL_FBK2	33P	BK1_IO4	PLL_FBK2	23P
U4	BK1_IO5	PLL_FBK3	33N	BK1_IO5	PLL_FBK3	23N
V1	BK1_IO6	SS_CLKINOP	34P	BK1_IO10	SS_CLKINOP	26 P
V2	BK1_IO7	SS_CLKINON	34N	BK1_IO11	SS_CLKINON	26N
U5	BK1_IO8	-	35P	BK1_IO12		27P
U6	BK1_IO9	-	35 N	BK1_IO13		27N
V4	BK1_IO10	-	36 P	BK1_IO6		24P
-	GND (Bank 1)	-	-	GND (Bank 1)		-
V3	BK1_IO11	-	36 N	BK1_IO7	-	24N
V6	BK1_IO12	PLL_RST2	37 P	BK1_IO20	PLL_RST2	31P
V7	BK1_IO13	PLL_RST3	37N	BK1_1O21	PLL_RST3	31 N
W1	BK1_IO14		38 P	BK1_IO8	\checkmark	25P
W2	BK1_IO15		38 N	BK1_IO9	-	25N
W3	BK1_IO16	-	39P	BK1_IO14	-	28P
-	-			GND (Bank 1)	-	-
W4	BK1_IO17		39 N	BK1_IO15	-	28N
W5	BK1_1O18	-	40 P	BK1_IO16	-	29P
-	GND (Bank 1)	-		-	-	-
W6	BK1_1019	-	40 N	BK1_IO17	-	29N
Y6	BK1_IO20	-	41P/HSI3	NC	-	-
Y5	BK1_1O21		41N/HSI3	NC	-	-
Y4	BK1_IO22		42P/HSI3	NC	-	-
Y3	BK1_IO23		42N/HSI3	NC	-	-
AA5	- BK1_IO24		43P/HSI3	NC	-	-
AA4	BK1_IO25		43N/HSI3	NC	-	-
Y2	BK1_1026	HSI3A_SOUTP	44P/HSI3	BK1_IO18	HSI2A_SOUTP	30P
-	GND (Bank 1)		-	-	-	-
Y1	BK1_IO27	HSI3A_SOUTN	44N/HSI3	BK1_IO19	HSI2A_SOUTN	30N
AB7	BK1_IO28	-	45P/HSI3	NC	-	-
AB6	BK1_1O29	-	45N/HSI3	NC	-	-
AA2	BK1_IO30	HSI3A_SINP	46P/HSI3	BK1_IO22	HSI2A_SINP	32P
-	-	-	-	GND (Bank 1)	-	-
AA1	BK1_IO31	HSI3A_SINN	46N/HSI3	BK1_IO23	HSI2A_SINN	32N
AB5	BK1_IO32	-	47P/HSI3	NC	-	-
AB4	BK1_IO33	-	47N/HSI3	NC	-	-
AB2	BK1_IO34	HSI3B_SOUTP	48P/HSI3	NC	-	-
-	GND (Bank 1)	-	-	-	-	-

ispXPGA Logic Signal Connections: 900-Ball fpBGA (Cont.)

$\underset{\text { Ball }}{900 \mathrm{fpBGA}}$	LFX1200			LFX500		
	Signal Name	Second Function	LVDS Pair/ sysHSI Reserved'	Signal Name	Second Function	LVDS Pair/ sysHSI Reserved
AB1	BK1_IO35	HSI3B_SOUTN	48N/HSI3	NC	D	-
AC6	BK1_IO36	-	49P/HSI4	NC		-
AC5	BK1_IO37	-	49N/HSI4	NC	-	-
AC2	BK1_IO38	HSI3B_SINP	50P/HSI4	NC		-
AC1	BK1_IO39	HSI3B_SINN	50N/HSI4	NC		-
AC4	BK1_IO40	-	51P/HSI4	NC		-
AC3	BK1_IO41	-	51N/HSI4	NC	-	-
AD2	BK1_IO42	HSI4A_SOUTP	52P/HSI4	NC	-	-
-	GND (Bank 1)	-	-			-
AD1	BK1_IO43	HSI4A_SOUTN	52N/HSI4	NC		
AD3	BK1_IO44	-	53P/HSI4	BK1_IO32		37P/HSI3
AD4	BK1_IO45	-	53N/HS14	BK1_IO33		37N
AE2	BK1_IO46	HSI4A_SINP	54P/HSI4	BK1_IO34		38P
AE1	BK1_IO47	HSI4A_SINN	54N/HSI4	BK1_IO35	-	38N
AD5	BK1_IO48	-	55P/HSI4	BK1_IO25		33N
AD6	BK1_IO49	VREF1	55N/HSI4	BK1_IO24	VREF1	33P
AF2	BK1_IO50	HSI4B_SOUTP	56P/HSI4	BK1_IO26	HSI2B_SOUTP	34P
-	GND (Bank 1)	-	\checkmark	- -	-	-
AF1	BK1_IO51	HSI4B_SOUTN	56N/HSI4	BK1_1027	HSI2B_SOUTN	34N
AE3	BK1_IO52	- -	57P	BK1_IO28	-	35P
AE4	BK1_IO53		57N	BK1_IO29	-	35N
AG1	BK1_IO54	HSI4B_SINP	58 P	BK1_IO30	HSI2B_SINP	36P
-	\square	-		GND (Bank 1)	-	-
AG2	BK1_1055	HSI4B_SINN	58 N	BK1_IO31	HSI2B_SINN	36N
AE5	BK1_IO56	-	59P	BK1_IO36	-	39P
AF4	BK1_1057		59N	BK1_IO37	-	39N
AH1	BK1_JO58		60P	BK1_IO38	-	40P
	GND (Bank 1)		-	GND (Bank 1)	-	-
AH2	BK1_IO59		60N	BK1_IO39	-	40N
AF3	BK1_IO60	-	61P	BK1_IO40	-	41P
AG3	BK1_1061	-	61 N	BK1_IO41	-	41 N
AH4	TCK	-	-	TCK	-	-
AJ3	TMS	-	-	TMS	-	-
AK3	TOE	-	-	TOE	-	-
AG5	BK2,100	-	62P	BK2_IO0	-	42P
AH5	BK2_1O1	-	62N	BK2_IO1	-	42N
AJ4	BK2_IO2	-	63P	BK2_IO2	-	43P
-	GND (Bank 2)	-	-	GND (Bank 2)	-	-
AK4	BK2_IO3	-	63N	BK2_IO3	-	43N
AG6	BK2_IO4	-	64P	BK2_IO4	-	44P
AH6	BK2_IO5	-	64N	BK2_IO5	-	44N
AJ5	BK2_IO6	-	65P	BK2_IO6	-	45P

ispXPGA Logic Signal Connections: 900-Ball fpBGA (Cont.)

$\underset{\text { Ball }}{900 \mathrm{fpBGA}}$	LFX1200			LFX500		
	Signal Name	Second Function	LVDS Pair/ sysHSI Reserved	Signal Name	Second Function	LVDS Pair/ sysHSI Reserved
AK5	BK2_IO7	-	65N	BK2_IO7		45N
AE7	BK2_IO8	-	66P	BK2_IO8		46P
AF7	BK2_IO9	-	66N	BK2_IO9		46N
AG7	BK2_IO10	-	67P	BK2_IO10		47P
-	GND (Bank 2)	-	-	GND (Bank 2)		-
AH7	BK2_IO11	-	67N	BK2_IO11		47N
AE8	BK2_IO12	VREF2	68P	BK2_1O21	VREF2	52 N
AF8	BK2_IO13	-	68 N	BK2_IO20	-	52 P
AJ6	BK2_IO14	-	69P	BK2_1012	-	48P
AK6	BK2_IO15	-	69N	BK2_IO13		48 N
AG8	BK2_IO16	-	70P	BK2_IO14		49P
AH8	BK2_IO17	-	70 N	BK2_IO15		49N
AJ7	BK2_IO18	-	1 P	BK2_IO16		50P
-	GND (Bank 2)	-	-	-	-	-
AK7	BK2_IO19	-	71 N	BK2_IO17		50N
AF9	BK2_IO20	-	72 P	BK2_1018	-	51P
-	-			GND (Bank 2)	-	-
AG9	BK2_IO21		72 N	BK2_IO19	-	51N
AJ8	BK2_IO22	-	73P	NC	-	-
AK8	BK2_IO23		73 N	NC	-	-
AD10	BK2_IO24		74 P	NC	-	-
AE10	BK2_1O25	-	74 N	NC	-	-
AJ9	BK2_1O26	-	75P	NC	-	-
-	GND (Bank 2)	-		-	-	-
AK9	BK2_IO27	-	75 N	NC	-	-
AF10	BK2_1O28		76 P	NC	-	-
AG10	BK2_1029		76N	NC	-	-
AK10	BK2_IO30		77P	NC	-	-
AJ10	BK2_IO31		77N	NC	-	-
AE11	BK2_IO32		78P	NC	-	-
AF11	BK2_1033	-	78N	NC	-	-
- AG11	BK2_IO34	-	79P	NC	-	-
-	GND (Bank 2)	-	-	-	-	-
AH11	BK2_1O35	-	79N	NC	-	-
AE12	BK2_1036	-	80P	NC	-	-
AF12	BK2_1O37	-	80N	NC	-	-
AJ11	BK2_IO38	-	81P	NC	-	-
AK11	BK2_IO39	-	81 N	NC	-	-
AG12	BK2_IO40	-	82P	NC	-	-
AH12	BK2_IO41	-	82N	NC	-	-
AK12	BK2_IO42	-	83P	BK2_IO22	-	53P
-	GND (Bank 2)	-	-	-	-	-

ispXPGA Logic Signal Connections: 900-Ball fpBGA (Cont.)

$\underset{\text { Ball }}{900 \mathrm{fpBGA}}$	LFX1200			LFX500		
	Signal Name	Second Function	LVDS Pair/ sysHSI Reserved	Signal Name	Second Function	LVDS Pair/ sysHSI Reserved ${ }^{1}$
AJ12	BK2_IO43	-	83N	BK2_IO23		53N
AD13	BK2_IO44	-	84P	BK2_IO24		54P
AE13	BK2_IO45	-	84N	BK2_IO25		54N
AK13	BK2_IO46	-	85P	BK2_IO26		55P
-	-	-	-	GND (Bank 2)		-
AJ13	BK2_IO47	-	85N	BK2_IO27		55N
AG13	BK2_IO48	-	86P	BK2_1O28	-	56P
AH13	BK2_IO49	-	86N	BK2_IO29	-	56 N
AE14	BK2_IO50	-	87P	BK2_1030	-	57P
-	GND (Bank 2)	-	-			
AF14	BK2_IO51	-	87 N	BK2_IO31		57N
AG14	BK2_IO52	-	88 P	BK2_IO32		58P
AH14	BK2_IO53	-	88 N	BK2_IO33		58N
AJ14	BK2_IO54	-	89P	BK2_IO34	-	59P
-	-	-		GND (Bank 2)		-
AK14	BK2_IO55	-	89N	BK2_1035	-	59N
AE15	BK2_IO56		90P	BK2_1036	-	60P
AF15	BK2_IO57		90N	BK2_IO37	-	60 N
AG15	BK2_IO58		91P	BK2_1038	-	61P
-	GND (Bank 2)			-	-	-
AH15	BK2_IO59		91 N	BK2_IO39	-	61 N
AJ15	BK2_1060		92P	BK2_IO40	-	62P
AK15	BK2_1061	-	92 N	BK2_IO41	-	62N
-	GND (Bank 2)	-		GND (Bank 2)	-	-
-	GND (Bank 3)	-		GND (Bank 3)	-	-
AK16	BK3_100		93P	BK3_IO0	-	63P
AJ16	BK3,101		93N	BK3_IO1	-	63N
AH16	BK3_IO2		94P	BK3_IO2	-	64P
	GND (Bank 3)		-	-	-	-
AG16	BK3_IO3		94N	BK3_IO3	-	64N
AF16	BK3_104	-	95P	BK3_IO4	-	65P
AE16	BK3_IO5	-	95N	BK3_IO5	-	65N
AK17	BK3_106	-	96P	BK3_IO6	-	66P
-	-	-	-	GND (Bank 3)	-	-
AJ17	BK3_107	-	96N	BK3_IO7	-	66N
AH17	BK3_1O8	-	97P	BK3_IO8	-	67P
AG17	BK3_109	-	97N	BK3_IO9	-	67N
AF17	BK3_IO10	-	98P	BK3_IO10	-	68P
-	GND (Bank 3)	-	-	-	-	-
AE17	BK3_IO11	-	98N	BK3_IO11	-	68 N
AH18	BK3_IO12	-	99P	BK3_IO12	-	69P
AG18	BK3_IO13	-	99N	BK3_IO13	-	69N

ispXPGA Logic Signal Connections: 900-Ball fpBGA (Cont.)

$\underset{\text { Ball }}{900 \mathrm{fpBGA}}$	LFX1200			LFX500		
	Signal Name	Second Function	LVDS Pair/ sysHSI Reserved'	Signal Name	Second Function	LVDS Pair/ sysHSI Reserved
AJ18	BK3_IO14	-	100P	BK3_IO14		70P
-	-	-	-	GND (Bank 3)		-
AK18	BK3_IO15	-	100N	BK3_IO15		70N
AE18	BK3_IO16	-	101P	BK3_IO16		71P
AD18	BK3_IO17	-	101N	BK3_IO17		71N
AJ19	BK3_IO18	-	102P	BK3_IO18		72P
-	GND (Bank 3)	-	-		-	-
AK19	BK3_IO19	-	102N	BK3_IO19		72 N
AH19	BK3_IO20	-	103P	NC	-	-
AG19	BK3_IO21	-	103N	NC		
AK20	BK3_IO22	-	104P	NC		-
AJ20	BK3_IO23	-	104 N	NC		-
AF19	BK3_IO24	-	105P	NC		-
AE19	BK3_IO25	-	105 N	NC	-	-
AH20	BK3_IO26	-	106 P	NC		-
-	GND (Bank 3)	-	-	-	-	-
AG20	BK3_IO27		106 N	NC	-	-
AF20	BK3_IO28	-	107P	NC	-	-
AE20	BK3_IO29	-	107N	NC	-	-
AJ21	BK3_IO30		108P	NC	-	-
AK21	BK3_IO31		108 N	NC	-	-
AG21	ВK3_1032	-	109P	NC	-	-
AF21	BK3_1033	-	109 N	NC	-	-
AK22	BK3_1034	-	110P	NC	-	-
-	GND (Bank 3)	-	-	-	-	-
AJ22	BK3_1035		110 N	NC	-	-
AE21	BK3_1036		111P	NC	-	-
AD21	BK3_IO37		111 N	NC	-	-
AG22	BK3_IO38		112P	NC	-	-
AF22	BK3_IO39		112 N	NC	-	-
AG23	BK3_1040	-	113P	BK3_IO22	-	74P
-	-	-	-	GND (Bank 3)	-	-
AH23	BK3_IO41	-	113 N	BK3_IO23	-	74N
AJ23	BK3_IO42	-	114P	BK3_IO24	-	75P
-	GND (Bank 3)	-	-	-	-	-
AK23	BK3_1O43	-	114N	BK3_IO25	-	75N
AF23	BK3_IO44	-	115P	BK3_IO26	-	76P
AE23	BK3_IO45	-	115 N	BK3_IO27	-	76N
AJ24	BK3_IO46	-	116P	BK3_IO28	-	77P
AK24	BK3_IO47	-	116N	BK3_IO29	-	77N
AH24	BK3_1048	-	117P	BK3_IO21	-	73N
AG24	BK3_IO49	VREF3	117N	BK3_IO20	VREF3	73P

ispXPGA Logic Signal Connections: 900-Ball fpBGA (Cont.)

$\underset{\text { Ball }}{900 \mathrm{fpBGA}}$	LFX1200			LFX500		
	Signal Name	Second Function	LVDS Pair/ sysHSI Reserved'	Signal Name	Second Function	LVDS Pair/ sysHSI Reserved
AJ25	BK3_IO50	-	118P	BK3_IO30	D	78P
-	GND (Bank 3)	-	-	GND (Bank 3)		-
AK25	BK3_IO51	-	118 N	BK3_IO31		78N
AF24	BK3_IO52	-	119P	BK3_IO32		79P
AE24	BK3_IO53	-	119N	BK3_IO33		79N
AK26	BK3_IO54	-	120P	BK3_IO34		80P
AJ26	BK3_IO55	-	120 N	BK3_1O35	- -	80 N
AH25	BK3_IO56	-	121P	BK3_IO36		81P
AG25	BK3_IO57	-	121N	BK3_1037	-	81 N
AK27	BK3_IO58	-	122P	BK3_1O38		82P
-	GND (Bank 3)	-		GND (Bank 3)		-
AJ27	BK3_IO59	-	122 N	BK3_IO39		82N
AG26	BK3_IO60	-	123 P	BK3_IO40		83P
AH26	BK3_IO61	-	123 N	BK3_IO41	-	83N
AK28	GSR	-		GSR		-
AJ28	DXP	-	-	DXP	-	-
AH27	DXN			DXN	-	-
AG28	BK4_IO0		124P	BK4_IO0	-	84P
AF27	BK4_IO1	-	124N	BK4_101	-	84N
AF28	BK4_IO2		125P	BK4_IO2	-	85P/HSI3
-	GND (Bank 4)		-	GND (Bank 4)	-	-
AE26	BK4_IO3	-	125 N	BK4_IO3	-	85N/HSI3
AE27	BK4_104	-	126P	BK4_IO4	-	86P/HSI3
AE28	BK4_105	-	126N	BK4_IO5	-	86N/HSI3
AH30	BK4_106	HSI5A_SINP	127 P	BK4_IO10	HSI3A_SINP	89P/HSI3
-		\rightarrow	-	GND (Bank 4)	-	-
AH29	BK4_107	HSI5A_SINN	127N	BK4_IO11	HSI3A_SINN	89N/HSI3
AD25	BK4_IO8		128P	BK4_IO12	-	90P/HSI3
AD26	BK4_IO9		128N	BK4_IO13	-	90N/HSI3
AG29	BK4_IO10	HSI5A_SOUTP	129P/HSI5	BK4_IO14	HSI3A_SOUTP	91P/HSI3
-	GND (Bank 4)		-	-	-	-
AG30	BK4_1011	HSI5A_SOUTN	129N/HSI5	BK4_IO15	HSI3A_SOUTN	91N/HSI3
AD27	BK4_IO12	VREF4	130P/HSI5	BK4_IO17	VREF4	92N/HSI3
AD28	BK4_IO13	-	130N/HSI5	BK4_IO16	-	92P/HSI3
AF29	BK4_1014	HSI5B_SINP	131P/HSI5	BK4_IO6	-	87P/HSI3
AF30	BK4_IO15	HSI5B_SINN	131N/HSI5	BK4_IO7	-	87N/HSI3
AC25	BK4_IO16	-	132P/HSI5	BK4_IO8	-	88P/HSI3
AC26	BK4_IO17	-	132N/HSI5	BK4_IO9	-	88N/HSI3
AE29	BK4_IO18	HSI5B_SOUTP	133P/HSI5	NC	-	-
-	GND (Bank 4)	-	-	-	-	-
AE30	BK4_IO19	HSI5B_SOUTN	133N/HSI5	NC	-	-
AC28	BK4_IO20	-	134P/HSI5	NC	-	-

ispXPGA Logic Signal Connections: 900-Ball fpBGA (Cont.)

$\underset{\text { Ball }}{900 \mathrm{fpBGA}}$	LFX1200			LFX500		
	Signal Name	Second Function	LVDS Pair/ sysHSI Reserved	Signal Name	Second Function	LVDS Pair/ sysHSI Reserved
AC27	BK4_IO21	-	134N/HSI5	NC	\square	-
AD29	BK4_IO22	HSI6A_SINP	135P/HSI5	NC		-
AD30	BK4_IO23	HSI6A_SINN	135N/HSI5	NC		-
AB24	BK4_IO24	-	136P/HSI5	NC		-
AB25	BK4_IO25	-	136N/HSI5	NC		-
AC29	BK4_IO26	HSI6A_SOUTP	137P/HSI6	NC		-
-	GND (Bank 4)	-	-		-	-
AC30	BK4_IO27	HSI6A_SOUTN	137N/HSI6	NC		-
AB27	BK4_IO28	-	138P/HSI6	NC	-	-
AB26	BK4_IO29	-	138N/HSI6	NC		
AB30	BK4_IO30	HSI6B_SINP	139P/HS16	BK4_IO18	HSI3B_SINP	93P
-	-	-		GND (Bank 4)		-
AB29	BK4_IO31	HSI6B_SINN	139N/HSI6	BK4_IO19	HSI3B_SINN	93N
AA26	BK4_IO32	-	140P/HSI6	NC	-	-
AA27	BK4_IO33	-	140N/HSI6	NC		-
AA30	BK4_IO34	HSI6B_SOUTP	141P/HSI6	BK4_IO22	HSI3B_SOUTP	95P
-	GND (Bank 4)	-		- -	-	-
AA29	BK4_IO35	HSI6B SOUTN	141N/HSI6	BK4_1O23	HSI3B_SOUTN	95N
Y25	BK4_IO36		142P/HSI6	NC	-	-
Y26	BK4_IO37		142N/HSI6	NC	-	-
Y28	BK4_IO38		143P/HSI6	NC	-	-
Y27	BK4_1039	-	143N/HSI6	NC	-	-
W25	BK4_O40	-	144P/HSI6	NC	-	-
W26	BK4_1041	-	144N/HSI6	NC	-	-
W27	BK4_1042	-	145 P	BK4_IO24	-	96P
-	GND (Bank 4)		-	-	-	-
W28	BK4_1043		145N	BK4_IO25	-	96N
V24	BK4_IO44		146P	BK4_IO26	-	97P
	- -		-	GND (Bank 4)	-	-
V25	BK4_IO45		146N	BK4_IO27	-	97N
Y29	BK4_1046		147P	BK4_IO32	-	100P
Y 30	BK4_1047		147N	BK4_IO33	-	100N
V27	BK4_1048	PLL_RST4	148P	BK4_IO20	PLL_RST4	94P
V28	BK4_1049	PLL_RST5	148N	BK4_IO21	PLL_RST5	94N
W29	BK4_1050	-	149P	BK4_IO34	-	101P
-	GND (Bank 4)	-	-	GND (Bank 4)	-	-
W30	BK4_IO51	-	149N	BK4_IO35	-	101N
U25	BK4_IO52	-	150P	BK4_IO28	-	98P
U26	BK4_IO53	-	150N	BK4_IO29	-	98N
V29	BK4_IO54	SS_CLKIN1P	151P	BK4_IO30	SS_CLKIN1P	99P
V30	BK4_IO55	SS_CLKIN1N	151N	BK4_IO31	SS_CLKIN1N	99N
U28	BK4_IO56	PLL_FBK4	152P	BK4_IO36	PLL_FBK4	102P

ispXPGA Logic Signal Connections: 900-Ball fpBGA (Cont.)

$\underset{\text { Ball }}{900 \mathrm{fpBGA}}$	LFX1200			LFX500		
	Signal Name	Second Function	LVDS Pair/ sysHSI Reserved	Signal Name	Second Function	LVDS Pair/ sysHSI Reserved
U27	BK4_IO57	PLL_FBK5	152N	BK4_IO37	PLL_FBK5	102N
U29	BK4_IO58	SS_CLKOUT1P	153P	BK4_IO38	SS_CLKOUT1P	103P
-	GND (Bank 4)	--	-	-	-	-
U30	BK4_IO59	SS_CLKOUT1N	153N	BK4_IO39	SS_CLKOU才1N	103N
T30	BK4_IO60	CLK_OUT4	154P	BK4_IO40	CLK_OUT4	104P
-	-	-	-	GND (Bank 4)		-
T29	BK4_IO61	CLK_OUT5	154N	BK4_1O41	CLK_OUT5	104N
-	GND (Bank 4)	-	-	-	-	-
T28	GCLK4	-	LVDS Pair2P	GCLK4	-	LVDS Pair2P
T27	GCLK5	-	LVDS Pair2N	GCLK5		LVDS Pair2N
T26	VCCP1	-		VCCP1		- -
R28	GNDP1	-		GNDP1		-
R27	GCLK6	-	LVDS Pair3P	GCLK6		LVDS Pair3P
R26	GCLK7	-	LVDS Pair3N	GCLK7	-	LVDS Pair3N
-	GND (Bank 5)	-				-
R29	BK5_IO0	CLK_OUT6	155P	BK5_100	CLK_OUT6	105P
-	-	-		GND (Bank 5)		-
R30	BK5_IO1	CLK_OUT7	155N	BK5_101	CLK_OUT7	105N
P30	BK5_IO2	PLL_FBK6	156P	BK5_104	PLL_FBK6	107P
-	GND (Bank 5)			GND (Bank 5)	-	-
P29	BK5_IO3	PLL_FBK7	156 N	BK5_IO7	PLL_FBK7	108N
P27	BK5_IO4	- -	157P/HSI7	BK5_IO2	-	106P
P28	BK5_105	-	157N/HSI7	BK5_IO5	-	107N
P26	BK5.106	PLL_RST6	158P/HSI7	BK5_IO6	PLL_RST6	108P
P25	BK5_107	PLL_RST7	158N/HSI7	BK5_IO3	PLL_RST7	106N
N27	BK5_IO8		159P/HSI7	BK5_IO8	-	109P/HSI4
N28	BK5 109		159N/HSI7	BK5_IO9	-	109N/HSI4
N29	BK5_IO10	HSI7A_SINP	160P/HSI7	BK5_IO10	HSI4A_SINP	110P/HSI4
	GND (Bank 5)	-	-	-	-	-
N30	BK5_IO11	HSI7A_SINN	160N/HSI7	BK5_IO11	HSI4A_SINN	110N/HSI4
N25	BK5_1012		161P/HSI7	BK5_IO12	-	111P/HSI4
N24	BK5_IO13	-	161N/HSI7	BK5_IO13	-	111N/HSI4
M29	BK5_1014	HSI7A_SOUTP	162P/HSI7	BK5_IO14	HSI4A_SOUTP	112P/HSI4
-	-	-	-	GND (Bank 5)	-	-
M30	BK5_1015	HSI7A_SOUTN	162N/HSI7	BK5_IO15	HSI4A_SOUTN	112N/HSI4
M28	BK5_1016	-	163P/HSI7	BK5_IO16	-	113P/HSI4
M27	BK5_IO17	-	163N/HSI7	BK5_IO17	-	113N/HSI4
L30	BK5_IO18	HSI7B_SINP	164P/HSI7	BK5_IO18	HSI4B_SINP	114P/HSI4
-	GND (Bank 5)	-	-	-	-	-
L29	BK5_IO19	HSI7B_SINN	164N/HSI7	BK5_IO19	HSI4B_SINN	114N/HSI4
M26	BK5_IO20	-	165P/HSI8	BK5_IO20	-	115P/HSI4
M25	BK5_IO21	-	165N/HSI8	BK5_IO21	-	115N/HSI4

ispXPGA Logic Signal Connections: 900-Ball fpBGA (Cont.)

$\begin{array}{c}\text { 900 fpBGA } \\ \text { Ball }\end{array}$	$\begin{array}{c}\text { LFX1200 } \\ \text { Signal Name }\end{array}$				$\begin{array}{c}\text { Second } \\ \text { Function }\end{array}$	$\begin{array}{c}\text { LVDS Pair/ } \\ \text { sysHSI Reserved }\end{array}$
K30	BK5_IO22	HSI7B_SOUTP	166P/HSI8	BK5_IO22	HSI4B_SOUTP	$\begin{array}{c}\text { Second } \\ \text { Function }\end{array}$
sysHSI Reserved						

ispXPGA Logic Signal Connections: 900-Ball fpBGA (Cont.)

$\underset{\text { Ball }}{900 \mathrm{fpBGA}}$	LFX1200			LFX500		
	Signal Name	Second Function	LVDS Pair/ sysHSI Reserved'	Signal Name	Second Function	LVDS Pair/ sysHSI Reserved
G25	BK5_IO57	-	183N	NC		-
F26	BK5_IO58	-	184P	NC		-
-	GND (Bank 5)	-	-	-	-	-
E28	BK5_IO59	-	184N	NC		-
E27	BK5_IO60	-	185P	BK5_IO40		125P
D28	BK5_IO61	-	185 N	BK5_IO41		125 N
C27	CFG0	-	-	CFGO	-	-
B28	DONE	-	-	DONE	-	-
A28	PROGRAMb	-	-	PROGRAMb	-	-
D26	BK6_IO0	INITb	186P	BK6_100	INITb	126P
C26	BK6_IO1	CCLK	186N	BK6_IO1	CCLK	126 N
B27	BK6_IO2	-	187P	BK6_IO2	-	127P
-	GND (Bank 6)	-	,	GND (Bank 6)		-
A27	BK6_IO3	-	187 N	BK6_IO3	-	127N
D25	BK6_IO4	CSb	188P	BK6_IO4	CSb	128P
C25	BK6_IO5	Read	188 N	BK6_105	READ	128N
B26	BK6_IO6		189P	BK6_106	-	129P
A26	BK6_IO7		189N	BK6_IO7	-	129 N
F24	BK6_IO8	-	190P	BK6_108	-	130P
E24	BK6_IO9		190N	BK6_IO9	-	130N
A25	BK6_IO10		191P	BK6_IO10	-	131P
-	GND (Bank 6)	-	$\underline{-}$	GND (Bank 6)	-	-
B25	BK6_1011	-	191 N	BK6_IO11	-	131 N
D24	BK6_1012	VREF6	192P	BK6_IO21	VREF6	136N
C24	BK6_IO13	-	192N	BK6_IO20	-	136P
A24	BK6_1014		193P	BK6_IO12	-	132P
B24	BK6_1015	-	193N	BK6_IO13	-	132 N
F23	BK6_IO16		194P	BK6_IO14	-	133P
E23	BK6_IO17		194N	BK6_IO15	-	133N
A23	BK6_IO18		195P	BK6_IO16	-	134P
	GND (Bank 6)	-	-	-	-	-
B23	BK6_IO19	-	195N	BK6_IO17	-	134N
C23	BK6_IO20	-	196P	NC	-	-
D23	BK6_IO21	-	196N	NC	-	-
E22	BK6_1O22	-	197P	NC	-	-
D22	BK6_1O23	-	197N	NC	-	-
G21	BK6_IO24	-	198P	NC	-	-
F21	BK6_IO25	-	198 N	NC	-	-
B22	BK6_IO26	-	199P	NC	-	-
-	GND (Bank 6)	-	-	-	-	-
A22	BK6_IO27	-	199N	NC	-	-
E21	BK6_IO28	-	200P	NC	-	-

ispXPGA Logic Signal Connections: 900-Ball fpBGA (Cont.)

$\underset{\text { Ball }}{900 \mathrm{fpBGA}}$	LFX1200			LFX500		
	Signal Name	Second Function	LVDS Pair/ sysHSI Reserved	Signal Name	Second Function	LVDS Pair/ sysHSI Reserved
D21	BK6_IO29	-	200N	NC		-
A21	BK6_IO30	-	201P	NC		-
B21	BK6_IO31	-	201N	NC		-
F20	BK6_IO32	DATA7	202P	BK6_IO18	DATA7	135P
-	-	-	-	GND (Bank 6)	-	-
E20	BK6_IO33	DATA6	202N	BK6_IO19	DATA6	135N
D20	BK6_IO34	-	203P	NC	-	-
-	GND (Bank 6)	-	-	-	-	-
C20	BK6_IO35		203N	NC	-	-
F19	BK6_IO36	DATA5	204P	BK6_IO22	DATA5	137P
E19	BK6_IO37	DATA4	204N	BK6_IO23	DATA4	137 N
B20	BK6_IO38	-	205P	NC	-	- -
A20	BK6_IO39	-	205N	NC	-	-
D19	BK6_IO40	-	206P	NC	-	-
C19	BK6_IO41	-	206N	NC		-
A19	BK6_IO42	-	207P	NC	-	-
-	GND (Bank 6)				-	-
B19	BK6_IO43		207N	NC	-	-
G18	BK6_IO44		208P	BK6_1O24	-	138P
F18	BK6_IO45		208N	BK6_IO25	-	138 N
A18	BK6_IO46		209P	BK6_IO32	-	142P
B18	BK6_1O47	-	209 N	BK6_IO33	-	142N
D18	BK6_1O48	-	210 P	BK6_IO34	-	143P
-	-	-		GND (Bank 6)	-	-
C18	BK6_IO49	-	210 N	BK6_IO35	-	143N
F17	BK6_1050	DATA3	211P	BK6_IO26	DATA3	139P
)	GND (Bank 6)	-	-	GND (Bank 6)	-	-
E17	BK6_IO51	DATA2	211N	BK6_IO27	DATA2	139N
D17	BK6_IO52		212P	BK6_IO28	-	140P
C17	BK6_IO53		212N	BK6_IO29	-	140N
B17	BK6_1054	DATA1	213P	BK6_IO30	DATA1	141P
A17	BK6_IO55	DATAO	213N	BK6_IO31	DATAO	141N
F16	BK6_IO56	-	214P	BK6_IO36	-	144P
E16	BK6_IO57	-	214N	BK6_IO37	-	144N
D16	BK6_1058	-	215P	BK6_IO38	-	145P
-	GND (Bank 6)	-	-	-	-	-
C16	BK6_IO59	-	215N	BK6_IO39	-	145N
B16	BK6_IO60	-	216P	BK6_IO40	-	146P
A16	BK6_IO61	-	216N	BK6_IO41	-	146N
-	GND (Bank 6)	-	-	GND (Bank 6)	-	-
-	GND (Bank 7)	-	-	GND (Bank 7)	-	-
A15	BK7_IO0	-	217P	BK7_IO0	-	147P

ispXPGA Logic Signal Connections: 900-Ball fpBGA (Cont.)

$\underset{\text { Ball }}{900 \mathrm{fpBGA}}$	LFX1200			LFX500		
	Signal Name	Second Function	LVDS Pair/ sysHSI Reserved	Signal Name	Second Function	LVDS Pair/ sysHSI Reserved ${ }^{1}$
B15	BK7_IO1	-	217N	BK7_IO1		147N
C15	BK7_IO2	-	218P	BK7_IO2		148P
-	GND (Bank 7)	-	-		,	-
D15	BK7_IO3	-	218N	BK7_IO3		148N
E15	BK7_IO4	-	219P	BK7_IO4		149P
F15	BK7_IO5	-	219N	BK7_105		149N
A14	BK7_IO6	-	220P	BK7_106	-	150P
-	-	-	-	GND (Bank 7)	-	-
B14	BK7_IO7	-	220N	BK7_107	-	150 N
C14	BK7_IO8	-	221P	BK7_IO8		151P
D14	BK7_IO9	-	221 N	BK7_IO9		151 N
E14	BK7_IO10	-	222 P	BK7 _IO10	-	152P
-	GND (Bank 7)	-		-		-
F14	BK7_IO11	-	222 N	BK7_IO11	-	152N
C13	BK7_IO12	-	223 P	BK7_IO12		153P
D13	BK7_IO13	-	223N	BK7_1013	-	153N
B13	BK7_IO14		224 P	BK7_1014	-	154P
-	-	-	-	GND (Bank 7)	-	-
A13	BK7_IO15		224N	BK7_IO15	-	154N
F13	BK7_IO16		225P	BK7_IO16	-	155P
G13	BK7_IO17		225 N	BK7_1017	-	155N
A12	BK7_1018		226 P	BK7_IO18	-	156P
-	GND (Bank 7)	-		-	-	-
B12	BK7_1019	-	226 N	BK7_IO19	-	156N
C12	BK7_1020	-	227 P	NC	-	-
D12	BK7_1021		227N	NC	-	-
A11	BK7_1022		228P	NC	-	-
B11	BK7_IO23		228N	NC	-	-
E12	BK7_IO24		229P	NC	-	-
F12	BK7_IO25		229N	NC	-	-
C11	BK7_O26		230P	NC	-	-
-	GND (Bank 7)	-	-	-	-	-
D11	BK7_1027	-	230N	NC	-	-
E11	BK7_IO28	-	231P	NC	-	-
F11	BK7_1029	-	231N	NC	-	-
B10	BK7_1O30	-	232P	NC	-	-
A10	BK7_IO31	-	232N	NC	-	-
D10	BK7_IO32	-	233P	NC	-	-
E10	BK7_IO33	-	233N	NC	-	-
A9	BK7_IO34	-	234P	NC	-	-
-	GND (Bank 7)	-	-	-	-	-
B9	BK7_IO35	-	234N	NC	-	-

ispXPGA Logic Signal Connections: 900-Ball fpBGA (Cont.)

$\underset{\text { Ball }}{900 \mathrm{fpBGA}}$	LFX1200			LFX500		
	Signal Name	Second Function	LVDS Pair/ sysHSI Reserved'	Signal Name	Second Function	LVDS Pair/ sysHSI Reserved ${ }^{1}$
F10	BK7_IO36	-	235P	NC		-
G10	BK7_IO37	-	235N	NC		-
A8	BK7_IO38	-	236P	NC		-
B8	BK7_IO39	-	236N	NC		-
D9	BK7_IO40	-	237P	BK7_IO22		158P
-	-	-	-	GND (Bank 7)		-
E9	BK7_IO41	-	237N	BK7_IO23	-	158 N
A7	BK7_IO42	-	238P	BK7_IO24		159P
-	GND (Bank 7)	-	-	-		-
B7	BK7_IO43	-	238N	BK7_IO25		159N
C8	BK7_IO44	-	239 P	BK7_IO26		160P
D8	BK7_IO45	-	239 N	BK7_IO27		160N
A6	BK7_IO46	-	240P	BK7_IO21		157N
B6	BK7_IO47	VREF7	240 N	BK7_IO20	VREF7	157P
E8	BK7_IO48	-	241P	BK7_IO28		161P
F8	BK7_IO49	-	241N	BK7_1029	-	161N
C7	BK7_IO50		242 P	BK7_1030	-	162P
-	GND (Bank 7)	-	-	GND (Bank 7)	-	-
D7	BK7_IO51		242N	BK7_IO31	-	162N
E7	BK7_IO52		243P	BK7_IO32	-	163P
F7	BK7_IO53		243N	BK7_1033	-	163 N
A5	BK7_1O54		244P	BK7_IO34	-	164P
B5	BK7_1055	-	244 N	BK7_IO35	-	164N
C6	BK7_1056	-	245P	BK7_IO36	-	165P
D6	BK7_1057	-	245 N	BK7_IO37	-	165 N
D5	BK7_1058		246P	BK7_IO38	-	166P
-	GND (Bank 7)	-	-	GND (Bank 7)	-	-
C5	BK7_IO59	-	246N	BK7_IO39	-	166N
B4	BK7_IO60		247P	BK7_IO40	-	167P
A4	BK7_IO61		247N	BK7_IO41	-	167N
A3	TDO	-	-	TDO	-	-
B3	VCCJ	-	-	VCCJ	-	-
C4	TDI	-	-	TDI	-	-

1. If a sysHSI Block is used, the indicated sysHSI reserved pins are unavailable for general purpose I/O use.

Part Number Description

Ordering Information

Conventional Packaging

Commercial (Cont.)					
Part Number	Gates	Voltage	Speed Grade	Package	Balls
LFX200B-05F516C	210K	2.5/3.3	-5	fpBGA	516
LFX200B-04F516C	210K	2.5/3.3	-4	fpBGA	516
LFX200B-03F516C	210K	2.5/3.3	-3	fpBGA	516
LFX200C-04F516C	210K	1.8	-4	fpBGA	516
LFX200C-03F516C	210K	1.8	-3	fpBGA	516
LFX200B-05FH516C ${ }^{1}$	210K	2.5/3.3	-5	fpBGA	516
LFX200B-04FH516C ${ }^{1}$	210K	2.5/3.3	-4	pBG	516
LFX200B-03FH516C ${ }^{1}$	210K	2.5/3.3	-3	fpBGA	516
LFX200C-04FH516C ${ }^{1}$	210K	1.8	-4	fpBGA	516
LFX200C-03FH516C ${ }^{1}$	210K	1.8	-3	fpBGA	516
LFX500B-05F516C	476K	2.5/3.3	-5	fpBGA	516
LFX500B-04F516C	476K	2.5/3.3	-4	fpBGA	516
LFX500B-03F516C	476K	2.5/3.3	-3	fpBGA	516
LFX500C-04F516C	476K	1.8	-4	fpBGA	516
LFX500C-03F516C	476K	1.8	-3	fpBGA	516
LFX500B-05FH516C ${ }^{1}$	476K	2.5/3.3	-5	fpBGA	516
LFX500B-04FH516C ${ }^{1}$	476K	2.5/3.3	-4	fpBGA	516
LFX500B-03FH516C ${ }^{1}$	476K	2.5/3.3	-3	fpBGA	516
LFX500C-04FH516C ${ }^{1}$	476K	1.8		fpBGA	516
LFX500C-03FH516C ${ }^{1}$	476K	1.8	-3	fpBGA	516
LFX500B-05F900C	476K	2.5/3.3	-5	fpBGA	900
LFX500B-04F900C	476K	2.5/3.3	-4	fpBGA	900
LFX500B-03F900C	476K	2.5/3.3	-3	fpBGA	900
LFX500C-04F900C	476K	1.8	-4	fpBGA	900
LFX500C-03F900C	476K	1.8	-3	fpBGA	900
LFX1200B-05F900C ${ }^{2}$	1.25 M	2.5/3.3	-5	fpBGA	900
LFX1200B-04F900C ${ }^{2}$	1.25M	2.5/3.3	-4	fpBGA	900
LFX1200B-03F900C ${ }^{2}$	1.25 M	2.5/3.3	-3	fpBGA	900
LFX1200C-04F900C ${ }^{2}$	1.25M	1.8	-4	fpBGA	900
LFX1200C-03F900C²	1.25M	1.8	-3	fpBGA	900
LFX1200B-05FE680C ${ }^{2}$	1.25M	2.5/3.3	-5	fpSBGA	680
LFX1200B-04FE680C ${ }^{2}$	1.25 M	2.5/3.3	-4	fpSBGA	680
LFX1200B-03FE680C ${ }^{2}$	1.25M	2.5/3.3	-3	fpSBGA	680
LFX1200C-04FE680C ${ }^{2}$	1.25 M	1.8	-4	fpSBGA	680
LFX1200C-03FE680C ${ }^{2}$	1.25M	1.8	-3	fpSBGA	680

1. FH516 package was converted to F516 via PCN \#09A-08.
2. Discontinued via PCN\#03A-10.

"E-Series" Commercial					
Part Number	Gates	Voltage	Speed Grade	Package	Balls
LFX125EB-05F256C	139K	2.5/3.3	-5	fpBGA	256
LFX125EB-04F256C	139K	2.5/3.3	-4	fpBGA	256
LFX125EB-03F256C	139K	2.5/3.3	-3	fpBGA	256
LFX125EC-04F256C	139K	1.8	-4	fpBGA	256
LFX125EC-03F256C	139K	1.8	-3	$f p B G A$	256
LFX125EB-05F516C	139K	2.5/3.3	-5	fpBGA	516
LFX125EB-04F516C	139K	2.5/3.3	-4	fpBGA	516
LFX125EB-03F516C	139K	2.5/3.3	-3	fpBGA	516
LFX125EC-04F516C	139K	1.8	-4	fpBGA	516
LFX125EC-03F516C	139K	1.8	-	fpBGA	516
LFX125EB-05FH516C ${ }^{1}$	139K	2.5/3.3	-5	fpBGA	516
LFX125EB-04FH516C ${ }^{1}$	139K	2.5/3.3	-4	fpBGA	516
LFX125EB-03FH516C ${ }^{1}$	139K	2.5/3.3	-3	fpBGA	516
LFX125EC-04FH516C ${ }^{1}$	139K	1.8	-4	fpBGA	516
LFX125EC-03FH516C ${ }^{1}$	139K	1.8	-3	fpBGA	516
LFX200EB-05F256C	210K	2.5/3.3	-5	fpBGA	256
LFX200EB-04F256C	210K	2.5/3.3	-4	fpBGA	256
LFX200EB-03F256C	210K	2.5/3.3	-3	fpBGA	256
LFX200EC-04F256C	210K	1.8	-4	fpBGA	256
LFX200EC-03F256C	210K	1.8	-3	fpBGA	256
LFX200EB-05F516C	210 K	2.5/3.3	-5	fpBGA	516
LFX200EB-04F516C	210K	2.5/3.3	-4	fpBGA	516
LFX200EB-03F516C	210K	2.5/3.3	-3	fpBGA	516
LFX200EC-04F516C	210K	1.8	-4	fpBGA	516
LFX200EC-03F516C	210K	1.8	-3	fpBGA	516
LFX200EB-05FH516C ${ }^{1}$	210K	2.5/3.3	-5	fpBGA	516
LFX200EB-04FH516C ${ }^{1}$	210K	2.5/3.3	-4	fpBGA	516
LFX200EB-03FH516C ${ }^{1}$	210K	2.5/3.3	-3	fpBGA	516
LFX200EC-04FH516C ${ }^{1}$	210K	1.8	-4	fpBGA	516
LFX200EC-03FH516C ${ }^{\text {¹ }}$	210 K	1.8	-3	fpBGA	516
LFX500EB-05F516C	476K	2.5/3.3	-5	fpBGA	516
LFX500EB-04F516C	476K	2.5/3.3	-4	fpBGA	516
LFX500EB-03F516C	476K	2.5/3.3	-3	fpBGA	516
LFX500EC-04F516C	476K	1.8	-4	fpBGA	516
LFX500EC-03F516C	476K	1.8	-3	fpBGA	516
LFX500EB-05FH516C ${ }^{\text {1 }}$	476K	2.5/3.3	-5	fpBGA	516
LFX500EB-04FH516C ${ }^{\text {1 }}$	476K	2.5/3.3	-4	fpBGA	516
LFX500EB-03FH516C ${ }^{1}$	476K	2.5/3.3	-3	fpBGA	516
LFX500EC-04FH516C ${ }^{1}$	476K	1.8	-4	fpBGA	516
LFX500EC-03FH516C ${ }^{1}$	476K	1.8	-3	fpBGA	516
LFX500EB-05F900C	476K	2.5/3.3	-5	fpBGA	900
LFX500EB-04F900C	476K	2.5/3.3	-4	fpBGA	900
LFX500EB-03F900C	476K	2.5/3.3	-3	fpBGA	900
LFX500EC-04F900C	476K	1.8	-4	fpBGA	900

"E-Series" Commercial (Cont.)

Part Number	Gates	Voltage	Speed Grade	Package	Balls
LFX500EC-03F900C	476 K	1.8	-3	fpBGA	900
LFX1200EB-05F900C 2	1.25 M	$2.5 / 3.3$	-5	fpBGA	900
LFX1200EB-04F900C 2	1.25 M	$2.5 / 3.3$	-4	fpBGA	900
LFX1200EB-03F900C 2	1.25 M	$2.5 / 3.3$	-3	fpBGA	900
LFX1200EC-04F900C 2	1.25 M	1.8	-4	fpBGA	900
LFX1200EC-03F900C 2	1.25 M	1.8	-3	fpBGA	900
LFX1200EB-05FE680C 2	1.25 M	$2.5 / 3.3$	-5	fpSBGA	680
LFX1200EB-04FE680C 2	1.25 M	$2.5 / 3.3$	-4	fpSBGA	680
LFX1200EB-03FE680C 2	1.25 M	$2.5 / 3.3$	-3	fpSBGA	680
LFX1200EC-04FE680C 2	1.25 M	1.8	-4	fpSBGA	680
LFX1200EC-03FE680C 2	1.25 M	1.8	-3	fpSBGA	680

1. FH516 package was converted to F516 via PCN \#09A-08.
2. Discontinued via PCN \#03A-10.
"E-Series" Industrial

"E-Series" Industrial (Cont.)

Part Number	Gates	Voltage	Speed Grade	Package	Balls
LFX1200EB-04F900I 2	1.25 M	$2.5 / 3.3$	-4	fpBGA	900
LFX1200EB-03F900I 2	1.25 M	$2.5 / 3.3$	-3	fpBGA	900
LFX1200EC-03F900I 2	1.25 M	1.8	-3	fpBGA	900
LFX1200EB-04FE680I 2	1.25 M	$2.5 / 3.3$	-4	fpSBGA	680
LFX1200EB-03FE680I 2	1.25 M	$2.5 / 3.3$	-3	fpSBGA	680
LFX1200EC-03FE680I 2	1.25 M	1.8	-3	fpSBGA	680

1. FH516 package was converted to F516 via PCN \#09A-08.
2. Discontinued via PCN \#03A-10.

Lead-Free Packaging

Commercial

Part Number	Gates	Voltage	Speed Grade	Package	Balls
LFX125B-05FN256C	139 K	$2.5 / 3.3$	-5	Lead-Free fpBGA	256
LFX125B-04FN256C	139 K	$2.5 / 3.3$	-4	Lead-Free fpBGA	256
LFX125B-03FN256C	139 K	$2.5 / 3.3$	-3	Lead-Free fpBGA	256
LFX125C-04FN256C	139 K	1.8	-4	Lead-Free fpBGA	256
LFX125C-03FN256C	139 K	1.8	-3	Lead-Free fpBGA	256
LFX200B-05FN256C	210 K	$2.5 / 3.3$	-5	Lead-Free fpBGA	256
LFX200B-04FN256C	210 K	$2.5 / 3.3$	-4	Lead-Free fpBGA	256
LFX200B-03FN256C	210 K	$2.5 / 3.3$	-3	Lead-Free fpBGA	256
LFX200C-04FN256C	210 K	1.8	-4	Lead-Free fpBGA	256
LFX200C-03FN256C	210 K	1.8	-3	Lead-Free fpBGA	256
LFX500B-05FN900C	$476 K$	$2.5 / 3.3$	-5	Lead-Free fpBGA	900
LFX500B-04FN900C	476 K	$2.5 / 3.3$	-4	Lead-Free fpBGA	900
LFX500B-03FN900C	$476 K$	$2.5 / 3.3$	-3	Lead-Free fpBGA	900
LFX500C-04FN900C	$476 K$	1.8	-4	Lead-Free fpBGA	900
LFX500C-03FN900C	$476 K$	1.8	-3	Lead-Free fpBGA	900

"E-Series" Commercial

Part Number	Gates	Voltage	Speed Grade	Package	Balls
LFX125EB-05FN256C	139 K	$2.5 / 3.3$	-5	Lead-Free fpBGA	256
LFX125EB-04FN256C	139 K	$2.5 / 3.3$	-4	Lead-Free fpBGA	256
LFX125EB-03FN256C	139 K	$2.5 / 3.3$	-3	Lead-Free fpBGA	256
LFX125EC-04FN256C	139 K	1.8	-4	Lead-Free fpBGA	256
LFX125EC-03FN256C	139 K	1.8	-3	Lead-Free fpBGA	256
LFX200EB-05FN256C	210 K	$2.5 / 3.3$	-5	Lead-Free fpBGA	256
LFX200EB-04FN256C	210 K	$2.5 / 3.3$	-4	Lead-Free fpBGA	256
LFX200EB-03FN256C	210 K	$2.5 / 3.3$	-3	Lead-Free fpBGA	256
LFX200EC-04FN256C	210 K	1.8	-4	Lead-Free fpBGA	256
LFX200EC-03FN256C	210 K	1.8	-3	Lead-Free fpBGA	256
LFX500EB-05FN900C	476 K	$2.5 / 3.3$	-5	Lead-Free fpBGA	900
LFX500EB-04FN900C	476 K	$2.5 / 3.3$	-4	Lead-Free fpBGA	900
LFX500EB-03FN900C	476 K	$2.5 / 3.3$	-3	Lead-Free fpBGA	900

"E-Series" Commercial (Cont.)

Part Number	Gates	Voltage	Speed Grade	Package	Balls
LFX500EC-04FN900C	476 K	1.8	-4	Lead-Free fpBGA	900
LFX500EC-03FN900C	476 K	1.8	-3	Lead-Free fpBGA	900

"E-Series" Industrial

Part Number	Gates	Voltage	Speed Grade	Package	Balls
LFX125EB-04FN256I	139 K	$2.5 / 3.3$	-4	Lead-Free fpBGA	256
LFX125EB-03FN256I	139 K	$2.5 / 3.3$	-3	Lead-Free fpBGA	256
LFX125EC-03FN256I	139 K	1.8	-3	Lead-Free fpBGA	256
LFX200EB-04FN256I	210 K	$2.5 / 3.3$	-4	Lead-Free fpBGA	256
LFX200EB-03FN256I	210 K	$2.5 / 3.3$	-3	Lead-Free fpBGA	256
LFX200EC-03FN256I	210 K	1.8	-3	Lead-Free fpBGA	256
LFX500EB-04FN900I	476 K	$2.5 / 3.3$	-4	Lead-Free fpBGA	900
LFX500EB-03FN900I	476 K	$2.5 / 3.3$	-3	Lead-Free fpBGA	900
LFX500EC-03FN900I	476 K	1.8	-3	Lead-Free fpBGA	900

For Further Information

In addition to this data sheet, the following Lattice technical notes may be helpful when designing with the ispXPGA Family:

- TN1028, ispXPGA Memory Usage Guidelines
- TN1003, sysCLOCK PLL Usage and Design Guidelines
- TN1000, sysIO Usage Guidelines for Lattice Devices
- TN1026, ispXP Configuration Usage Guidelines
- TN1020, sysHSI Usage Guidelines
- TN1043, Power Estimation in ispXPGA Devices

Revision History

Revision History (Cont.)

Date	Version	Change Summary
June 2004 (cont.)	$\begin{gathered} 08.0 \\ \text { (cont.) } \end{gathered}$	Updated Global Clock Input Setup time specifications.
		Clarification of Serial Out LVDS test condition.
		Clarification of REFCLK, SS_CLKIN peak-to-peak period jitter condition.
		Added sysHSI Reserved pins and footnote.
		Removed industrial ordering part numbers.
July 2004	09.0	Added "E" Series product family.
August 2004	10.0	Final release.
December 2004	10.1	Updated NC Connections table.
April 2005	10.2	Clarification of IDK specification.
April 2005	11.0	Select lead-free packages release.
July 2005	12.0	Added lead-free 516 fpBGA ordering part numbers.
April 2007	13.0	Removed lead-free 680 fpSBGA information from Part Number Description and Ordering Part Number tables. Removed lead-free 516 fpBGA for LFX125 from Ordering Part Number tables.
November 2007	14.0	Removed lead-free 516 fpBGA information from Part Number Description and Ordering Part Number tables.
July 2008	14.1	Added 516 fpBGA package without heat spreader to Part Number Description and Ordering Part Number tables.
February 2010	15.0	Ordering part numbers and ispXPGA Family Selection Guide table have been updated per PCN \#03A-10 (discontinuation of the ispXPGA 1200 devices).
		References to "system gates" changed to "functional gates."

[^0]: 1. "E-Series" does not support sysHSI.
 2. FH516 package was converted to F516 via PCN \#09A-08.
 3. Discontinued via PCN \#03A-10.
[^1]: 1. "E-Series" does not support sysHSI.
[^2]: 1. Only available for ispXPGA 125B and ispXPGA 125EB (2.5V/3.3V) devices.
[^3]: 1. Only available for ispXPGA 200B and ispXPGA 200EB (2.5V/3.3V) devices.
[^4]: 1. Eye opening based on jitter frequency of 100 KHz .
 2. Lower frequency operation assumes maximum eye closure of 800 ps.
 3. Internal timing for reference only.
[^5]: 1. This condition assures that the output phase jitter will remain within specifications. Jitter spec is based on optimized M , N and V settings determined by the ispLEVER software.
 2. Accumulated jitter measured over 10,000 waveform samples
 3. Internal timing for reference only.
[^6]: 1. All grounds must be electrically connected at the board level.
[^7]: 1. All grounds must be electrically connected at the board level.
