Precision Metal Film Resistors

Materials and Features:

- EIA standard color coding
- Flame retardant type available
- Low noise \& Voltage coefficient
- Low temperature coefficient
- Wide precision range in small package
- Very low or very high ohmic values available upon request
- Nichrome resistor element provides stable performance in various environments
- Multiple epoxy coating on vacuum-deposited metal film provides superior moisture protection

\section*{Explanation of Part Numbers:
 | MF | 25 | C | 1001 | F | T | XX |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 |}

1 Style:
MF - Metal Film
2 Wattage:

$08=1 / 8$ watt	$25=1 / 4$ watt	$40=.4 \mathrm{watt}$	$50=1 / 2$ watt
$60=.6$ watt	$100=1$ watt	$200=2$ watt	

3 Temperature Coefficient:

$\mathrm{T}= \pm 15 \mathrm{ppm}$
*C $= \pm 50 \mathrm{ppm}$ (Std)
$\mathrm{E}= \pm 25 \mathrm{ppm}$
$\mathrm{D}= \pm 100 \mathrm{ppm}$

* Standard TC provided unless otherwise specified in part number.

4 Nominal Resistance Value:

E24 Series (5\% Tolerance)
The first two digits are significant figures of resistance and the third digit denotes the number of zeros (decimal point is expressed by the letter "R").
i.e. $102=1 \mathrm{k} \Omega$

$$
1 R 2=1.2 \Omega
$$

E96 Series (1\% Tolerance)
The first three digits are significant figures of resistance and the fourth digit denotes the number of zeros.
i.e. $1001=1 \mathrm{k} \Omega$
$10 R 0=10 \Omega$

5 Tolerance:

A $= \pm .05 \%$
B $= \pm .1 \%$
C $= \pm .25 \%$
$\mathrm{D}= \pm .5 \%$
$\mathrm{F}= \pm 1 \%$
$\mathrm{G}= \pm 2 \%$
$J= \pm 5 \%$

6 Packaging:

$\mathrm{T}=$ Tape \& Reel $\quad \mathrm{B}=$ Bulk
TB = Tape \& Box $\quad A=$ Ammo

7 Lead Forming:

PN = Panasert Type PA1 = Avisert Type 1
PA2 $=$ Avisert Type $2 \quad$ PA3 $=$ Avisert Type 3
*For all other requests, please consult factory.

Dimension:

Normal Size						Small Size					
Style	Power Rating at $70^{\circ} \mathrm{C}$	Dimension (mm)				Style	Power Rating at $70^{\circ} \mathrm{C}$	Dimension (mm)			
		D Max.	L Max.	$\mathbf{d}_{-0.05}^{+0.02}$	$\mathrm{H} \pm 3$			D Max.	L Max.	$\mathbf{d}_{-0.05}^{+0.02}$	$\mathrm{H} \pm 3$
MF08	1/8W (0.125W)	1.85	3.5	0.5	28	MF25S	1/4W (0.25W)	1.85	3.5	0.5	28
MF25	1/4W (0.25W)	2.5	6.8	0.6	28	MF40SS	0.4 W	1.9	3.7	0.5	28
MF50	1/2W (0.5W)	3.5	10.0	0.6	28	MF50S	1/2W (0.5W)	3.0	9.0	0.6	28
MF100	1W	5.0	12.0	0.7	28	MF50SS	1/2W (0.5W)	2.5	6.8	0.6	28
MF200	2W	5.5	16.0	0.8	28	MF60S	0.6W	2.5	6.8	0.6	28

General Specification

Style	Dielectric Withstanding Voltage	Max. Working Voltage	Max. Overload Voltage	Resistance Tolerance	T.C.R.	Resistance Range	Special Order	
							Resistance Tolerance	T.C.R.
MF08 MF25S	400V	200V	400V	$\pm 5 \%$	$\pm 200 \mathrm{PPM} /{ }^{\circ} \mathrm{C}$	$1 \Omega \sim 22.1 \mathrm{M} \Omega$	$\pm 0.25 \%$	$\pm 15 \mathrm{PPM} /{ }^{\circ} \mathrm{C}$
				$\pm 2 \%$	$\pm 100 \mathrm{PPM} /{ }^{\circ} \mathrm{C}$	$1 \Omega \sim 22.1 \mathrm{M} \Omega$	$\pm 0.5 \%$	$\pm 25 \mathrm{PPM} /{ }^{\circ} \mathrm{C}$
MF40SS	200 V			$\pm 1 \%$	$\pm 50 \mathrm{PPM} /{ }^{\circ} \mathrm{C}$	$1 \Omega \sim 22.1 \mathrm{M} \Omega$		$\pm 50 \mathrm{PPM} /{ }^{\circ} \mathrm{C}$
MF25 MF60S	500 V	250 V	500V	$\pm 5 \%$	$\pm 200 \mathrm{PPM} /{ }^{\circ} \mathrm{C}$	$1 \Omega \sim 22.1 \mathrm{M} \Omega$	$\pm 0.1 \%$	$\pm 15 \mathrm{PPM} /{ }^{\circ} \mathrm{C}$
				$\pm 2 \%$	$\pm 100 \mathrm{PPM} /{ }^{\circ} \mathrm{C}$	$1 \Omega \sim 22.1 \mathrm{M} \Omega$	$\pm 0.25 \%$	$\pm 25 \mathrm{PPM} /{ }^{\circ} \mathrm{C}$
MF50SS	250 V			$\pm 1 \%$	$\pm 50 \mathrm{PPM} /{ }^{\circ} \mathrm{C}$	$1 \Omega \sim 22.1 \mathrm{M} \Omega$	$\pm 0.5 \%$	$\pm 50 \mathrm{PPM} /{ }^{\circ} \mathrm{C}$
MF50 MF50S	700V	350 V	700 V	$\pm 5 \%$	$\pm 200 \mathrm{PPM} /{ }^{\circ} \mathrm{C}$	$1 \Omega \sim 22.1 \mathrm{M} \Omega$	$\pm 0.1 \%$	$\pm 15 \mathrm{PPM} /{ }^{\circ} \mathrm{C}$
				$\pm 2 \%$	$\pm 100 \mathrm{PPM} /{ }^{\circ} \mathrm{C}$	$1 \Omega \sim 22.1 \mathrm{M} \Omega$	$\pm 0.25 \%$	$\pm 25 \mathrm{PPM} /{ }^{\circ} \mathrm{C}$
				$\pm 1 \%$	$\pm 50 \mathrm{PPM} /{ }^{\circ} \mathrm{C}$	$1 \Omega \sim 22.1 \mathrm{M} \Omega$	$\pm 0.5 \%$	$\pm 50 \mathrm{PPM} /{ }^{\circ} \mathrm{C}$
MF100 MF200	1000 V	500 V	1000V	$\pm 5 \%$	$\pm 200 \mathrm{PPM} /{ }^{\circ} \mathrm{C}$	$1 \Omega \sim 10 \mathrm{M} \Omega$	$\pm 0.1 \%$	$\pm 15 \mathrm{PPM} /{ }^{\circ} \mathrm{C}$
				$\pm 2 \%$	$\pm 100 \mathrm{PPM} /{ }^{\circ} \mathrm{C}$	$1 \Omega \sim 10 \mathrm{M} \Omega$	$\pm 0.25 \%$	$\pm 25 \mathrm{PPM} /{ }^{\circ} \mathrm{C}$
				$\pm 1 \%$	$\pm 50 \mathrm{PPM} /{ }^{\circ} \mathrm{C}$	$1 \Omega \sim 10 \mathrm{M} \Omega$	$\pm 0.5 \%$	$\pm 50 \mathrm{PPM} /{ }^{\circ} \mathrm{C}$

Note: MF - xx - SS is Non-Flame coating.

* MF200 Series is only available up to $1 \mathrm{M} \Omega$

Precision Metal Film Resistors

Performance Specifications

Characteristics	Test Methods	Limits
Temperature coefficient $\text { JIS - C - } 5202 \quad 5.2$	Natural resistance change per temp. degree centigrade. $\frac{\mathrm{R}_{2}-\mathrm{R}_{1}}{\mathrm{R}_{1}\left(\mathrm{t}_{2}-\mathrm{t}_{1}\right)} \times 10^{6}\left(\mathrm{PPM} /{ }^{\circ} \mathrm{C}\right)$ R_{1} : Resistance value at room temperature (t_{1}) R_{2} : Resistance value at room temp. plus $100^{\circ} \mathrm{C}\left(\mathrm{t}_{2}\right)$	$\pm 350 \mathrm{PPM} /{ }^{\circ} \mathrm{C}$
Dielectric withstanding voltage JIS - C - 52025.7	Resistors shall be clamped in the trough of a 90° metallic V - block and shall be tested at AC potential respectively specified in the above list for $60+10 /-0$ seconds.	No evidence of flashover, mechanical damage, arcing or insulation break down.
Temperature cycling$\text { JIS - C - } 52027.4$	Resistance change after continuous five cycles for duty cycle specified below:	Resistance change rate is $\pm 2 \%+0.05 \Omega)$ No evidence of mechanical damage
	Step \quad Temperature ${ }^{\text {a }}$ Time	
	$-55^{\circ} \mathrm{C} \pm 3^{\circ} \mathrm{C} \quad 30$ minutes	
	Room temp 10~15 minutes	
	$3 \quad+155^{\circ} \mathrm{C} \pm 3^{\circ} \mathrm{C} \quad 30$ minutes	
	4 Room temp $10 \sim 15$ minutes	
Short - time overload JIS - C - 52025.5	Permanent resistance change after the application of a potential of 2.5 times RCWV or the max. overload voltage respectively specified in the above list, whichever less for 5 seconds.	Resistance change rate is $\begin{aligned} & N: \pm(1 \%+0.05 \Omega) \\ & S: \pm(2 \%+0.05 \Omega) \end{aligned}$ No evidence of mechanical damage
$\begin{aligned} & \text { Pulse overload } \\ & \text { JIS - C - } 52025.8 \end{aligned}$	Resistance change after 10,000 cycles (1 second "on", 25 seconds "off") at 4 times RCWV or the max. pulse overload voltage.	Resistance change rate is $\begin{aligned} & N: \pm(2 \%+0.05 \Omega) \\ & S: \pm(5 \%+0.05 \Omega) \end{aligned}$ No evidence of mechanical damage
Load life in humidity$\text { JIS - C - } 52027.9$	Resistance change after 1,000 hours (1.5 hours "on" 0.5 hour "off") at RCWV in a humidity chamber controlled at $40^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$ and 90 to 95% relative humidity.	Resistance value $\quad \Delta \mathrm{R} / \mathrm{R}$
		Less than $100 \mathrm{~K} \Omega \quad \pm 5 \%$
		$100 \mathrm{~K} \Omega$ or more $\pm 10 \%$
$\begin{gathered} \text { Load life } \\ \text { JIS-C }-52027.10 \end{gathered}$	Permanent resistance change after 1,000 hours operating at RCWV, with duty cycle of 1.5 hours "on", 0.5 hour "off" at $70^{\circ} \mathrm{C} \pm$ $2^{\circ} \mathrm{C}$ ambient.	Resistance value $\quad \mathbf{\Delta R} / \mathrm{R}$
		Less than $100 \mathrm{~K} \Omega \quad \pm 5 \%$
		$100 \mathrm{~K} \Omega$ or more $\pm 10 \%$
Terminal strength JIS - C - 52026.1	Direct load : Resistance to a 2.5 kgs direct load for 10 seconds in the direction of the longitudinal axis of the terminal leads. Twist test : Terminal leads shall be bent through 90 at point of about 6 mm from the body of the resistor and shall be rotated through 360° about the original axis of the bent terminal in alternating direction for a total of 3 rotations.	No evidence of mechanical damage
Resistance to soldering heat $\text { JIS - C - } 52026.4$	Permanent resistance change when leads immersed to 3.2 mm to 4.8 mm from the body in $350^{\circ} \mathrm{C} \pm 10^{\circ} \mathrm{C}$ solder for 3 ± 0.5 seconds	Resistance change rate is $\pm(1 \%+0.05 \mathrm{~W})$. No evidence of mechanical damage
Solderability JIS - C - 52026.5	The area covered with a new, smooth, clean, shiny and continuous surface free from concentrated pinholes. Test temp. of solder : $235^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ Dwell time in solder : $3+0.5 /-0$ seconds	95\% coverage Min.
Resistance to solvent $\text { JIS - C - } 52026.9$	Specimens shall be immersed in a bath of trichloroethane completely for 3 minutes with ultrasonic.	No deterioration of protective coatings and markings
Flame retardant $\text { JIS - C - 5202 } 7.12$	Resistors shall resist flaming or arcing when overloaded up to 16 times RCWV.	No evidence of flaming or arcing

[^0]
[^0]: *RCWV $=$ Rated Continuous Working Voltage $=\sqrt{\text { Rated Power } \times \text { Resistance Value }}$

