
General Specifications - SL

CAPACITORS - CLASS SL

These capacitors have wide temperature characteristics but still offer low loss and linear type TC's.

They are specially designed to be smaller alternative to standard Class I capacitors of linear temperature coefficient.

Typical application is RF tuning and decoupling.

DIMENSIONS

millimeters (inches)

Digit 9 of P.N. (ø)	D ± 2 (0.079)	T max.	Available Lead Spacing
А	4.0 (0.157)	3.0 (0.118)	A,B,D,E,O,R
В	5.0 (0.197)	3.0 (0.118)	A,B,D,E,O,R,X
С	6.0 (0.236)	3.0 (0.118)	A,B,C,D,E,O,R,X
D	7.0 (0.276)	3.0 (0.118)	A,B,C,D,E,O,R,X
Е	8.0 (0.315)	3.0 (0.118)	A,B,C,D,E,O,R,X

millimeters (inches)


Lead Spacing	Digit 8 of P.N.	
F		
2.5 (0.100)	D	_
5 (0.200)	А	0
6 (0.250)	Е	Х
7.5 (0.300)	В	R
10 (0.400)	С	W

PERFORMANCE CHARACTERISTICS

Measured at	$C_R \le 100 \text{ pF} \rightarrow 1 \text{MHz/1.0 Vrms / } 25^{\circ}\text{C}$ $C_R > 100 \text{ pF} \rightarrow 1 \text{kHz/0.3 Vrms / } 25^{\circ}\text{C}$
Dissipation Factor	$C_R \le 100 \text{ pF} \dots 0.25\%$ 1MHz @ 1.0 Vrms $C_R > 100 \text{ pF} \dots 1.0\%$ 100kHz @ 0.3 Vrms $C_R > 100 \text{ pF} \dots 0.25\%$ 1kHz @ 0.3 Vrms
Tolerance	$C_R < 10 \text{ pF} \rightarrow \pm 0.25 \text{ pF}, \pm 0.5 \text{ pF}$ $C_R \ge 10 \text{ pF} \rightarrow \pm 5\%, \pm 10\%, \pm 20\%$
Temperature Coefficient	+350 ppm1500 ppm (P350 N1500)
Insulation Resistance	@ V_R → ≥ 10 GΩ
Dielectric Strength NOTE: Charging current limited to 50 mA	$V_R = 100V \rightarrow Vt = 250V (DC)$ $V_R = 500V \rightarrow Vt = 1.25kV (DC)$
Operating Temperature Range (°C)	-30 +85
Climatic Category	30 / 085 / 21

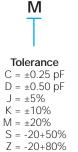
Note: Damp Heat Steady State: 90... 95% R.H. 40°C / 21 days. No voltage to be applied.

SL – CAPACITANCE VS. DISC DIAMETER PHENOLIC COATED

millimeters (inches)

Temp. Coefficient		
Digits 1,2,3 of P.N.	5KK	5KQ
Rated Voltage	100 VDC	500 VDC
C _R (pF) (V _R)	50 VAC	100 VAC
1.0		
1.5		
2.2		
3.3		
4.7		
5.6		
8.2		
10		
12		
15	4.0 (0.157)	4.0 (0.157)
18		
22		
33		
47		
56		
68		
82		
100		
150		
180		
220		
270		
330	5.0 (0.197)	6.0 (0.236)
470		
560	6.0 (0.236)	
680	•	7.0 (0.276)
820	7.0 (0.276)	
1000		8.0 (0.315)

Diameter (ϕ) = 9th Part Number Digit



Ordering Code

HOW TO ORDER 5 0 Q 222 **General Purpose Professional Switch Mode** Rated Voltage (dc) Capacitance 222 = 2.2 nF Safety D = 16V 5A = NP0/I6A = NPO / IF = 25V*5B = P100 / I *6B = P100 / I H = 50V*5C = N150 / I *6C = N150 / IK = 100V*5D = N220 / I *5E = N330 / I *6D = N220 / IN = SAFETY Capacitance = TPC code Capacitance = TPC code *6E = N330 / I O = SAFETY *5F = N470 / I100pF = 101 1 pF = 1R0*6F = N470 / I 5G = N750 / IQ = 500V1.2pF = 1R2120pF = 1216G = N750 / IR = 1000V1.5pF = 1R5 1.8pF = 1R8 150pF = 151 180pF = 181 5H = N1500 / I*6H = N1500 / I S = 2000V*5I = N2200 / I *6I = N2200 / I T = 3000V*5J = N4700 / I2.2pF = 2R2220pF = 2216J = N4700 / I U = 4000V5K = SL2.7pF = 2R7270pF = 27161 = SAFETY 5M = Y5E / II V = SAFETY3.9pF = 3R9330pF = 33162 = SAFETY W = 5000V4.7pF = 4R7390pF = 391 5N = Y5F / II65 = SAFETY 50 = Y5P / II *X = 6000V5.6pF = 5R6470pF = 471*5P = Y5R / II 67 = Y5U / SM*Y = 7500V6.8pF = 6R8560pF = 56168 = Y5V / SM8.2pF = 8R2*5Q = Y5T / II 680pF = 681 6L = Y5P / SM5S = Y5U / II 10pF = 100820pF = 8216M = X5E / II5T = Y5V / II12pF = 120 15pF = 150 1nF = 102 1.2nF = 122 6N = X5F / II5U = Z5V / II60 = X5P / II*5V = Z4V / III18pF = 180 1.8nF = 182*6P = X5R / II 5W = Y5P / III22pF = 2202.2nF = 2225Y = Y5U / III *6Q = X5T / II27pF = 2702.7nF = 2726S = X5U / II5Z = Y5V / III33pF = 3303.3nF = 3326T = X5V / II3.9nF = 39239pF = 3906U = Z5V / II47pF = 4704.7nF = 472*6V = Z4V / III 6W = Y5P / III 56pF = 5605.6nF = 56268pF = 6806.8nF = 6826Y = Y5U / III 82pF = 8208.2nF = 8226Z = Y5V / III10nF = 10315nF = 15322nF = 22333nF = 333*Upon Request 47nF = 473100nF = 104200nF = 204

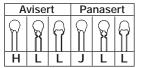
P = 0+100%

*W

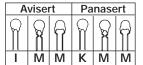
Ε

Т
Capacitor Diameter ± 2 (0.079)
A = 4 (0.157)
B = 5 (0.197)
C = 6 (0.236)
D = 7 (0.276)
E = 8 (0.315)
F = 9 (0.354)
G = 10 (0.394)
H = 11 (0.433)
J = 13 (0.512)
K = 15 (0.591)
$M^* = 19 (0.748)$
Vire 0.8 (0.031) recommended
` ,

Cardboard Strips


A = 0000

Bulk


 $E = 5 (0.197) \pm 1 (0.039)$ free wire length $C = 10 (0.394) \pm 1 (0.039)$ free wire length $D = 25 (0.984) \pm 1 (0.039)$ free wire length

Taping

	Lead Forming mm inches		\bigcap	\bigcap	
	2.5 ±0.5	.1 ± .025	D	-	-
	5 +0.6 5 -0.2	.2 ± .025	А	0	N
	6 ^{+0.6} -0.2	.25 ± .025	E	Х	_
	7.5 +1 -0.5	.3 ± .05	В	R	Q
	10 ^{+0.5} -1.0	.4 ± .05	С	W	_
	12.5 +1 -0.5	.5 ± .05	Р	_	_

Diam ≤9 (0.354) and F = 5.00 (0.197)

Coating does not surpass the bend

Low Voltage

General Q = Waxed phenolic (General Purpose) A = Phenolic

S = Epoxy (Professional) cap. diameter ≤ 8 (0.315)

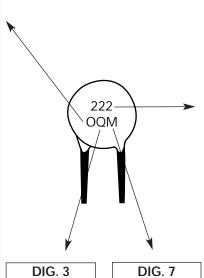
D = Epoxy (Professional) cap. diameter > 8 (0.315)

High Voltage

0.6 C = Epoxy wire diameter $(0.024)^{\pm} (0.004)$

8.0 0.1 I = Epoxy wire diameter $(0.031)^{\pm} (0.004)$

0.6 L = Phenolic wire diameter $(0.024) \pm (0.004)$


Please note that not all code combinations are either possible or available.

Marking

DIG. 2				
0				
TC / (Class			
General Purpose	Professional			
A = NP0 / I	A = NP0 / I			
*B = P100 / I	B = P100 / I			
*C = N150 / I	C = N150 / I			
*D = N220 / I	D = N220 / I			
*E = N330 / I	E = N330 / I			
*F = N470 / I	F = N470 / I			
G = N750 / I	G = N750 / I			
H = N1500 / I	H = N1500 / I			
*I = N2200 / I	I = N2200 / I			
*J = N4700 / I	J = N4700 / I			
K = SL	7 = Y5U / SM			
M = Y5E / II	8 = Y5V / SM			
N = Y5F / II	L = Y5P / SM			
O = Y5P / II	M = X5E / II			
P = Y5R / II	N = X5F / II			
Q = Y5T / II	O = X5P / II			
S = Y5U / II	P = X5R / II			
T = Y5V / II	Q = X5T / II			
U = Z5V / II	S = X5U / II			
V = Z4V / III	T = X5V / II			
*W = Y5P / II	U = Z5V / II			
*X = Y5R / II	V = Z4V / III			
Y = Y5U / II	W = Y5P / III			
Z = Y5V / II	X = Y5R / III			
	Y = Y5U / III			
	Z = Y5V / III			

Logo: Only in diam. ≥ 6mm

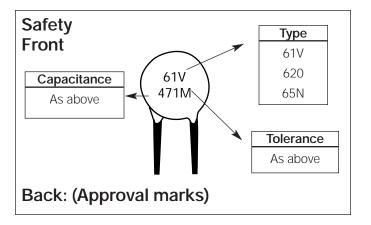
Rated Voltage D = 16VF = 25VH = 50VK = 100VQ = 500V

R = 1000V

	M			
	To	olera	nce	
С	=	±0.2	25pF	
D	=	±0.5	рF	
J	=	±5%)	
Κ	=	±10	%	
М	=	±20°	%	

S = -20 + 50%

Z = -20 + 80%P = 0 + 100%

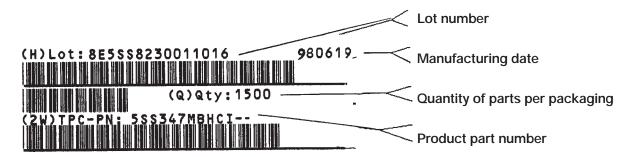

Capacitance	EIA
1pF = 109	100pF = 101
1.2pF = 129	120pF = 121
1.5pF = 159	150pF = 151
1.8pF = 189	180pF = 181
2.2pF = 229	220pF = 221
2.7pF = 279	270pF = 271
3.9pF = 399	390pF = 391
4.7pF = 479	470pF = 471
5.6pF = 569	560pF = 561
6.8pF = 689	680pF = 681
8.2pF = 829	820pF = 821
10pF = 100	1nF = 102
12pF = 120	1.2nF = 122
15pF = 150	1.8nF = 182
18pF = 180	2.2nF = 222
22pF = 220	2.7nF = 272
27pF = 270	3.9nF = 392
39pF = 390	4.7nF = 472
47pF = 470	5.6nF = 562
56pF = 560	6.8nF = 682
68pF = 680	8.2nF = 822
82pF = 820	10nF = 103
	15nF = 153
	22nF = 223
	33nF = 333
	47nF = 473
	100nF = 104
	200nF = 204

*Upor

	S = 2000\
- Daniel I	T = 3000\
on Request	U = 4000\
	W = 5000\
	X = 6000\
	Y = 7500\

TC – Temperature coefficient.

DIG – for better understanding, check pages 3 and 4.



Packaging

IDENTIFICATION AND TRACEABILITY

On all TPC ceramic capacitors packages, you will find a bar code label with the following information:

TAPED PARTS QUANTITY TABLE

millimeters (inches)

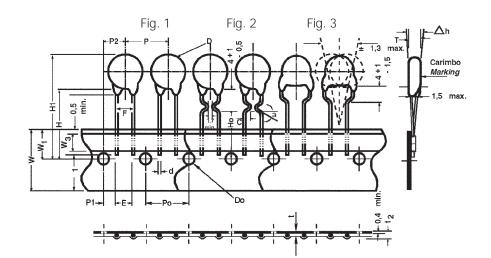
F	Rated Voltage	Diameter	Quantities	
	(Vr)	D	Ammopack	Reel
	Vr <= 500V	D ≦ 7 (0.276)	2000	2500
		7 < D ≦ 11 (0.433)	2000	2000
	500V <vr<=2kv< th=""><th>D ≤ 11 (0.433)</th><th>1500</th><th>2000</th></vr<=2kv<>	D ≤ 11 (0.433)	1500	2000
	2KV <vr=5kv< th=""><th>D ≦ 11 (0.433)</th><th>1000</th><th>1500</th></vr=5kv<>	D ≦ 11 (0.433)	1000	1500

CARDBOARD STRIPS QUANTITY TABLE

millimeters (inches)

Rated Voltage	Diameter	Lead Space	
(Vr)	D	< = 5 (0.197)	> 5 (0.197)
Vr <= 500V	D ≤ 8 (0.315)	2500	1500
	8 (0.315) ≦ D≦ 11 (0.433)	1500	-
	8 (0.315) ≤ D≤ 13 (0.512)	-	1000
	11 (0.433) ≤ D≤ 15 (0.591)	1000	-
	13 (0.512) ≦ D≦ 19 (0.748)	-	500
	D ≤ 19 (0.748)	500	-
500V <vr<=2kv< td=""><td>D ≤ 9 (0.354)</td><td>1500</td><td>1000</td></vr<=2kv<>	D ≤ 9 (0.354)	1500	1000
	9 (0.354) ≤ D ≤ 11 (0.433)	-	1000
	9 (0.354) ≤ D ≤ 13 (0.512)	1000	-
	11 (0.433) ≤ D ≤ 19 (0.748)	-	500
	13 (0.512) ≤ D ≤ 19 (0.748)	500	-
2KV <vr<=5kv< td=""><td>D ≤ 9 (0.354)</td><td>1500</td><td>-</td></vr<=5kv<>	D ≤ 9 (0.354)	1500	-
Safety 65N 62O	D ≤ 11 (0.433)	-	1000
	D ≤ 13 (0.512)	500	500
Safety	D ≤ 6 (0.236)	1500	1500
61V	$7 (0.275) \le D \le 9 (0.354)$	1000	1000
	9 (0.354) ≦ D	500	500

Quantities for other package alternative, upon request.


Tape and Reel Specifications


There are two types of taped disc ceramic capacitors: Straight or crimped leads.

Both types can be shipped on reels or ammopack.

The standard packaging quantities are shown bellow:

millimeters (inches)

Maximum pull force during insertion and lead cut

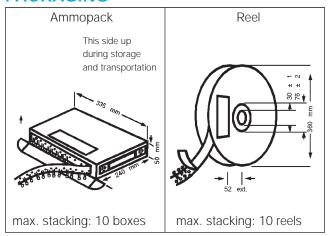
	F_1	F_2
4 (0.157) ≤ D < 6 (0.236)	12N	20N
$D \ge 6 (0.236)$	20N	25N

Digit 11	Available Tapings	Digit 9
L M	Sizes $4 (0.157) \le D \le 11 (0.433)$	А Н
J H K I	Sizes $6 (0.236) \le D \le 11 (0.433)$	C H

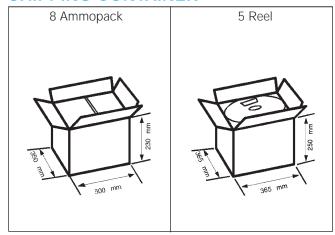
TPC Code Digit 11

Packaging	Avisert	Panasert	
Reel	H L L L FIGURE 1 FIGURE 2 FIGURE 3	FIGURE 1 FIGURE 2 FIGURE 3	
Ammopack	FIGURE 1 FIGURE 2 FIGURE 3	K M M FIGURE 1 FIGURE 2 FIGURE 3	

Figure 2: Inside Crimp 100V... 1000V Figure 3: Outside Crimp 1000V



Tape and Reel Specifications


millimeters (inches)

		Straight Leads		Crimped
		Figure 1		Figure 2 & 3
Description of Symbols		A (Avisert)	P (Panasert)	Avisert & Panasert
Crimp angle	∞	_	_	20°45°
Crimp length	С	_	_	1.7 min.
Lead diameter	d	0.60 ± 0.1		
Disc diameter	D	11 max.		
Lead hole diameter	Do	4.0 ± 0.2		
Disc thickness	Т	See Catalog		
Lead spacing	F	5.0 ^{+0.6} _{-0.2}		
Component alignment, front-rear	Δh	0 ± 1		
Height of component from tape center	Н	19.5 ± 0.5	16.5 ± 0.5 - 0	_
Height from tape center to crimp	Но	_	_	16 + 0.5 - 0
Component height	H1	32.25 max.	>23.5 <32.25	32.25 max.
Distance from component leads to tape bottom	ℓ_1	12 max.		
Tape width	W	18 +1 -0.5		
Bonding tape width	W_3	5.5 min.		
Feed hole position	W ₁	9.0 ± 0.5		
Pitch between discs	Р	12.7 ± 1		
Feed hole pitch	Ро	12.7 ± 0.3		
Hole center to lead	P1	3.85 ± 0.7		
Feed hole center to component center	P2	6.35 ± 1		
Tape + bonding tape thickness	t	0.7 ± 0.2		
Total tape thickness. including lead	t ₂	1.5 max.		

PACKAGING

SHIPPING CONTAINER

