

7502

Motor Driver ICs

SANKEN ELECTRIC CO.,LTD.

Contents

Selection Guide
Product Index by Part Number 3
Notes on SLA7000/SMA7000 Series
Features/Applications/Handling Precautions/Constant Current Chopper Method 4
2-Phase Stepper Motor Unipolar Driver ICs
2-Phase Excitation
SLA7022MU/SLA7029M/SMA7022MU/SMA7029M5
SMA7036M
2-Phase/1-2 Phase Excitation
SLA7027MU/SLA7024M/SLA7026M
SLA7032M/SLA7033M
SDK03M
UCN5804B
2W1-2 Phase Excitation/Micro-step Support
SLA7042M/SLA7044M
Serial Signal Generator IC for SLA7042M and SLA7044M
PG001M
2-Phase Stepper Motor Bipolar Driver ICs
2-Phase/1-2 Phase Excitation
A3966SA/SLB
A3966SA/SLB
A3964SLB
A3964SLB58A3953SB/SLB60A2918SW68A3952SB/SLB/SW702-Phase/1-2 Phase/W1-2 Phase Excitation70UDN2916B/LB78UDN2917EB842W1-2 Phase Excitation/Micro-step Support84A3955SB/SLB884W1-2 Phase Excitation/Micro-step Support8843957SLB943-Phase Stepper Motor Driver ICs94Star Connection/Delta Connection98
A3964SLB 58 A3953SB/SLB 60 A2918SW 68 A3952SB/SLB/SW 68 A3952SB/SLB/SW 70 2-Phase/1-2 Phase/W1-2 Phase Excitation 70 UDN2916B/LB 78 UDN2917EB 84 2W1-2 Phase Excitation/Micro-step Support 84 A3955SB/SLB 88 4W1-2 Phase Excitation/Micro-step Support 84 3957SLB 94 3-Phase Stepper Motor Driver ICs 94 5-Phase Stepper Motor Driver ICs 98 5-Phase Stepper Motor Driver ICs 98

Selection Guide

■2-Phase Stepper Motor Unipolar Driver ICs

Excitation		C	output current (A)		Motor supply	Dookogo	Domoriko	Daga
method	1	1.2	1.25	1.5	3	voltage (V)	Package	Remarks	Page
	SLA7022MU					to 46	ZIP15Pin		5
0 nhaaa	SMA7022MU					to 46	ZIP15Pin		5
2-phase				SLA7029M		to 46	ZIP15Pin		5
excitation				SMA7029M		to 46	ZIP15Pin		5
				SMA7036M		to 46	ZIP15Pin		12
	SDK03M					to 46	SMD16Pin	1 motor driven by 2 packages	36
	SLA7027MU					to 46	ZIP18Pin		20
2-phase/			UCN5804B			to 35	DIP16Pin	Internal sequencer, constant voltage driver	42
1-2 phase				SLA7024M		to 46	ZIP18Pin		20
excitation				SLA7032M		to 46	ZIP18Pin		28
					SLA7026M	to 46	ZIP18Pin		20
-					SLA7033M	to 46	ZIP18Pin		28
2W1-2 phase		SLA7042M				to 46	ZIP18Pin		44
Micro-step support					SLA7044M	to 46	ZIP18Pin		44

■Serial Signal Generator IC for SLA704xM

	Supply voltage (V)	Package	page
PG001M	4.5 to 5.5	DIP16Pin	48

■2-Phase Stepper Motor Bipolar Driver ICs

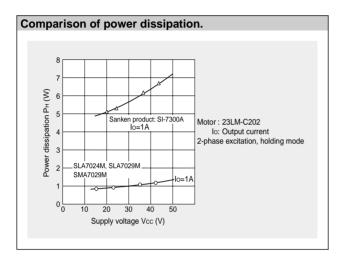
Excitation			Output	t current (A)			Motor supply			_
method	0.65	0.75	0.8	1.3	1.5	2	voltage (V)	Package	Remarks	Page
	A3966SA						Vcc to 30	DIP16Pin		54
	A3966SLB						Vcc to 30	SOP16Pin		54
			A3964SLB				Vcc to 30	SOP20Pin		58
				A3953SB			Vcc to 50	DIP16Pin	One motor driven by 2 ICs	60
2-phase/				A3953SLB			Vcc to 50	SOP16Pin	One motor driven by 2 ICs	60
1-2 phase					A2918SW		10 to 45	ZIP18Pin		68
excitation						A3952SB	Vcc to 50	DIP16Pin	One motor driven by 2 ICs	70
						A3952SLB	Vcc to 50	SOP16Pin	One motor driven by 2 ICs	70
						A3952SW	Vcc to 50	SIP12Pin	One motor driven by 2 ICs	70
2-phase/1-2		UDN2916B					10 to 45	DIP24Pin		78
phase/W1-2		UDN2916LB					10 to 45	SOP24Pin		78
phase excitation					UDN2917EB		10 to 45	PLCC44Pin		84
2W1-2 phase excitation/					A3955SB		Vcc to 50	DIP16Pin	One motor driven by 2 ICs	88
micro-step support					A3955SLB		Vcc to 50	SOP16Pin	One motor driven by 2 ICs	88
4W1-2 phase excitation/micro- step support					A3957SLB		Vcc to 50	SOP24Pin	One motor driven by 2 ICs	94

■3-Phase Stepper Motor Driver Control ICs

Excitation method	Part No.	Motor supply voltage (V)	Package	Remarks	Page
2-phase/	SI-7600	15 to 45	SOP20Pin	Use with SLA5017 or others	98
2-3 phase excitation	SI-7600D	15 10 45	DIP20Pin	Use with SEASOTT of others	90

■5-Phase Stepper Motor Driver Control ICs

Drive method	Part No.	Motor supply voltage (V)	Package	Remarks	Page
Pentagon connection	SI-7502	15 to 42	Powder coating 27 pin	Use with SLA6503 and SLA5011	104


Product Index by Part Number

Part No.	Output current (A)	Supply voltage (V)	Drive method	Excitation method	Package	Remarks	Page
A2918SW	1.5	10 to 45	Bipolar	2-phase/1-2 phase excitation	ZIP18pin		68
A3952SB	2	Vcc to 50	Bipolar	2-phase/1-2 phase excitation	DIP16pin	One motor driven by 2 ICs	70
A3952SLB	2	Vcc to 50	Bipolar	2-phase/1-2 phase excitation	SOP16pin	One motor driven by 2 ICs	70
A3952SW	2	Vcc to 50	Bipolar	2-phase/1-2 phase excitation	SIP12pin	One motor driven by 2 ICs	70
A3953SB	1.3	Vcc to 50	Bipolar	2-phase/1-2 phase excitation	DIP16pin	One motor driven by 2 ICs	60
A3953SLB	1.3	Vcc to 50	Bipolar	2-phase/1-2 phase excitation	SOP16pin	One motor driven by 2 ICs	60
A3955SB	1.5	Vcc to 50	Bipolar	2W/1-2 phase micro-step support	DIP16pin	One motor driven by 2 ICs	88
A3955SLB	1.5	Vcc to 50	Bipolar	2W/1-2 phase micro-step support	SOP16pin	One motor driven by 2 ICs	88
A3957SLB	1.5	Vcc to 50	Bipolar	4W/1-2 phase micro-step support	SOP24pin	One motor driven by 2 ICs	94
A3964SLB	0.8	Vcc to 30	Bipolar	2-phase/1-2 phase excitation	SOP20pin		58
A3966SA	0.65	Vcc to 30	Bipolar	2-phase/1-2 phase excitation	DIP16pin		54
A3966SLB	0.65	Vcc to 30	Bipolar	2-phase/1-2 phase excitation	SOP16pin		54
PG001M	-	4.5 to 5.5	-	-	DIP16pin	Serial signal generator IC for SLA704xM	48
SDK03M	1	to 46	Unipolar	2-phase/1-2 phase excitation	SMD16pin	One motor driven by 2 ICs	36
SI-7502	-	15 to 42	Pentagon connection	5-phase excitation	Powder coat 27pin	Control IC	104
SI-7600	-	15 to 45	Star connection/ delta connection	2-phase/2-3 phase excitation	SOP20pin	Control IC	98
SI-7600D	-	15 to 45	Star connection/ delta connection	2-phase/2-3 phase excitation	DIP20pin	Control IC	98
SLA7022MU	1	to 46	Unipolar	2-phase excitation	ZIP15pin		5
SLA7024M	1.5	to 46	Unipolar	2-phase/1-2 phase excitation	ZIP18pin		20
SLA7026M	3	to 46	Unipolar	2-phase/1-2 phase excitation	ZIP18pin		20
SLA7027MU	1	to 46	Unipolar	2-phase/1-2 phase excitation	ZIP18pin		20
SLA7029M	1.5	to 46	Unipolar	2-phase excitation	ZIP15pin		5
SLA7032M	1.5	to 46	Unipolar	2-phase/1-2 phase excitation	ZIP18pin	SLA7024M equivalent	28
SLA7033M	3	to 46	Unipolar	2-phase/1-2 phase excitation	ZIP18pin	SLA7026M equivalent	28
SLA7042M	1.2	to 46	Unipolar	2W/1-2 phase micro-step support	ZIP18pin		44
SLA7044M	3	to 46	Unipolar	2W/1-2 phase micro-step support	ZIP18pin		44
SMA7022MU	1	to 46	Unipolar	2-phase excitation	ZIP15pin		5
SMA7029M	1.5	to 46	Unipolar	2-phase excitation	ZIP15pin		5
SMA7036M	1.5	to 46	Unipolar	2-phase excitation	ZIP15pin	SMA7029M equivalent	12
UCN5804B	1.25	to 35	Unipolar	2-phase/1-2 phase excitation	DIP16pin	Internal sequencer, constant voltage driver	42
UDN2916B	0.75	10 to 45	Bipolar	2-phase/1-2 phase/W1-2 phase excitation	DIP24pin		78
UDN2916LB	0.75	10 to 45	Bipolar	2-phase/1-2 phase/W1-2 phase excitation	SOP24pin		78
UDN2917EB	1.5	10 to 45	Bipolar	2-phase/1-2 phase/W1-2 phase excitation	PLCC44pin		84

Notes on SLA7000/SMA7000 Series

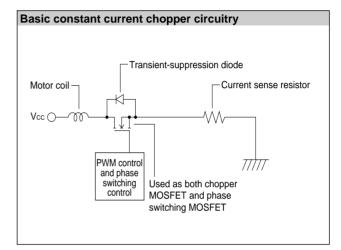
■Features

- Employs a constant-current chopper control method.
- Integrates power MOSFETs and monolithic chip control circuitry in a single package.
- One-fifth the size and one-fourth the power dissipation compared with conventional SANKEN ICs

- Eliminates the need for heatsink thereby decreasing part-insertion workload and increasing flexibility in mounting.
- Reduces the size of power supplies required.
- Lineup: 2-phase excitation, 2-phase/1-2 phase excitation, 2W1-2 phase micro-step support ICs

■Applications

The SLA7000 and SMA7000 series are ideal for the following applications.


- Sheet feeders and carriage drivers in printers.
- Sheet feeders for PPC and facsimile machines.
- Numeric control equipment.
- Industrial robots.

■Handling Precautions

- Recommended screw torque
 0.588 to 0.784 [N•m](6.0 to 8.0 [kgf•cm])
- Recommended silicon grease
 Shin-Etsu Chemical Co., Ltd.: G746
 GE Toshiba Silicone Co., Ltd.: YG-6260
 Dow Corning Toray Silicone Co., Ltd.: SC102
 Please be careful when selecting silicone grease since the oil in some grease may penetrate the product, which will result in an extremely short product life.

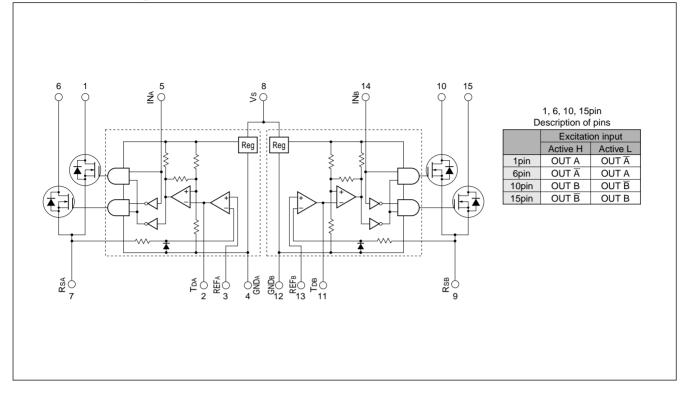
Constant Current Chopper Method

In the constant current chopper method, a voltage higher than the rated voltage of the motor is applied and when the current rises, the chopper transistor is switched on thereby shortening the current rise time. After the current rises, the coil current is held by the PWM chopper to a constant current level determined by the current sense resistor. This method has the advantage of improving the motor's high frequency response and the efficiency response and efficiency of the driver circuitry.

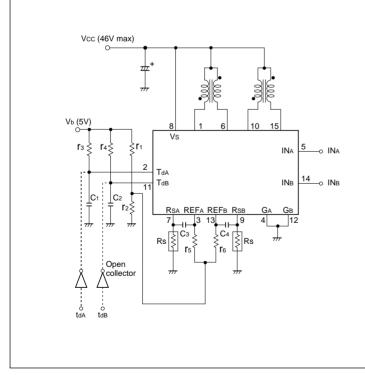
(Ta=25°C)

(Ta=25°C)

2-Phase Stepper Motor Unipolar Driver ICs


■Absolute Maximum Ratings

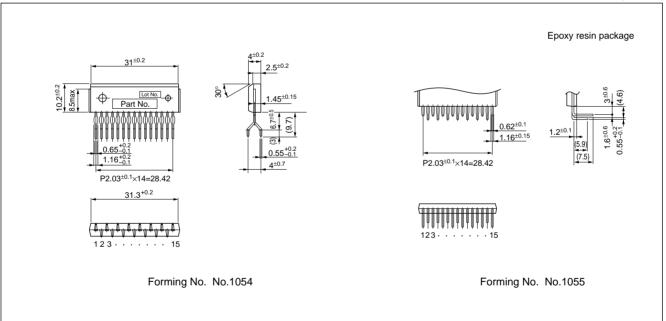
	0.1.1		Rat	ings		11.30		
Parameter	Symbol	SLA7022MU	SLA7029M	SMA7022MU	SMA7029M	Units		
Motor supply voltage	Vcc		4	6	V			
FET Drain-Source voltage	VDSS		100					
Control supply voltage	Vs		V					
TTL input voltage	Vin		V					
Reference voltage	VREF		:	2		V		
Output current	lo	1	1.5	1	1.5	A		
Dower dissignation	P _{D1}	4.5 (Withou	it Heatsink)	4.0 (Withou	it Heatsink)	W		
Power dissipation	P _{D2}	35 (T c:	=25°C)	28(Tc=	W			
Channel temperature	Tch	+150				°C		
Storage temperature	Tstg		-40 to	o +150		°C		


■Electrical Characteristics

								Rati	ings						
	Parameter	Symbol	S	LA7022N	1U	5	SLA7029		-	MA7022	ЛU	S	SMA7029	M	Units
			min	typ	max	min	typ	max	min	typ	max	min	typ	max	1
		ls		10	15		10	15		10	15		10	15	
	Control supply current	Condition		Vs=44V			Vs=44V			Vs=44V			Vs=44V		mA
	Control supply voltage	Vs	10	24	44	10	24	44	10	24	44	10	24	44	V
	FET Drain-Source	Vdss	100			100			100			100			v
	voltage	Condition	Vs=4	44V, Ioss=	250 µA	Vs=4	4V, Ioss=	250 μA	Vs=4	14V, Ioss=	≡250 μA	Vs=4	44V, Ioss=	:250 μA	V .
	FET ON voltage	VDS			0.85			0.6			0.85			0.6	v
		Condition	lo=	=1A, Vs=1	4V	lo=	1A, Vs=1	4V	lo=	1A, Vs=1	14V	lo=	=1A, Vs=1	14V	v
	FET drain leakage current	loss			4			4			4			4	mA
s		Condition	VDSS	=100V, V	1	VDSS	=100V, V	s=44V	VDSS	=100V, V	1	VDSS	=100V, V	's=44V	
stic	FET diode forward	Vsd			1.2			1.1			1.2			1.1	v
DC characteristics	voltage	Condition		ID=1A			ID=1A	1		l⊳=1A			I⊳=1A	1	· ·
	TTL input current	Ін			40			40			40			40	μA
		Condition	ViH=	2.4V, Vs=		Vih=	2.4V, Vs=		ViH=	2.4V, Vs		ViH=	2.4V, Vs=		μπ
В		Iı			-0.8			-0.8			-0.8			-0.8	mA
		Condition		0.4V, Vs=	=44V		0.4V, Vs=	44V		0.4V, Vs	=44V		0.4V, Vs=	=44V	
		ViH	2			2			2			2			4
	TTL input voltage	Condition		ID=1A			ID=1A			I₀=1A			ID=1A		v
	(Active High)	VIL			0.8			0.8		/ /	0.8			0.8	-
		Condition		Voss=100	V		/bss=100\	/		Voss=100	V		Voss=100	V	
	TTL input voltage	VIH Condition	2	VDSS=100		2	/pss=100\	,	2	V⊳ss=100		2	Voss=100		-
	(Active Low)	VIL		VDSS=100	v 0.8	\ \	/DSS=100	0.8		VDSS=100	0.8	``	VDSS=100	v 0.8	V
	(Active Low)	Condition		ID=1A	0.0		ID=1A	0.0		ID=1A	0.0		ID=1A	0.0	-
(0		Tr		0.5			0.5	1		0.5	1		0.5	1	+
stic		Condition	Ve-	=24V, ID=0) 84	Ve	=24V, ID=	14	Ve-	:24V, ID=	 84	Ve	=24V, I _D =	-14	-
teri		Tstg	¥3-	0.7		V 3.	0.7		V3-	0.7	0.0/1	V 3	0.7		-
Irac	Switching time	Condition	Vs	=24V, ID=0) 8A	Vs	=24V, I _D =	1A	Vs=	:24V, Io=	0.8A	Vs	=24V, I _D =	1A	μs
cha		Tf	20-	0.1			0.1		,	0.1			0.1	.	1
AC characteristics		Condition	Vs=	=24V, ID=0).8A	Vs	=24V, Ic=	1A	Vs=	:24V, ID=	0.8A	Vs	⊨24V, I⊳=	=1A	1
4			VS=	-∠+v, iD=C	A	VS	-∠4v, iD=	ыл	VS=	-∠+v, i0=	0.04	vs vs	–∠4v, ID=	- 17	<u> </u>

Internal Block Diagram

Diagram of Standard External Circuit (Recommended Circuit Constants)



				bha	-				har	ſ		
clock	(0		1		2		3		0		1
INA	H	Н		Н		L		L	I	H		Н
INв	I	L	I	Н		Н		L		L		Н
			1-2	pha	ase	ex	cita	tior	٦			
clock	0	1	2	3	4	5	6	7	0	1	2	3
INA	н	н	н	Н	L	L	L	L	Н	н	Н	н
tdA	L	L	L	Н	L	L	L	н	L	L	L	н
INв	L	L	н	Н	н	н	L	L	L	L	н	н
tdв	L	Н	L	L	L	Н	L	L	L	Н	L	L
INA H H H L L L L H H H tda L L L H												

(Unit: mm)

■External Dimensions SLA7022MU/SLA7029M (Unit: mm) 31^{±0.2} Epoxy resin package *φ*3.2^{±0.15} 24.4^{±0.2} ¢3.2^{±0.15}×3.8 4.8^{±0.2} 16.4^{±0.2} 1.7^{±0.1} ď θ 16^{±0.2} **13**^{±0.2} Part No. g±0.2 $2.45^{\pm 0.2}$ Lot No. ₩<u>0.65-0</u> R-End ... 9.7 <u></u> 1.15+0.2 2.2 0.65+0.2 1.15+0.2 $6.3^{\pm 0.6}$ 0.55-0.1 $7.5^{\pm 0.6}$ 4^{±0.7} 14×P2.03^{±0.4}=28.42^{±0.8} 14×P2.03^{±0.7}=28.42^{±1.0} 31.3^{±0.2} JHHHHHHHHHH <u>ᠳᠣ᠋ᠴᠴᠳᠼᠼᠼᠼᠼᠼ</u> 123 15 123 15 Forming No. No.853 Forming No. No.855

■External Dimensions SMA7022MU/SMA7029MA

■Determining the Output Current

Fig. 1 shows the waveform of the output current (motor coil current). The method of determining the peak value of the output current (Io) based on this waveform is shown below.

2-Phase Stepper Motor Unipolar Driver ICs (2-Phase Excitation)

(Parameters for determining the output current $\ensuremath{\mathrm{lo}}\xspace)$

Vb: Reference supply voltage

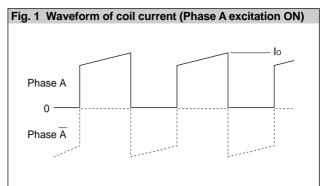
Application Notes

- r1,r2: Voltage-divider resistors for the reference supply voltage
- Rs: Current sense resistor
- (1) Normal rotation mode

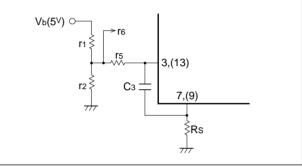
Io is determined as follows when current flows at the maximum level during motor rotation. (See Fig.2.)

$$I_{O} \cong \frac{r_{2}}{r_{1}+r_{2}} \bullet \frac{V_{b}}{R_{s}} \qquad (1)$$

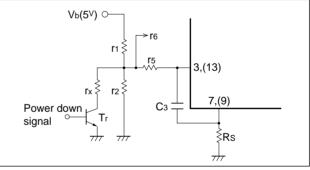
(2) Power down mode


The circuit in Fig.3 (rx and Tr) is added in order to decrease the coil current. Io is then determined as follows.

$$I_{OPD} \cong \frac{1}{1 + \frac{r_1(r_2 + r_X)}{r_2 \bullet r_X}} \bullet \frac{V_b}{R_s} \qquad (2)$$


Equation (2) can be modified to obtain equation to determine rx.

$$r_{x=} \frac{1}{\frac{1}{r_1} \left(\frac{V_b}{R_s \bullet I_{OPD}} - 1 \right) - \frac{1}{r_2}}$$


Fig. 4 and 5 show the graphs of equations (1) and (2) respectively.

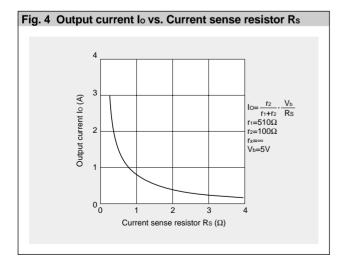
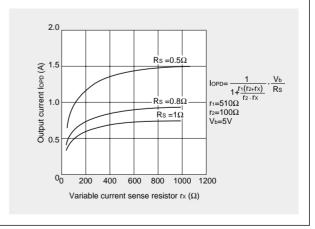


Fig. 2 Normal mode

Fig. 3 Power down mode



(NOTE)

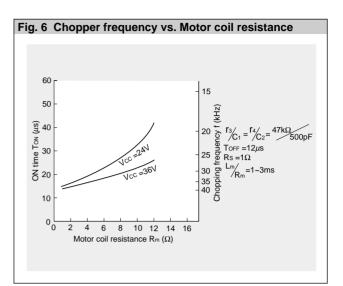
Ringing noise is produced in the current sense resistor R_s when the MOSFET is switched ON and OFF by chopping. This noise is also generated in feedback signals from R_s which may therefore cause the comparator to malfunction. To prevent chopping malfunctions, $r_s(r_6)$ and $C_3(C_4)$ are added to act as a noise filter.

Fig. 5 Output current IOPD vs. Variable current sense resistor rx

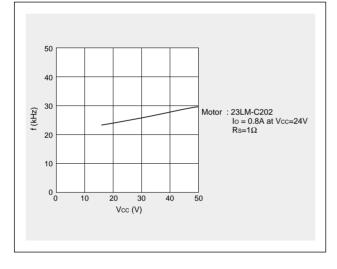
However, when the values of these constants are increased, the response from $R_{\rm S}$ to the comparator becomes slow. Hence the value of the output current $l_{\rm O}$ is somewhat higher than the calculated value.

Determining the chopper frequency

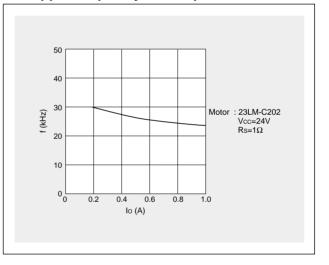
Determining TOFF


The SLA7000M and SMA7000M series are self-excited choppers. The chopping OFF time T_{OFF} is fixed by r_3/C_1 and r_4/C_2 connected to terminal Td.

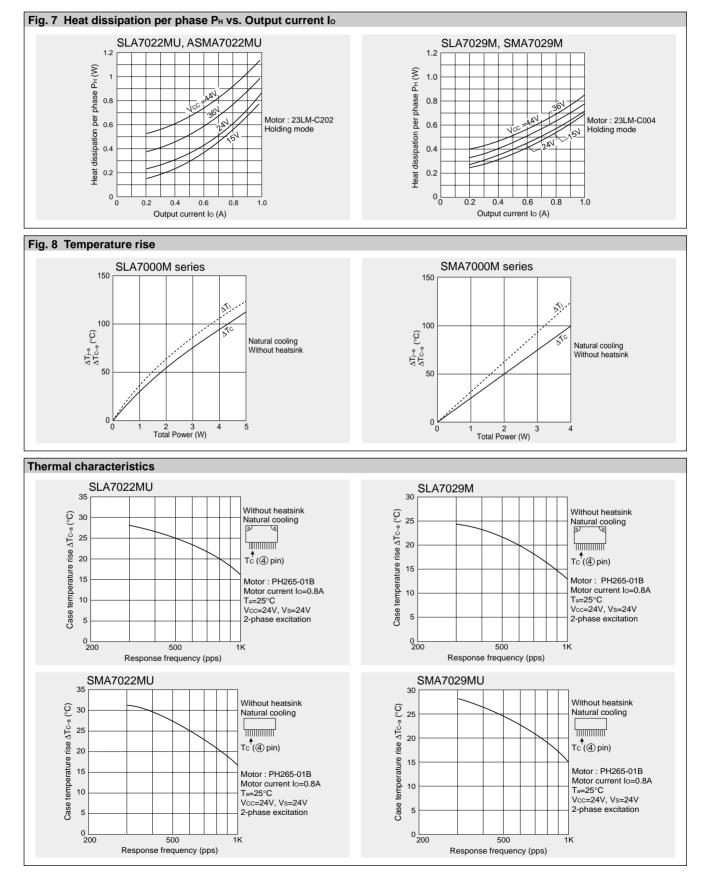
 $T_{\mbox{\scriptsize OFF}}$ can be calculated using the following formula:

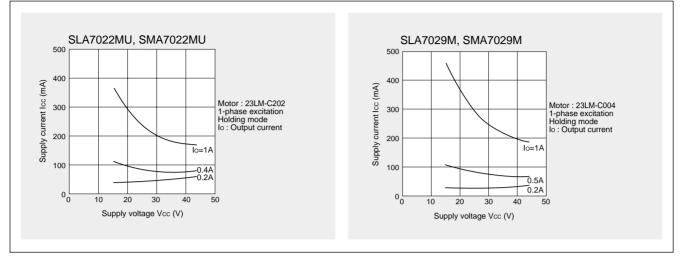

$$T_{\text{OFF}} = -r_3 \bullet C_1 \ell_n \left(1 - \frac{2}{V_b}\right) = -r_4 \bullet C_2 \ell_n \left(1 - \frac{2}{V_b}\right)$$

The circuit constants and the $\mathsf{T}_{\mathsf{OFF}}$ value shown below are recommended.

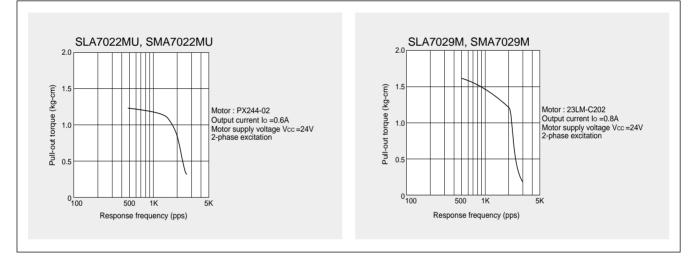

 $T_{\text{OFF}} = 12 \mu s$ at r₃=47k Ω , C₁=500pF, V_b=5V

Chopper frequency vs. Supply voltage


Chopper frequency vs. Output current


■Thermal Design

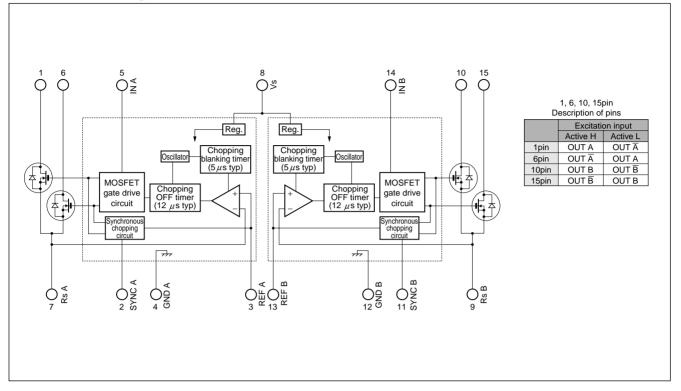
An outline of the method for calculating heat dissipation is shown below.


- (1)Obtain the value of PH that corresponds to the motor coil current lo from Fig. 7 "Heat dissipation per phase PH vs. Output current lo."
- (2) The power dissipation P_{diss} is obtained using the following formula. 2-phase excitation: P_{diss} \cong 2P_H+0.015×V_S (W) 1-2 phase excitation: P_{diss} $\cong \frac{3}{2}$ P_H+0.015×V_S (W)
- (3) Obtain the temperature rise that corresponds to the calculated value of P_{diss} from Fig. 8 "Temperature rise."

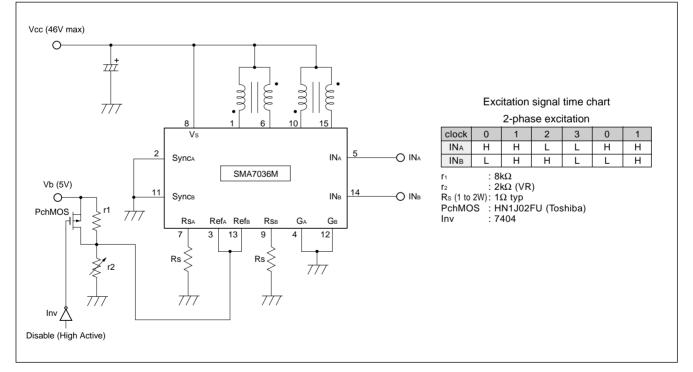
■Supply Voltage Vcc vs. Supply Current Icc

■Torque Characteristics

2-Phase Stepper Motor Unipolar Driver IC


■Absolute Maximum Ratings

Parameter	Symbol	Ratings	Units
Motor supply voltage	Vcc	46	V
Control supply voltage	Vs	46	V
FET Drain-Source voltage	VDSS	100	V
TTL input voltage	VIN	-0.3 to +7	V
SYNC terminal voltage	VSYNC	-0.3 to +7	V
Reference voltage	VREF	-0.3 to +7	V
Sense voltage	VRS	-5 to +7	V
Output current	lo	1.5	A
Power dissipation	PD1	4.0 (Ta=25°C)	W
Power dissipation	P _{D2}	28 (T₀=25°C)	W
Channel temperature	Tch	150	C°
Storage temperature	Tstg	-40 to +150	C°
Ambient operating temperature	Ta	–20 to +85	C°


■Electrical Characteristics

	Deverseden		Oursehal	Ratings		11
	Parameter		Symbol	min typ	max	Units
	Control supply of	ourront	ls	10	15	
		Juneni	Condition	Vs=44V		mA
	Control supply v	/oltage	Vs	10 24	44	V
	FET Drain-Sour	ce	VDSS	100		v
	voltage		Condition	Vs=44V, lbss=250 µA		v
	FET ON voltage	<u>,</u>	VDS		0.6	v
	TET ON VOItage	,	Condition	ID=1A, VS=10V		v
	FET diode forwa	ard voltage	Vsd		1.1	v
		ard voltage	Condition	IsD=1A		•
	FET drain leaka	ne current	IDSS		250	μΑ
	T ET dram loand		Condition	V _{DSS} =100V, V _S =44V		μ.
			VIH	2		
		Active H	Condition	ID=1A		v
			V⊫		0.8	
			Condition	V _{DSS} =100V		
ŝ	IN terminal		V⊪	2		
DC characteristics		Active L	Condition	V _{DSS} =100V		v
teri			V⊫		0.8	
arac			Condition	ID=1A		
ch		Input	<u> </u>		±1	μΑ
В		current	Condition	Vs=44V, Vi=0 or 5V		
			VsyncH	4.0		
		Input	Condition	Synchronous chopping mode		v
		voltage	VsyncL		0.8	
	SYNC terminal		Condition	Asynchronous chopping mode		
			IsyncH		0.1	
		Input	Condition	Vs=44V, Vys=5V		— mA
		current	IsyncL		-0.1	
			Condition	Vs=44V, V _{YS} =0V		
			VREF	0	2.0	
		Input	Condition	Reference voltage input		v
		voltage	VREF	4.0	5.5	
	REF terminal		Condition	Output FET OFF		
		Input	IREF		±1	μΑ
		current	Condition	No synchronous trigger		
		Internal	RREF	40		Ω
		resistance		Resistance between GND and REF terminal at s	ynchronous trigger	
			Ton	1.5		
			Condition	Vs=24V, lo=1A		
tics			Tr	0.5		
eris	Switching time		Condition	Vs=24V, Ib=1A		μs
acte			Tstg	0.9		′
AC characteristics			Condition	Vs=24V, lo=1A		
Co			Tr	0.1		
۲			Condition	Vs=24V, I _D =1A		
	Chopping OFF	Chopping OFF time	TOFF	12		— μs
			Condition	Vs=24V		

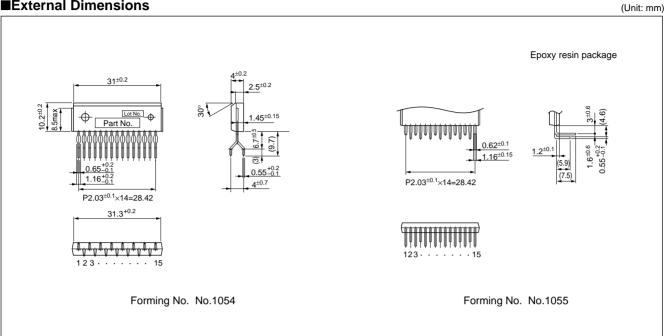

Internal Block Diagram

Diagram of Standard External Circuit (Recommended Circuit Constants)

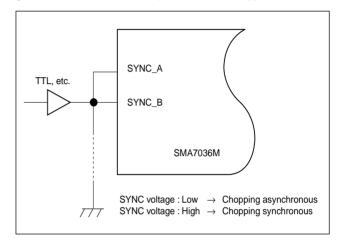
■External Dimensions

Application Notes

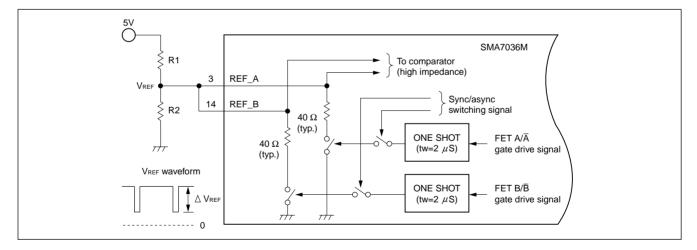
■Outline

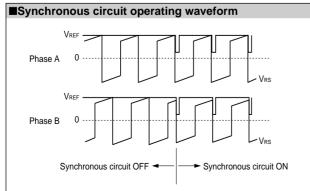
SMA7036M is a stepper motor driver IC developed to reduce the number of external parts required by the conventional SMA7029M. This IC successfully eliminates the need for some external parts without sacrificing the features of SMA7029M. The basic function pins are compatible with those of SMA7029M.

Notes on Replacing SMA7029M


SMA7036M is pin-compatible with SMA7029M. When using the IC on an existing board, the following preparations are necessary:

- Remove the resistors and capacitors attached for setting the chopping OFF time. (r₃, r₄, C₁, and C₂ in the catalog)
- (2) Remove the resistors and capacitors attached for preventing noise in the detection voltage V_{RS} from causing malfunctioning and short the sections from which the resistors were removed using jumper wires. (r₅, r₆, C₃, and C₄ in the catalog)
- (3) Normally, keep pins 2 and 11 grounded because their functions have changed to synchronous and asynchronous switching (SYNC terminals). For details, see "Circuit for Preventing Abnormal Noise When the Motor Is Not Running (Synchronous circuit)." (Low: asynchronous, High: synchronous)


Circuit for Preventing Abnormal Noise When the Motor Is Not Running (Synchronous Circuit)


A motor may generate abnormal noise when it is not running. This phenomenon is attributable to asynchronous chopping between phases A and B. To prevent the phenomenon, SMA7036M contains a synchronous chopping circuit. Do not leave the SYNC terminals open because they are for CMOS input. Connect TTL or similar to the SYNC terminals and switch the SYNC terminal level high or low.

When the motor is not running, set the TTL signal high (SYNC terminal voltage: 4 V or more) to make chopping synchronous. When the motor is running, set the TTL signal low (SYNC terminal voltage: 0.8 V or less) to make chopping asynchronous. If chopping is set to synchronous when the motor is running, the motor torque deteriorates before the coil current reaches the set value. If no abnormal noise occurs when the motor is not running, ground the SYNC terminals (TTL not necessary).

The built-in synchronous chopping circuit superimposes a trigger signal on the REF terminal for synchronization between the two phases. The figure below shows the internal circuit of the REF terminal. Since the ΔV_{REF} varies depending on the values of R1 and R2, determine these values for when the motor is not running within the range where the two phases are synchronized.

Determining the Output Current

Fig. 1 shows the waveform of the output current (motor coil current). The method of determining the peak value of the output current (I_0) based on this waveform is shown below.

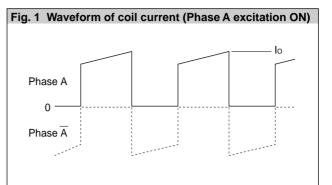
(Parameters for determining the output current $\ensuremath{\mathsf{Io}}\xspace)$

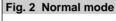
- Vb: Reference supply voltage
- $r_1,r_2:$ Voltage-divider resistors for the reference supply voltage
- Rs: Current sense resistor
- (1) Normal rotation mode

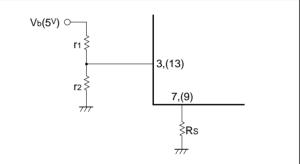
Io is determined as follows when current flows at the maximum level during motor rotation. (See Fig.2.)

$$l_{0} \cong \frac{r_{2}}{r_{1}+r_{2}} \bullet \frac{V_{b}}{R_{s}}$$
(1)

(2) Power down mode


The circuit in Fig.3 (r_x and T_r) is added in order to decrease the coil current. Io is then determined as follows.


$$I_{OPD} \cong \frac{1}{1 + \frac{r_1(r_2 + r_X)}{r_2 \bullet r_X}} \bullet \frac{V_b}{R_s}$$
(2)


Equation (2) can be modified to obtain equation to determine rx.

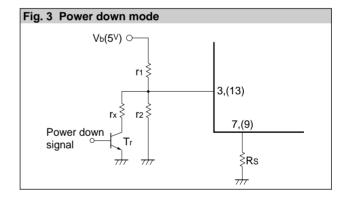
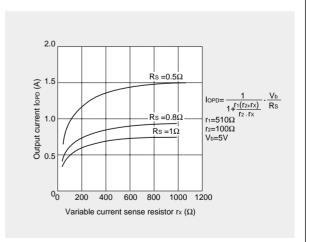

$$r_{X=} \frac{1}{\frac{1}{r_1} \left(\frac{V_b}{R_s \bullet lop_D} - 1 \right) - \frac{1}{r_2}}$$

Fig. 4 and 5 show the graphs of equations (1) and (2) respectively.



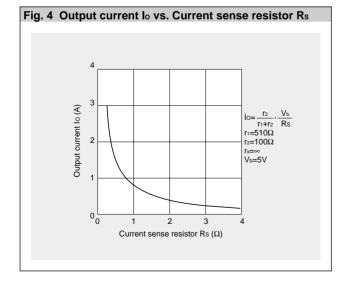
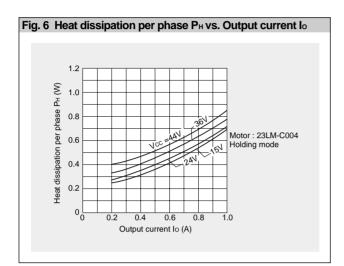
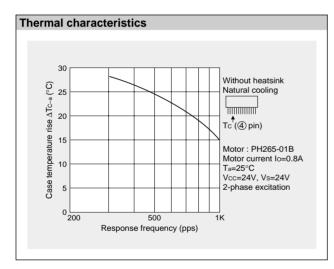


Fig. 5 Output current IOPD vs. Variable current sense resistor rx

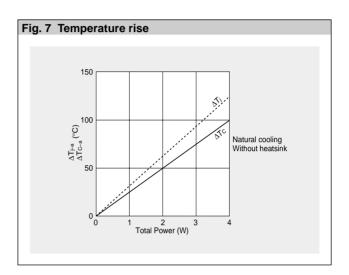




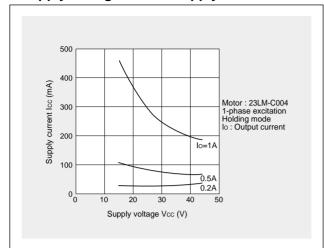
■Thermal Design

An outline of the method for calculating heat dissipation is shown below.

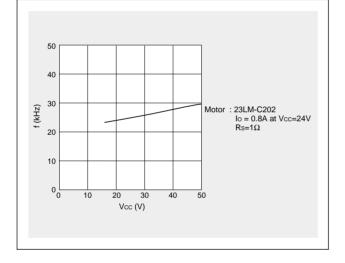
(1) Obtain the value of P_H that corresponds to the motor coil current I_0 from Fig. 6 "Heat dissipation per phase P_H vs. Output current I_0 ."

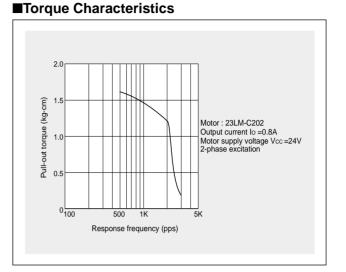


(2) The power dissipation P_{diss} is obtained using the following formula.

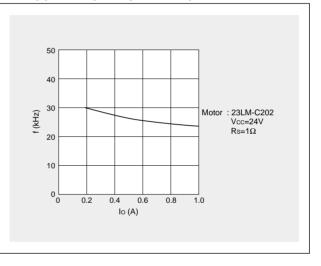

2-phase excitation: $P_{diss} \cong 2P_{H}+0.015 \times V_{S}$ (W)

1-2 phase excitation: $P_{diss} \cong \frac{3}{2} P_{H}+0.015 \times V_{S}$ (W)


(3) Obtain the temperature rise that corresponds to the calculated value of P_{diss} from Fig. 7 "Temperature rise."



Supply Voltage Vcc vs. Supply Current Icc



Chopper frequency vs. Supply voltage

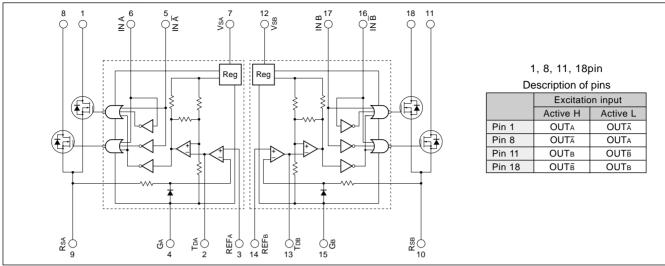
Chopper frequency vs. Output current

■Handling Precautions

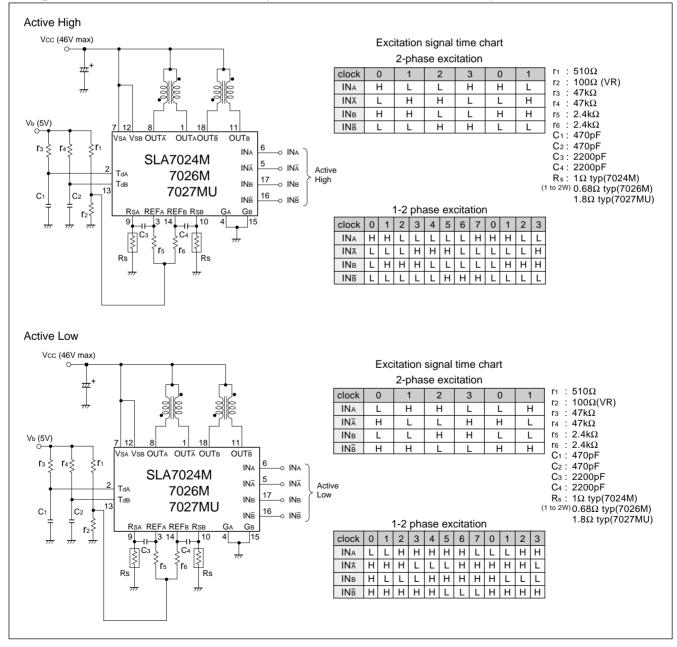
The input terminals of this product use C-MOS circuits. Observe the following precautions.

- Carefully control the humidity of the room to prevent the buildup of static electricity. Since static electricity is particularly a problem during the winter, be sure to take sufficient precautions.
- Take care to make sure that static electricity is not applied to the IC during wiring and assembly. Take precautions such as shorting the terminals of the printed wiring board to ensure that they are at the same electrical potential.

2-Phase Stepper Motor Unipolar Driver ICs


■Absolute Maximum Ratings

Absolute Maximu	m Ratings				(Ta=25°C)	
Damanatan	0 1 1		Linite			
Parameter	Symbol	SLA7027MU	SLA7024M	SLA7026M	Units	
Motor supply voltage	Vcc		46		V	
FET Drain-Source voltage	VDSS		100		V	
Control supply voltage	Vs	46 V				
TTL input voltage	Vin	7				
Reference voltage	VREF	2 V				
Output current	lo	1 1.5 3		A		
Power dissipation	P _{D1}		W			
Fower dissipation	P _{D2}		W			
Channel temperature	Tch	+150 °C				
Storage temperature	Tstg		-40 to +150 °C			


■Electrical Characteristics

							Ratings						
Parameter		Symbol	SLA7027MU		SLA7024M		SLA7026M		1	Units			
			min	typ	max	min	typ	max	min	typ	max	1	
	Control supply current	ls		10	15		10	15		10	15	^	
	Control supply current	Condition		Vs=44V			Vs=44V		Vs=44V		mA		
	Control supply voltage	Vs	10	24	44	10	24	44	10	24	44	V	
		VDSS	100			100			100				
	FET Drain-Source voltage	Condition	Vs=	44V, Ioss=25	0μA	Vs=	44V, Ioss=25	0μΑ	Vs=	44V, Ioss=2	50µA	V	
		Vds			0.85			0.6			0.85	V	
	FET ON voltage	Condition	lo	=1A, AVs=14	V	li	=1A, Vs=14	V	1	D=3A, Vs=14	4V		
	FFT drain lookage ourrent	loss			4			4			4		
	FET drain leakage current	Condition	Vds	s=100V, Vs=4	44V	Vds	s=100V, Vs=	44V	Vds	s=100V, Vs=	=44V	mA	
stice		Vsd			1.2			1.1			2.3		
erie	FET diode forward voltage			l₀=1A			ID=1A			l⊳=3A		V	
DC characteristics		Ін			40			40			40		
cha	TTL input ourrept	Condition	Vit	=2.4V, Vs=4	4V	Vit	=2.4V, Vs=4	4V	VII	=2.4V, Vs=	44V	μΑ	
ő	TTL input current	١L			-0.8			-0.8			-0.8		
		Condition	Vii	=0.4V, Vs=4	4V	Vil	=0.4V, Vs=4	4V	VIL=0.4V, Vs=44V		- mA		
		V⊮	2			2			2				
	TTL input voltage	Condition		I₀=1A			ID=1A			ID=3A		v	
	(Active High)	VIL			0.8			0.8			0.8	v	
		Condition		VDSS=100V			Voss=100V			Voss=100V	/		
		V⊪	2			2			2				
	TTL input voltage	Condition		VDSS=100V			Voss=100V			Voss=100V	/	v	
	(Active Low)	VIL			0.8			0.8			0.8	v	
				l₀=1A			ID=1A			l⊳=3A			
S	AC characteristics Smitching time	Tr		0.5			0.5			0.5			
risti		Condition	V	s=24V, Id=0.8	BA	١	/s=24V, Io=1	A	١	/s=24V, Io=1	1A	-	
acte		Tstg		0.7			0.7			0.7			
าลาย		Condition	V	s=24V, Io=0.8	BA	١	/s=24V, Io=1	A	١	/s=24V, Id=1	1A	μs	
c U		Tf		0.1			0.1			0.1			
¥		Condition	V	s=24V, Ib=0.8	BA	١	/s=24V, Io=1	A	١	/s=24V, Id=1	1A		

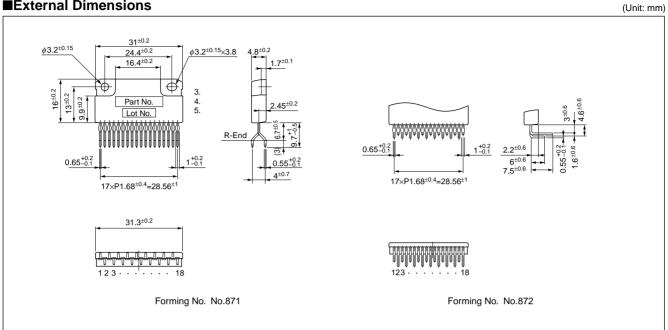

Internal Block Diagram

Diagram of Standard External Circuit(Recommended Circuit Constants)

■External Dimensions

Application Notes

Determining the Output Current

Fig. 1 shows the waveform of the output current (motor coil current). The method of determining the peak value of the output current (lo) based on this waveform is shown below.

(Parameters for determining the output current lo)

Vb: Reference supply voltage

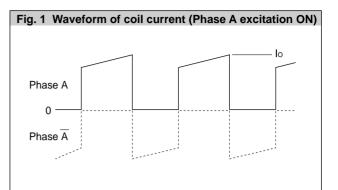
r1,r2: Voltage-divider resistors for the reference supply voltage

- Rs: Current sense resistor
- (1) Normal rotation mode

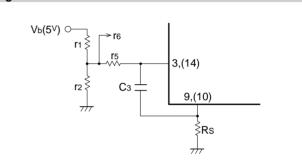
lo is determined as follows when current flows at the maximum level during motor rotation. (See Fig.2.)

$$I_{O} \cong \frac{r_{2}}{r_{1}+r_{2}} \cdot \frac{V_{b}}{R_{s}}$$
(1)

(2) Power down mode


The circuit in Fig.3 (rx and Tr) is added in order to decrease the coil current. Io is then determined as follows.

$$l_{OPD} \cong \frac{1}{1 + \frac{r_1(r_2 + r_X)}{r_2 \bullet r_X}} \bullet \frac{V_b}{R_s}$$
(2)


Equation (2) can be modified to obtain equation to determine rx.

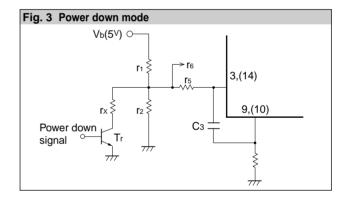

$$\mathbf{f}_{X=} \frac{1}{\frac{1}{r_1} \left(\frac{\mathbf{V}_b}{\mathbf{R}_s \bullet \mathbf{I}_{OPD}} - 1 \right) - \frac{1}{r_2}}$$

Fig. 4 and 5 show the graphs of equations (1) and (2) respectively.

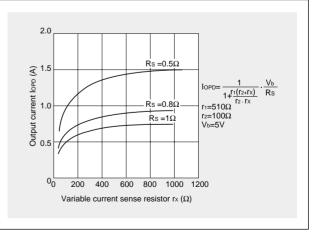


Fig. 2 Normal mode

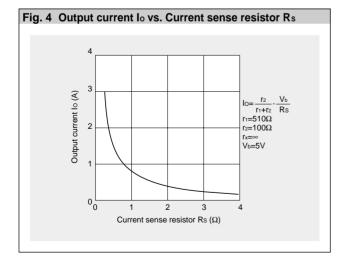


Fig. 5 Output current IOPD vs. Variable current sense resistor rx

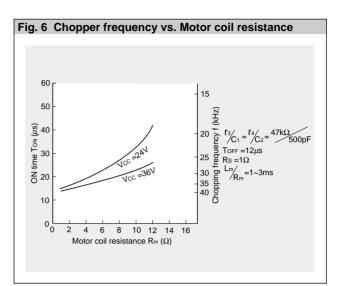
However, when the values of these constants are increased, the response from R_s to the comparator becomes slow. Hence the value of the output current lo is somewhat higher than the calculated value.

(NOTE)

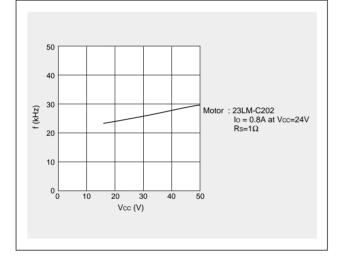
Ringing noise is produced in the current sense resistor R_s when the MOSFET is switched ON and OFF by chopping. This noise is also generated in feedback signals from R_s which may therefore cause the comparator to malfunction. To prevent chopping malfunctions, $r_s(r_6)$ and $C_3(C_4)$ are added to act as a noise filter.

Determining the chopper frequency

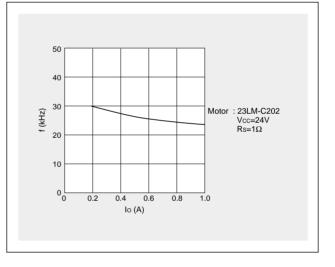
Determining TOFF


The SLA7000M series are self-excited choppers. The chopping OFF time $T_{\rm OFF}$ is fixed by r_3/C_1 and r_4/C_2 connected to terminal Td.

 $T_{\mbox{\scriptsize OFF}}$ can be calculated using the following formula:


$$T_{\text{OFF}\cong -r_3} \bullet \ C_1 \ell_n \big(1 - \frac{2}{V_b} = -r_4 \bullet C_2 \ell_n \big(1 - \frac{2}{V_b}\big)$$

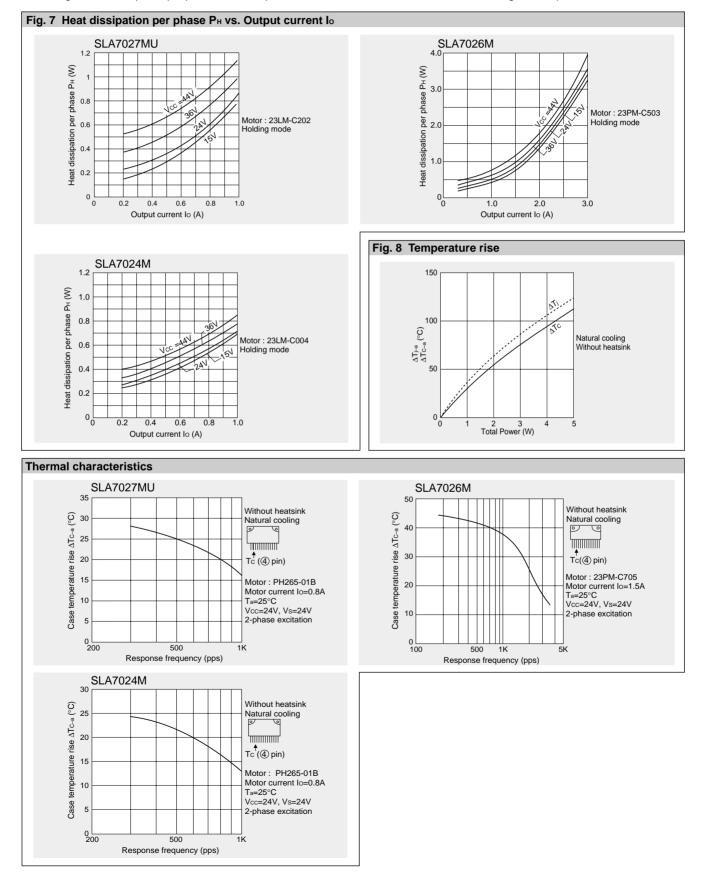
The circuit constants and the $\mathsf{T}_{\mathsf{OFF}}$ value shown below are recommended.


Toff = $12\mu s$ at $r_3=47k\Omega$, C1=500pF, Vb=5V

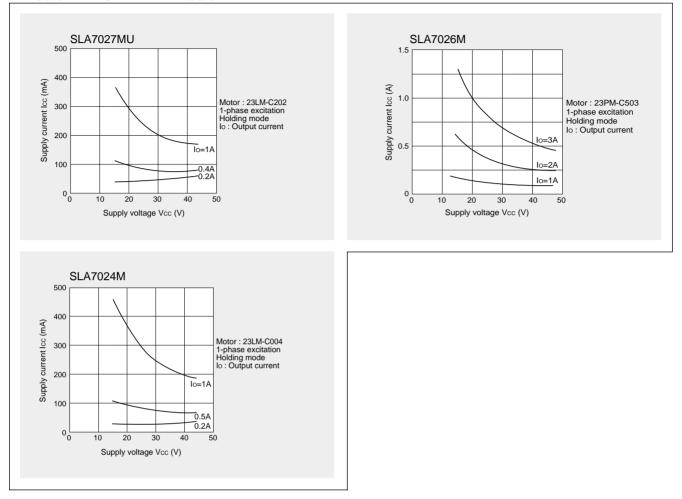
Chopper frequency vs. Supply voltage

Chopper frequency vs. Output current

Thermal Design


An outline of the method for calculating heat dissipation is shown below.

(2) The power dissipation Pdiss is obtained using the following formula. 2-phase excitation: $P_{diss} \cong 2P_{H}+0.015 \times V_{S}$ (W)


1-2 phase excitation: $P_{diss} \cong \frac{3}{2} P_{H}+0.015 \times V_{S}$ (W)

(1) Obtain the value of PH that corresponds to the motor coil current Io from Fig. 7 "Heat dissipation per phase PH vs. Output current Io."

(3) Obtain the temperature rise that corresponds to the calculated value of Pdiss from Fig. 8 "Temperature rise."

Supply Voltage Vcc vs. Supply Current Icc

■Note

The excitation input signals of the SLA7027MU, SLA7024M and SLA7026M can be used as either Active High or Active Low. Note, however, that the corresponding output (OUT) changes depending on the input (IN).

Active High

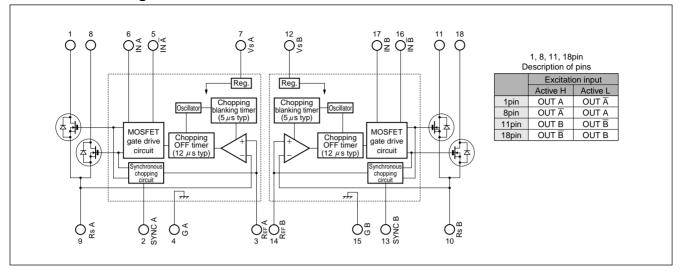
Input	Corresponding output
IN₄ (pin6)	OUT _A (pin1)
IN⊼ (pin5)	OUT⊼ (pin8)
IN _B (pin17)	OUT _B (pin11)
IN	OUT₅ (pin18)

Active Low

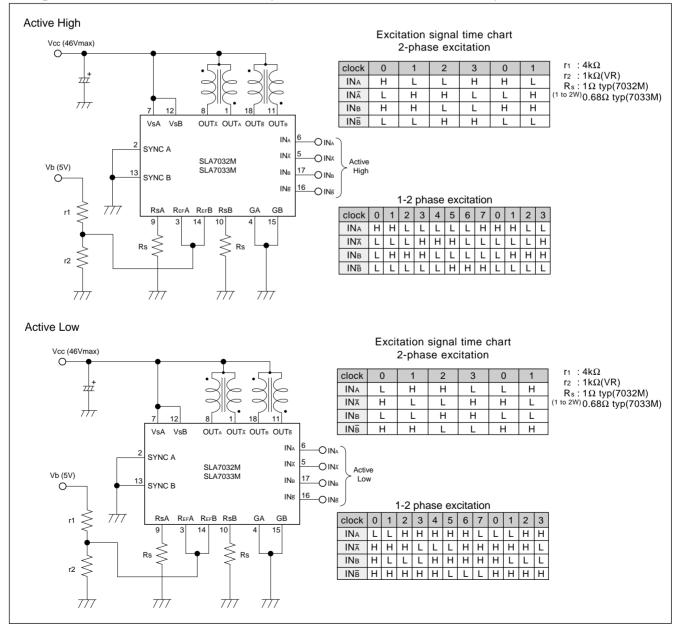
Input	Corresponding output
IN _A (pin6)	OUT _A (pin8)
IN⊼ (pin5)	OUT⊼ (pin1)
IN _в (pin17)	OUT _B (pin18)
IN _B (pin16)	OUT₅ (pin11)

(Ta-25°C)

2-Phase Stepper Motor Unipolar Driver ICs


■Absolute Maximum Ratings

		Rati				
Parameter	Symbol	SLA7032M	SLA7033M	Units		
Motor supply voltage	Vcc	4	6	V		
Control supply voltage	Vs	4	6	V		
FET Drain-Source voltage	Vdss	10	00	V		
TTL input voltage	Vin	-0.3	to +7	V		
SYNC terminal voltage	Vsync	-0.3	-0.3 to +7			
Reference voltage	Vref	-0.3	V			
Sense voltage	Vrs	-5 to	-5 to +7			
Output current	lo	1.5 3		A		
Devue dissis stire	P _{D1}	4.5 (Without Heatsink)		W		
Power dissipation	P _{D2}	35 (T₀= 25°C)		W		
Channel temperature	Tch	+1	°C			
Storage temperature	Tstg	-40 to	+150	°C		


■Electrical Characteristics

	Deremeter			Ratings						Units	
	Parameter		Symbol	SLA7032M		SLA7033M					
				min	typ	max	min	typ	max		
	Control supply current		ls		10	15		10	15		
Ľ				Vs=44V			Vs=44V		mA		
(Control supply v	oltage	Vs	10	24	44	10	24	44	V	
	FET Drain-Sour	се	VDSS	100			100			- v	
,	voltage		Condition	,	Vs=44V, Ibss=250µ	A		Vs=44V, Ioss=250µA	L Contraction of the second seco	7 V	
			VDS			0.6			0.85	- v	
	FET ON voltage		Condition		ID=1A, Vs=14V			ID=3A, Vs=14V			
	FFT diada famua		Vsd			1.1			2.3	- v	
	FET diode forwa	ard voltage	Condition		Isp=1A			IsD=3A		v	
Γ			IDSS			250			250		
	FET drain leaka	ge current	Condition		VDSS=100V, VS=44	V		VDSS=100V, VS=44V		μA	
Γ			VIH	2.0			2.0				
		OUT	Condition		ID=1A			ID=3A			
		001	Vı∟			0.8			0.8	7 V	
			Condition		V _{DSS} =100V			V _{DSS} =100V		1	
S I	IN terminal		VIH	2.0			2.0				
stic			Condition		V _{DSS} =100V			V _{DSS} =100V		V	
teri		001	Vı∟			0.8			0.8		
ac			Condition		ID=1A			ID=3A			
hai		Input	h			±1			±1		
DC characteristics		current	Condition		Vs=44V, V⊨0 or 5	/		Vs=44V, VI=0 or 5V		- <i>μ</i> Α	
۵ſ			VSYNC	4.0			4.0				
		lanut	Condition	Sync	hronous chopping	mode	Sync	chronous chopping r	node		
		Input voltage	VSYNC			0.8			0.8	- V	
	SYNC terminal	Vollago	Condition	Asyno	chronous chopping	mode	Asyn	chronous chopping	mode	1	
			ISYNC			0.1			0.1		
		Input	Condition		Vs=44V, Vys=5V			Vs=44V, Vys=5V]	
		current"	ISYNC			-0.1			-0.1	mA	
			Condition		Vs=44V, Vys=0V			Vs=44V, Vys=0V			
Γ			VREF	0		2.0	0		2.0		
		Input	Condition	Re	eference voltage in	put	R	eference voltage inp	out		
		current	VREF	4.0		5.5	4.0		5.5		
1	REF terminal		Condition		Output FET OFF			Output FET OFF]	
		Input	IREF			±1			±1		
			Condition	N	o synchronous trig	ger	N	o synchronous trigg	er	- <i>μ</i> Α	
		Internal	RREF	40		0 40					
		resistance	Condition	Resistance between	GND and REF terminal	at synchronous trigger	Resistance between	GND and REF terminal at	synchronous trigger	Ω	
			Tr		0.5			0.5			
tics	Switching time		Condition		Vs=24V, Io=1A			Vs=24V, ID=1A]	
eris			Tstg		0.7			0.7		μs	
acte			Condition		Vs=24V, ID=1A			Vs=24V, ID=1A			
ara			Tr		0.1			0.1		-	
ъ	5 Condition		Condition		Vs=24V, ID=1A			Vs=24V, ID=1A]	
AC		ime	TOFF		12			12			
	Chopping OFF t	ime	Condition		Vs=24V			Vs=24V		μs	

Internal Block Diagram

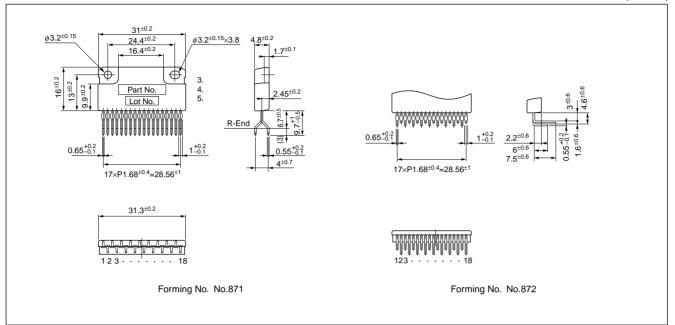


Diagram of Standard External Circuit (Recommended Circuit Constants)

■External Dimensions

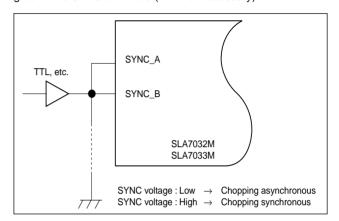
Application Notes

■Outline

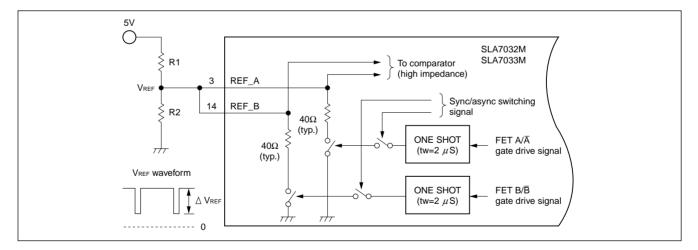
SLA7032M (SLA7033M) is a stepper motor driver IC developed to reduce the number of external parts required by the conventional SLA7024M (SLA7026M). This IC successfully eliminates the need for some external parts without sacrificing the features of SLA7024M (SLA7026M). The basic function pins are compatible with those of SLA7024M (SLA7026M).

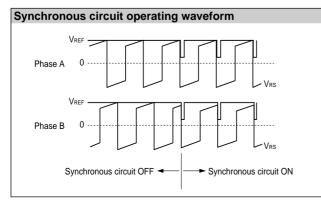
■Notes on Replacing SLA7024M (SLA7026M)

SLA7032M (SLA7033M) is pin-compatible with SLA7024M (SLA7026M). When using the IC on an existing board, the following preparations are necessary:


- (1) Remove the resistors and capacitors attached for setting the chopping OFF time. (r_3 , r_4 , C_1 , and C_2 in the catalog)
- (2) Remove the resistors and capacitors attached for preventing noise in the detection voltage V_{RS} from causing malfunctioning and short the sections from which the resistors were removed using jumper wires. (r₅, r₆, C₃, and C₄ in the catalog)
- (3) Normally, keep pins 2 and 13 grounded because their functions have changed to synchronous and asynchronous switching (SYNC terminals). For details, see "Circuit for Preventing Abnormal Noise When the Motor Is Not Running (Synchronous circuit)." (Low: asynchronous, High: synchronous)

Circuit for Preventing Abnormal Noise When the Motor Is Not Running (Synchronous Circuit)


A motor may generate abnormal noise when it is not running. This phenomenon is attributable to asynchronous chopping between phases A and B. To prevent the phenomenon, SLA7032M (SLA7033M) contains a synchronous chopping circuit. Do not leave


the SYNC terminals open because they are for CMOS input. Connect TTL or similar to the SYNC terminals and switch the SYNC terminal level high or low.

When the motor is not running, set the TTL signal high (SYNC terminal voltage: 4 V or more) to make chopping synchronous. When the motor is running, set the TTL signal low (SYNC terminal voltage: 0.8 V or less) to make chopping asynchronous. If chopping is set to synchronous at when the motor is running, the motor torque deteriorates before the coil current reaches the set value. If no abnormal noise occurs when the motor is not running, ground the SYNC terminals (TTL not necessary).

The built-in synchronous chopping circuit superimposes a trigger signal on the REF terminal for synchronization between the two phases. The figure below shows the internal circuit of the REF terminal. Since the ΔV_{REF} varies depending on the values of R1 and R2, determine these values for when the motor is not running within the range where the two phases are synchronized.

Determining the Output Current

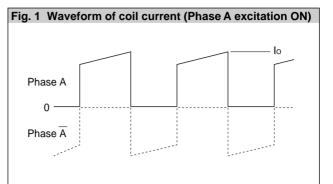
Fig. 1 shows the waveform of the output current (motor coil current). The method of determining the peak value of the output current (I_0) based on this waveform is shown below.

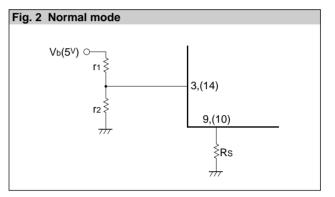
(Parameters for determining the output current Io)

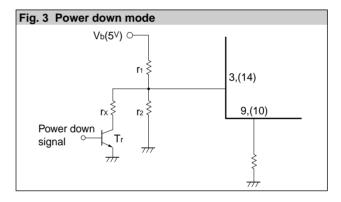
- V_b: Reference supply voltage
- r1,r2: Voltage-divider resistors for the reference supply voltage
- Rs: Current sense resistor
- (1) Normal rotation mode

Io is determined as follows when current flows at the maximum level during motor rotation. (See Fig.2.)

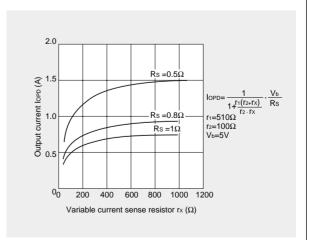
$$I_{O} \cong \frac{r_{2}}{r_{1}+r_{2}} \bullet \frac{V_{b}}{R_{s}} \qquad (1)$$


(2) Power down mode


The circuit in Fig.3 (r_x and T_r) is added in order to decrease the coil current. Io is then determined as follows.


Equation (2) can be modified to obtain equation to determine rx.

$$fx = \frac{1}{\frac{1}{r_1} \left(\frac{V_b}{R_s \cdot I_{OPD}} - 1 \right) - \frac{1}{r_2}}$$


Fig. 4 and 5 show th e graphs of equations (1) and (2) respectively.

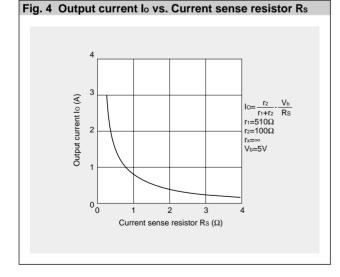
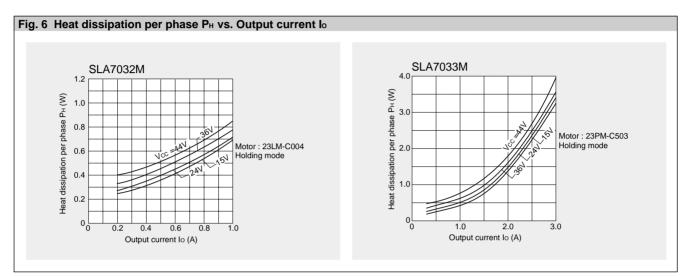
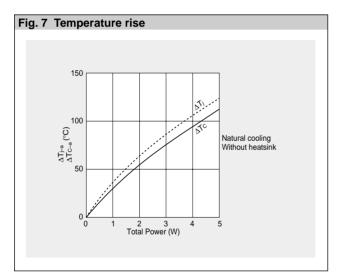


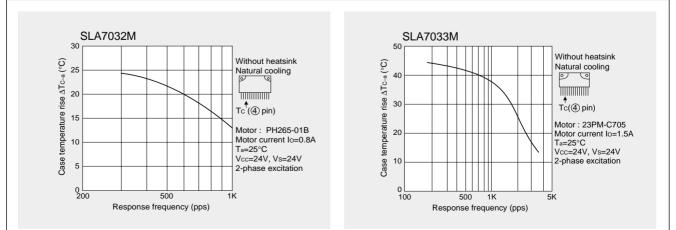
Fig. 5 Output current IOPD vs. Variable current sense resistor rx

Thermal Design

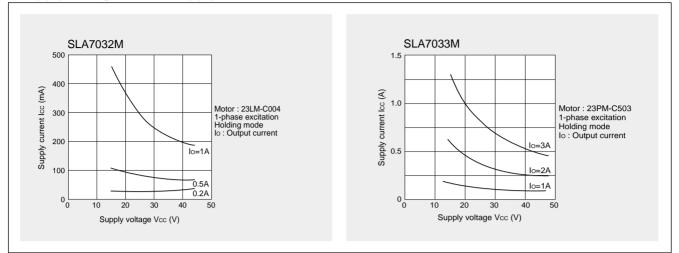

An outline of the method for calculated heat dissipation is shown below.

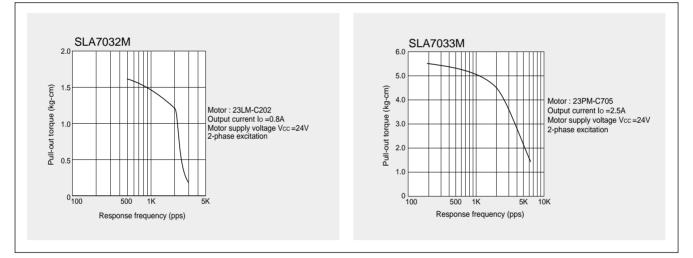

(1) Obtain the value of P_H that corresponds to the motor coil current lo from Fig. 6 "Heat dissipation per phase P_H vs. Output current lo." (2) The power dissipation P_{diss} is obtained using the following formula.

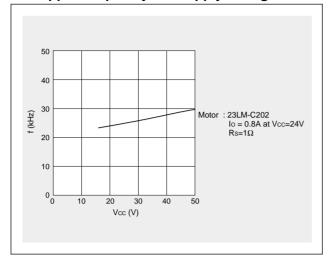
2-phase excitation: $P_{diss} \cong 2P_{H}+0.015 \times V_{S}$ (W)

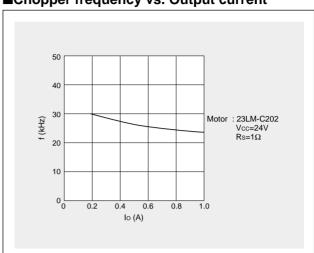

1-2 phase excitation: $P_{diss} \cong \frac{3}{2} P_{H}+0.015 \times V_{S}$ (W)

(3) Obtain the temperature rise that corresponds to the computed value of Pdiss from Fig. 7 "Temperature rise."




Thermal characteristics


Supply Voltage Vcc vs. Supply Current Icc



■Torque Characteristics

Chopper frequency vs. Supply voltage

■Note

The excitation input signals of the SLA7032M, SLA7033M can be used as either Active High or Active Low. Note, however, that the corresponding output (OUT) changes depending on the input (IN).

Active	High

Input	Corresponding output
IN₄ (pin6)	OUT _A (pin1)
IN⊼ (pin5)	OUTā (pin8)
IN ₈ (pin17)	OUT _B (pin11)
IN₅ (pin16)	OUT (pin18)

Active Low					
Input	Corresponding output				
IN _A (pin6)	OUT _A (pin8)				
IN⊼ (pin5)	OUT⊼ (pin1)				
IN ₈ (pin17)	OUT _B (pin18)				
IN₅ (pin16)	OUT _B (pin11)				

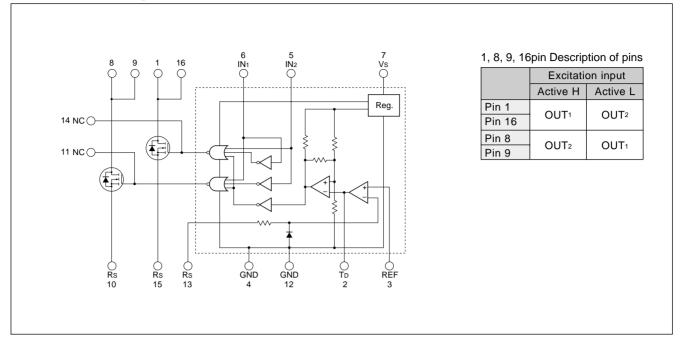
■Handling Precautions

The input terminals of this product use C-MOS circuits. Observe the following precautions.

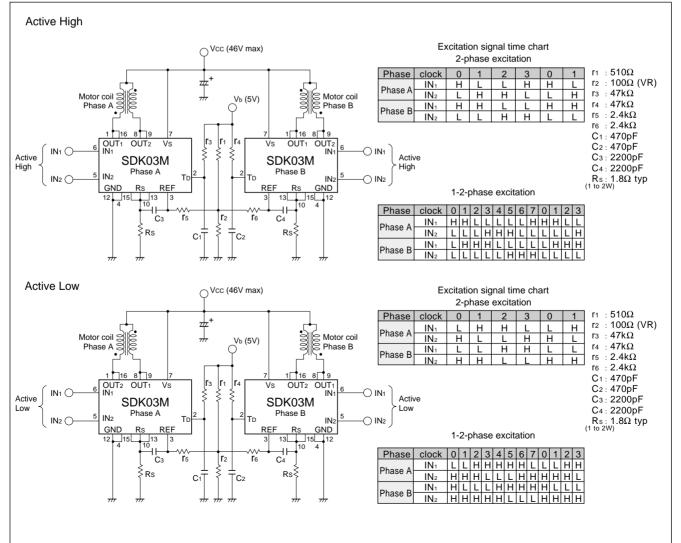
- Carefully control the humidity of the room to prevent the buildup of static electricity. Since static electricity is particularly a problem during the winter, be sure to take sufficient precautions.
- Take care to make sure that static electricity is not applied to the IC during wiring and assembly. Take precautions such as shorting the terminals of the printed wiring board to ensure that they are at the same electrical potential.

Chopper frequency vs. Output current

2-Phase Stepper Motor Unipolar Driver ICs


■Absolute Maximum Ratings

Parameter	Symbol	Ratings	Units
Motor supply voltage	Vcc	46	V
FET Drain-Source voltage	VDSS	100	V
Control supply voltage	Vs	46	V
TTL input voltage	Vin	7	V
Reference voltage	VREF	2	V
Output current	lo	1	A
Power dissipation	P₀	2.5 (Without Heatsink)	W
Channel temperature	Tch	+150	°C
Storage temperature	Tstg	-40 to +150	°C


■Electrical Characteristics

	Deremeter	Cumhal		Ratings		Units						
	Parameter	Symbol	min	typ	max	Units						
	Operatoral events by events	ls		5	7.5	mA						
	Control supply current	Condition	Vs=44V									
	Control supply voltage	Vs	10	24	44	V						
	FET Drain-Source	VDSS	100			v						
	voltage	Condition		Vs=44V, Ibss=250µA								
	FET ON voltage	VDS			0.85	v						
	FET ON VOILage	Condition		ID=1A, Vs=14V		v						
	EET drain lookage ourrent	loss			4	mA						
	FET drain leakage current	Condition		V _{DSS} =100V, V _S =44V		mA						
DC characteristics	FET diode forward	Vsd			1.2	v						
eris	voltage	Condition		I₀=1A		V						
ract		Ін			40							
cha	TTL input current	Condition		VIH=2.4V, Vs=44V		μΑ						
õ		١L			-0.8							
		Condition		VIL=0.4V, Vs=44V		mA						
		VIH	2									
	TTL input voltage	Condition		ID=1A		v						
	(Active High)	VIL			0.8	v						
		Condition		V _{DSS} =100V								
		Vін	2									
	TTL input voltage	Condition		VDSS=100V		V						
	(Active Low)	Vı∟			0.8	v						
		Condition		ID=1A								
S		Tr		0.5								
risti		Condition		Vs=24V, ID=0.8A								
Icte	Switching time	Tstg		0.7								
ara	Switching time	Condition		Vs=24V, ID=0.8A		μs						
AC characteristics		Tf		0.1								
A		Condition		Vs=24V, Ib=0.8A								

■Internal Block Diagram

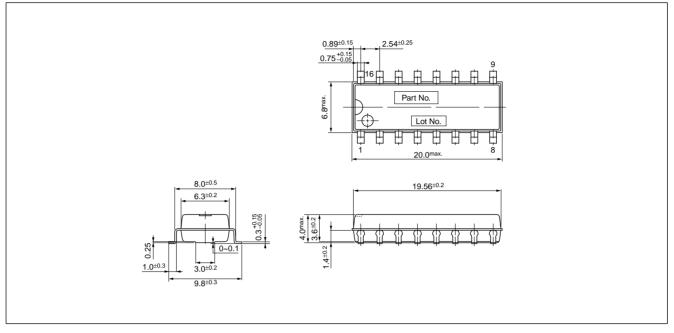


Diagram of Standard External Circuit (Recommended Circuit Constants)

■External Dimensions

(Unit: mm)

Application Notes

Determining the Output Current

Fig. 1 shows the waveform of the output current (motor coil current). The method of determining the peak value of the output current (lo) based on this waveform is shown below.

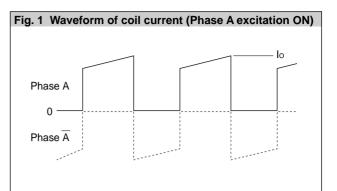
(Parameters for determining the output current $\ensuremath{\mathrm{lo}}\xspace)$

- Vb: Reference supply voltage
- r1,r2: Voltage-divider resistors for the reference supply voltage
- Rs: Current sense resistor
- (1) Normal rotation mode

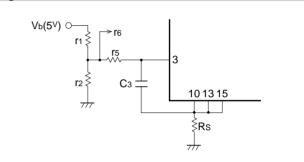
lo is determined as follows when current flows at the maximum level during motor rotation. (See Fig.2.)

$$I_{O} \cong \frac{r_{2}}{r_{1}+r_{2}} \cdot \frac{V_{b}}{R_{s}}$$
(1)

(2) Power down mode


The circuit in Fig.3 (r_x and T_r) is added in order to decrease the coil current. Io is then determined as follows.

$$I_{OPD} \cong \frac{1}{1 + \frac{r_1(r_2 + r_X)}{r_2 \bullet r_X}} \bullet \frac{V_b}{R_s}$$
(2)


Equation (2) can be modified to obtain equation to determine rx.

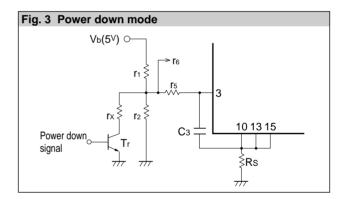

$$I_{X=} \frac{1}{\frac{1}{r_1} \left(\frac{V_b}{R_s \bullet I_{OPD}} - 1 \right) - \frac{1}{r_2}}$$

Fig. 4 and 5 show the graphs of equations (1) and (2) respectively.

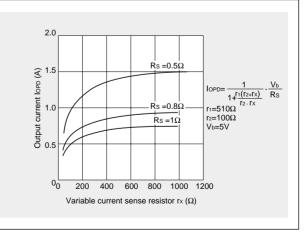


Fig. 2 Normal mode

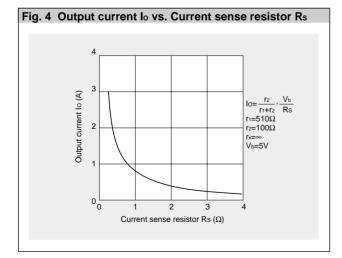


Fig. 5 Output current IOPD vs. Variable current sense resistor rx

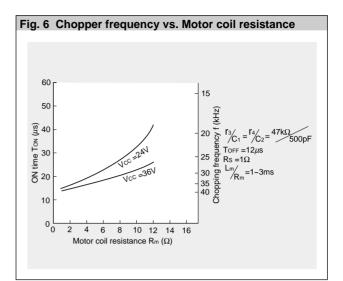
However, when the values of these constants are increased, the response from R_s to the comparator becomes slow. Hence the value of the output current lo is somewhat higher than the calculated value.

(NOTE)

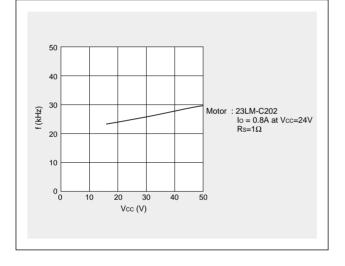
Ringing noise is produced in the current sense resistor Rs when the MOSFET is switched ON and OFF by chopping. This noise is also generated in feedback signals from Rs which may therefore cause the comparator to malfunction. To prevent chopping malfunctions, $r_5(r_6)$ and $C_3(C_4)$ are added to act as a noise filter.

Determining the chopper frequency

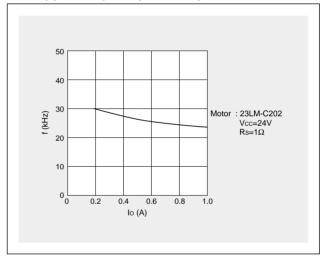
Determining TOFF


SDK03M is self-excited choppers. The chopping OFF time T_{OFF} is fixed by r_3/C_1 and r_4/C_2 connected to terminal Td.

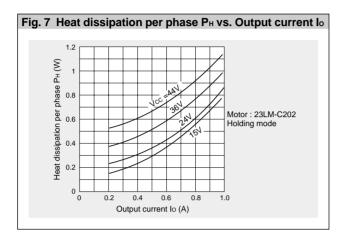
 $T_{\mbox{\scriptsize OFF}}$ can be calculated using the following formula:

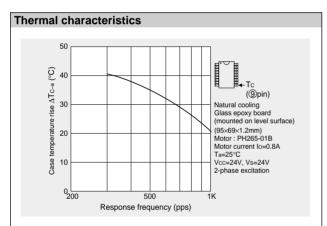

$$T_{\text{OFF}} = -r_3 \bullet C_1 \, \ell_n \, (1 - \frac{2}{V_b}) = -r_4 \bullet C_2 \, \ell_n \, (1 - \frac{2}{V_b})$$

The circuit constants and the $\mathsf{T}_{\mathsf{OFF}}$ value shown below are recommended.

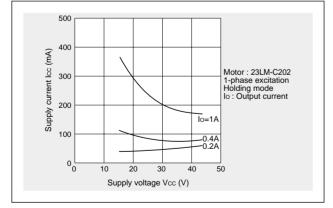

Toff = $12\mu s$ at $r_3=47k\Omega$, C1=500pF, Vb=5V

Chopper frequency vs. Supply voltage

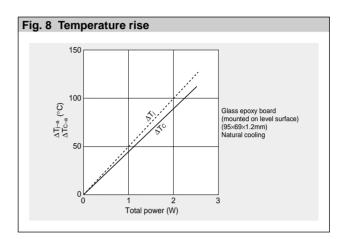

Chopper frequency vs. Output current

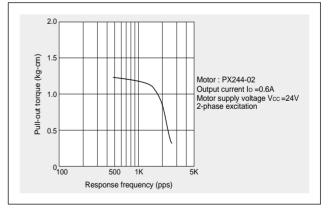


■Thermal Design


An outline of the method for computing heat dissipation is shown below.

(1) Obtain the value of P_H that corresponds to the motor coil current lo from Fig. 7 "Heat dissipation per phase P_H vs. Output current lo."




■Supply Voltage Vcc vs. Supply Current Icc

- (2) The power dissipation Pdiss is obtained using the following formula. 2-phase excitation: $P_{diss} \cong P_{H}+0.0075 \times V_{S}$ (W) 1-2 phase excitation: $P_{diss} \cong -\frac{3}{4} P_{H}+0.0075 \times V_{S}$ (W)
- (3) Obtain the temperature rise that corresponds to the calculated value of P_{diss} from Fig. 8 "Temperature rise."

■Torque Characteristics

■Note

The excitation input signals of the SDK03M can be used as either Active High or Active Low. Note, However, that the corresponding output (OUT) changes depending on the input (IN).

Active High

Input	Corresponding output
IN₁ (pin6)	OUT₁ (pin1, 16)
IN ₂ (pin5)	OUT ₂ (pin8, 9)

Active Low

Input	Corresponding output
IN₁ (pin6)	OUT1 (pin8, 9)
IN ₂ (pin5)	OUT ₂ (pin1, 16)

2-Phase Stepper Motor Unipolar Driver IC

Allegro MicroSystems product

Features

- Internal 1-phase/1-2 phase/2-phase excitation pattern generator
- Output enable and direction control
- Power-on reset
- Internal thermal shutdown circuitry
- Internal transient-suppression diodes
- Low thermal resistance 16-pin DIP

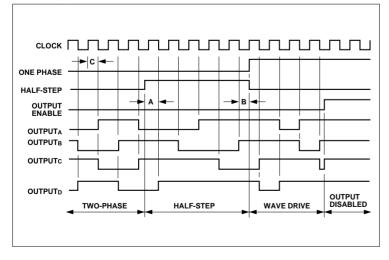
Absolute Maximum Ratings

Absolute Maximu	um Ratin	gs	(Ta=+25°C)
Parameter	Symbol	Ratings	Units
Output voltage	Vce	50	V
Output sustaining voltage	VCE (SUS)	35	V
Output current (1 circuit)	lo	1.5	A/unit
Logic supply voltage	Vdd	7.0	V
Input voltage	Vin	7.0	V
Package power dissipation	PD (Note1)	2.90	W/pkg
Operating temperature	Ta	-20 to +85	°C
Junction temperature	T _j (Note2)	+150	°C
Storage temperature	Tstg	-55 to +150	°C

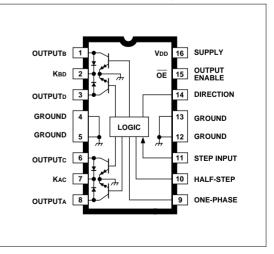
Note 1: When ambient temperature is 25°C or over, derate using -23.3mW/°C.

Note 1: When another temperature (12 50 600 600, defate damp 2.5.01110 / 2.5.0110 / 2.5.01100 /

■Electrical Characteristics

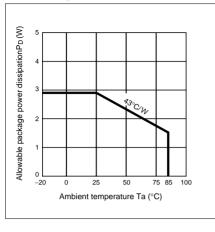

(Unless specified otherwise, Ta=25°C, VDD=4.5V to 5.5V)

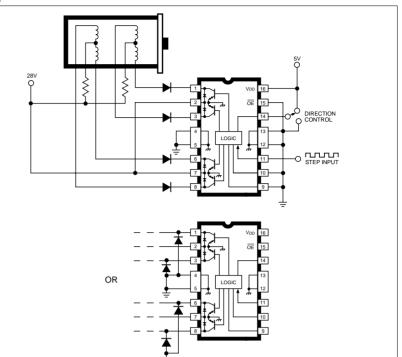
Limite


Parameter	Symbol	Conditions		Limits	Limits			
Falameter	Symbol	Conditions	min	typ	max	Units		
Output drivers								
Output leakage current	ICEX	Vo=50V		10	50	μA		
Output sustaining voltage	VCE (SUS)	Io=1.25A, L=3mH	3.5			V		
		lo=700mA		1.0	1.2	V		
Output saturation voltage	VCE (SAT)	lo=1A		1.1	1.4	V		
		Io=1.25A		1.2	1.5	V		
Clamp diode leakage current	IR	V _R =50V		10	50	μA		
Clamp diode forward voltage	VF	IF=1.25A		1.5	3.0	V		
Turn-on delay	ton	50% step inputs to 50% output			10	μs		
Turn-off delay	toff	50% step inputs to 50% output			10	μs		
Thermal shutdown temperature	Tj			165		°C		
Control logic		(Unle	ss specifie	d otherwis	se, Vin=Vo	□ or GND)		
Input ourrent	lн	V _{IN} =V _{DD}		0.5	5.0	μA		
Input current	lı.	V _{IN} =0.8V		-0.5	-5.0	μA		
	VIH	V _{DD} =5V	3.5		5.3	V		
Input voltage	VIL		-0.3		0.8	V		
Supply current	loo	2 outputs ON		20	30	mA		
Data setup time	ts DAT (A)	Inter-clock	100			ns		
Data hold time	th DAT (B)	Inter-clock	100			ns		
Clock pulse width	tw CLK (C)		500			ns		

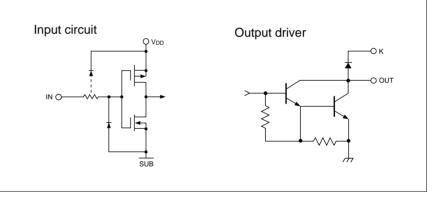
• "typ" values are for reference.

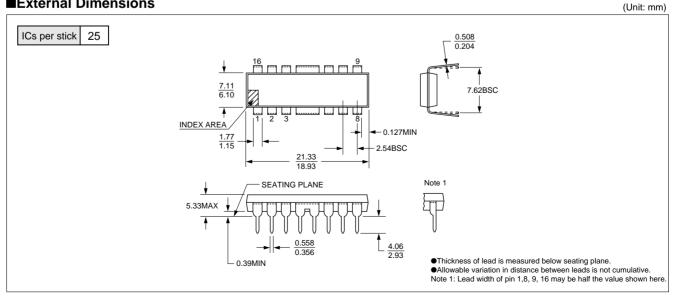
■Timing Conditions




■Terminal Connection Diagram

■Derating



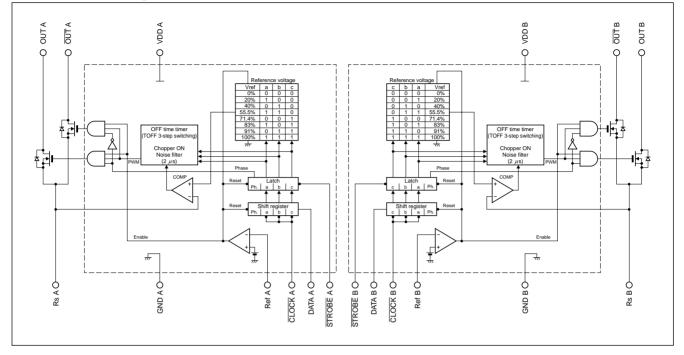

■Truth Table

Drive Format	Pin 9	Pin 10				
Two-Phase	L	L				
One-Phase	Н	L				
Half-Step	L	Н				
Step-Inhibit	Н	Н				

■I/O Equivalent Circuit

■External Dimensions

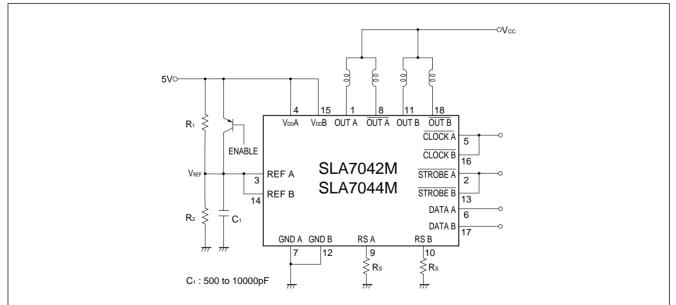
2-Phase Stepper Motor Unipolar Driver ICs


■Absolute Maximum Ratings

Deremeter	Cumhal	Rati	Linite							
Parameter	Symbol	SLA7042M	SLA7044M	Units						
Motor supply voltage	Vcc	4	46							
FET Drain-Source voltage	Vdss	10	00	V						
Control supply voltage	Vdd	7	V							
Input voltage	Vin	–0.5 to '	Vod+0.5	V						
Output current	lo	1.2	3	A						
Power dissipation	PD	4.5 (Withou	t Heatsink)	W						
Channel temperature	Tch	+1	°C							
Storage temperature	Tstg	-40 to	+150	°C						

■Electrical Characteristics

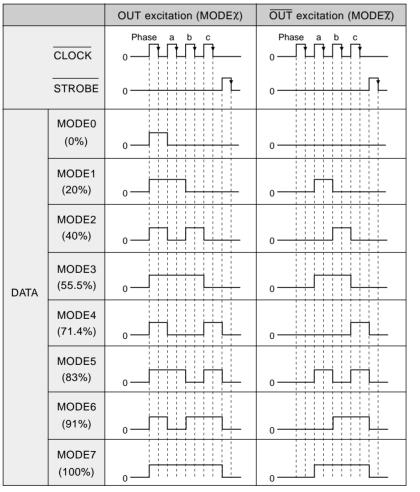
						R	atings					
	Para	meter	Symbol		SLA7042M			SLA7044M		Units		
	-			min	typ	max	min	typ	max			
	Control su	pply current				7			7	mA		
		pply voltage	Conditions VDD	4.5	V _{DD} =5.5V	5.5	4.5	V _{DD} =5.5V	5.5	V		
	Control su	pply voltage	V DD Vih	<u>4.5</u> 3.5	5	5.5	3.5	5	5.5			
		Input	Conditions	3.5	VDD=5V	5	3.5	VDD=5V	5	-		
	Terminals	voltage	VIL	0	100-01	1.5	0	V 55 - 5 V	1.5	- V		
	DATA,		Conditions		VDD=5V	110		VDD=5V		-		
	CLOCK and	Input hysteresis	Vн		1			1		v		
	STROBE	voltage	Conditions		VDD=5V			VDD=5V		v		
	0	Input				±1			±1	μΑ		
		current	Conditions VREF	0.4	VDD=5V, VI=0 or 5V	2.5	0.4	V _{DD} =5V, VI=0 or 5V	2.5	· · ·		
		Input	Conditions	0.4	VDD=5V	2.5	0.4	VDD=5V	2.5	-		
	REF	voltage	VDISABLE	Vdd-1	100-01	Vdd	V DD-1	100-01	Vdd	- V		
	terminal	l'energe	Conditions		VDD=5V		100 1	VDD=5V	•00	-		
		Input	IREF			±1			±1			
~		current	Conditions		VDD=5V, VI=0 or 5V			VDD=5V, V=0 or 5V		μΑ		
ţi			Vref		0			0				
sris			Conditions		MODE 0			MODE 0		_		
cte			Vref		20			20		_		
DC characteristics			Conditions V _{ref}		MODE 1 40			MODE 1 40		_		
÷			Conditions		MODE 2			MODE 2		-		
Q			Vref		55.5			55.5		-		
	Reference	voltago	Conditions		MODE 3			MODE 3				
		utput voltage	Vref		71.4			71.4		%		
	0010010110	aiput voltago	Conditions		MODE 4			MODE 4				
			Vref		83			83				
			Conditions		MODE 5			MODE 5		_		
			Vref		91 MODE 6			91 MODE 6				
			Conditions V _{ref}		MODE 6 100			100 MODE 6				
			Conditions		MODE 7			MODE 7		-		
		- 14	Vds			0.8		-	1.4			
	FET ON vo	oltage	Conditions		ID=1.2A, VDD=4.75V	/		ID=3A, VDD=4.75V		V		
	FET Drain-	-Source	VDSS	100			100			v		
	voltage		Conditions		loss=4mA, Vod=5V	-		IDSS=4mA, VDD=5V		v		
	FET drain	leakage current	IDSS			4			4	mA		
		Ū	Conditions VsD		VDSS=100V, VDD=5V	1.2		VDSS=100V, VDD=5V	2.3			
	FET diode	forward voltage	Conditions		ID=1.2A	1.2		I⊳=3A	2.5	- V		
-			TOFF		7			7				
			Conditions		MODE 1, 2			MODE 1, 2		-		
	Chopper o	ff time	TOFF		9			9				
			Conditions		MODE 3, 4, 5			MODE 3, 4, 5		μs		
			TOFF		11					_		
			Conditions		MODE 6, 7			MODE 6, 7				
			Tr Conditions		0.5 VDD=5V, ID=1A			0.5 VDD=5V, ID=1A		_		
S			Tstg		0.7			0.7		μs		
characteristics	Switching f	time	Conditions		VDD=5V, ID=1A			VDD=5V, ID=1A		μ ^μ υ		
eris			Tf		0.1			0.1				
gt			Conditions		Vdd=5V, Id=1A			VDD=5V, ID=1A				
ara	Data setup	time "A"	tsDAT	75			75					
сh	Data Setup		Conditions		Inter-clock			Inter-clock		_		
AC	Data hold t	time "B"	thDAT	75	lates alsola		75	later de di		_		
~			Conditions twDAT	150	Inter-clock		150	Inter-clock		_		
	Data pulse	time "C"	Conditions	100	1	<u> </u>	150			ns		
			twhCLK	100			100					
	Clock puls	e width "D"	Conditions					- I		1		
	Stabilizatio		tpsSTB	100			100					
	before stro		Conditions		Strobe=L from clock	ĸ		Strobe=L from clock				
	Strobe puls	se H width "F"	twhSTB	100			100			_		
	Jacob Pulk		Conditions									


■Internal Block Diagram

■Output Current Formula

 $I_{O} = \frac{K}{3} \cdot \frac{V_{REF}}{R_{S}}$ K: Reference voltage setting rate by serial signal (See the internal block diagram)

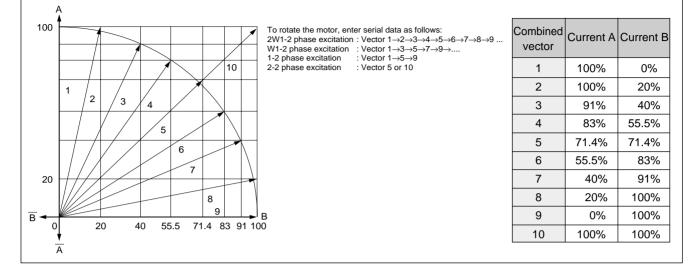
Diagram of Standard External Circuit


(Unit: mm)

31^{±0.2} 24.4^{±0.2} *ф* 3.2^{±0.15} *∲* 3.2^{±0.15}x3.8 $16.4^{\pm 0.2}$ 1.7^{±0.1} £ Part No. 2.45^{±0.2} £ Lot No. R-End 0.65+0.2 $1^{+0.2}_{-0.1}$ 0.65+0.2 +0.2 0.55+0.2 17xP1.68^{±0.4}=28.56[±] 4^{±0.7} 17xP1.68^{±0.4}=28.56[±] 31.3^{±0.2}

Forming No. No.871

Serial Data Pattern

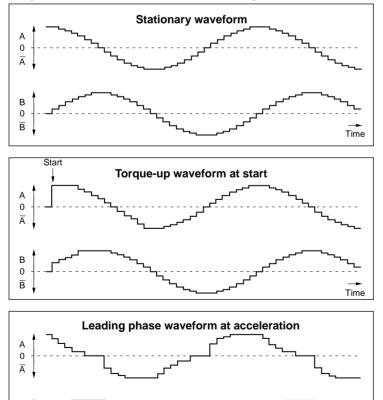

■External Dimensions

Successively output this serial data and set any current. Then, determine the step time of the reference voltage V_{ref} at $\overline{\text{STROBE}}$ signal intervals.

See page 48 for details of PG001M serial signal generator IC for SLA7042M and SLA7044M.

Forming No. No.872

Current Vector Locus (One step of stepper motor normalized to 90 degrees)


Serial Data Sequence Example (2W 1-2 Phase Excitation for CW)

Sequence	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	0
DATA-A MODE	4	3	2	1	0	_ 1	2	3	4	5	6	7	7	7	6	5	4	3	2	-1	ō	1	2	3	4	5	6	7	7	7	6	5	4
DATA-B MODE	4	5	6	7	7	7	6	5	4	3	2	1	0	ī	2	3	4	5	6	7	7	7	6	5	4	3	2	1	0	1	2	3	4

A malfunction may occur just after the power (V_{DD}) is turned on because the internal logic is unstable. Therefore, set the RESET state (REF terminal voltage: V_{DD} –1V to V_{DD}) after the power is turned on.)

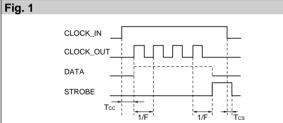
Time

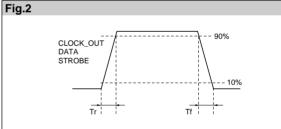
■Operation Current Waveform Examples

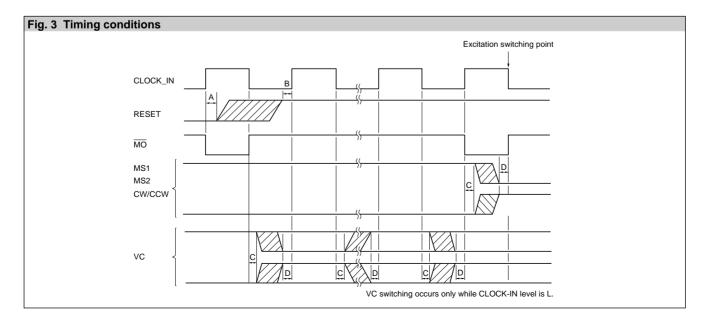
These three types of waveforms can all be set with a serial signal.

В 0 В

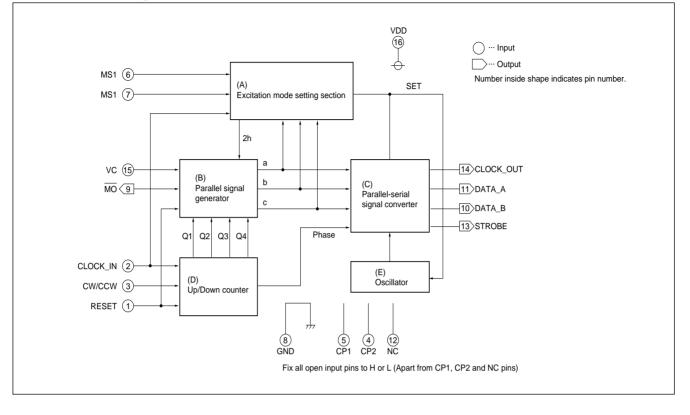
PG001M

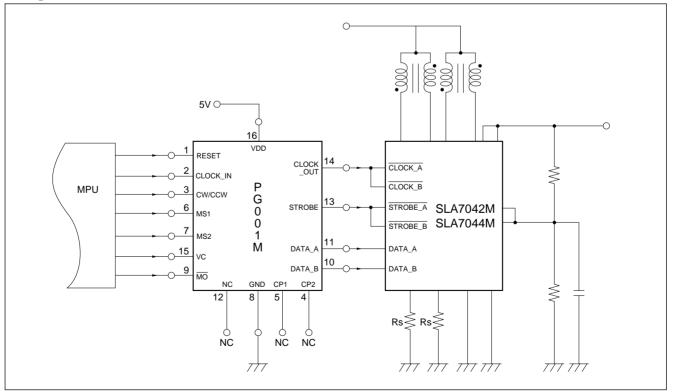

Serial Signal Generator IC for SLA7042M and SLA7044M


Absolute Maximum	n Ratings		(T₂=25°C)
Parameter	Symbol	Ratings	Units
Supply voltage	Vdd	–0.5 to 7	V
Input voltage	Vi	–0.5 to V _{DD} +0.5	V
Input current	h	±10	mA
Output voltage	Vo	−0.5 to V _{DD} +0.5	V
Output current	lo	±15	mA
Power dissipation	PD	200	mW
Operating temperature	Тор	-20 to +85	°C
Storage temperature	Tstg	-40 to +150	°C


■Electrical Characteristics

(Ta=25°C)


	Parameter	Cumbal	Conditions	Ratings								
	Parameter	Symbol	Conditions	min	typ	max	Units					
	Supply voltage	Vdd		4.5		5.5	V					
ß	Supply current	loo	VDD=5.5V		0.35	0.45	mA					
stic	Output voltage	Vон	Vdd=5V, lo=±3mA	4.5			V					
characteristics	Oulput voltage	Vol	V DD=3 V, IO=ISITIA			0.4	v					
rac	Input current	h	V _{DD} =5V, V⊨0 or 5V			±1	μA					
hai		VIH	VDD=5V	3.5		5	v					
	Input voltage	VIL	VDD=3V	-0.3		1.5	v					
В	Input hysteresis voltage	Vн	Vdd=5V		1		V					
	Input capacity	Ci	Vdd=5V		5	10	pF					
	Internal oscillation frequency	F VDD=5V			1.5		MHz					
	Propagation delay time	Tcs			50	100						
		Tcc	See Fig. 1.		430	550	ns					
characteristics	Output voltage	Tr	V _{DD} =5V, C _L =15pF		20							
ris:	Rise and fall time	Tf	See Fig. 2.		20		ns					
cte	CLOCK IN terminal	Vсін	H level time, VDD=5V	4.5								
ara	Input clock time	Vcil	L level time, VDD=5V	0.5			μs					
	Reset setting time (A)	tsR	Inter-clock	400								
AC	Stabilization time after reset (B)	tpsR	See Fig. 3.	100			ns					
	Signal setting time (C)	tsS	Inter alask									
	Stabilization time after	ter Inter-clock	100			ns						
	signal input (D)	tpsS	See Fig. 3.									



PG001M

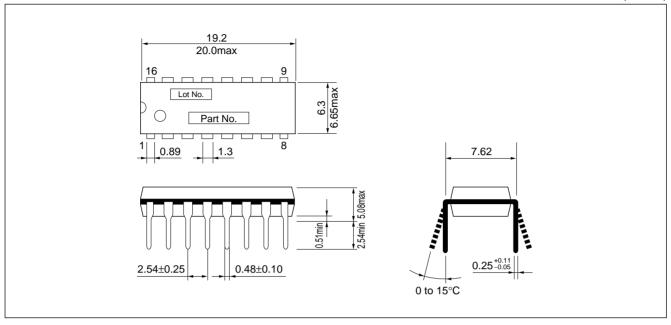
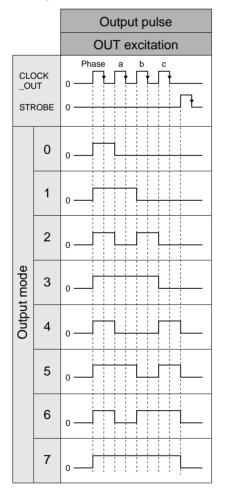
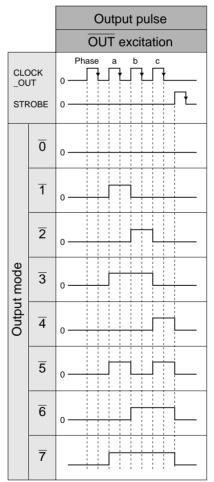

■Internal Block Diagram

Diagram of Standard External Circuit




■External Dimensions

(Unit: mm)

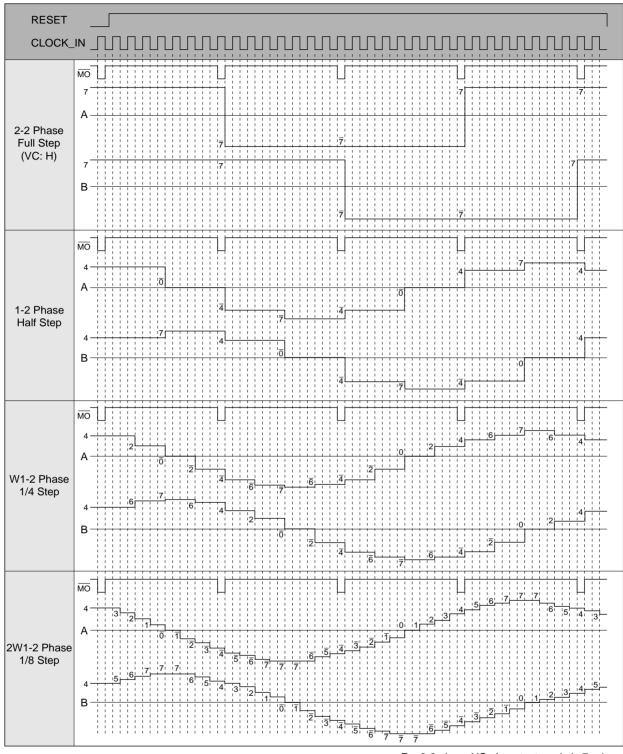
■Output Mode Vs Output Pulse

■Input and	Output	Function	Correlation	Table
------------	--------	----------	-------------	-------

	Inp	out				Output		
Mode	CLOCK _IN	CW /CCW	RESET	MO	CLOCK _OUT	STROBE	DATA -A	DATA -B
cw		L	Н				CW	CW
011		L	Н				011	011
CCW		Н	Н				CCW	CCW
CCW		Н	н					CCVV
RESET		×	L				Output Mode 4 or 7	Input Mode 4 or 7
RESET		×	L				Output Mode	Output Mode

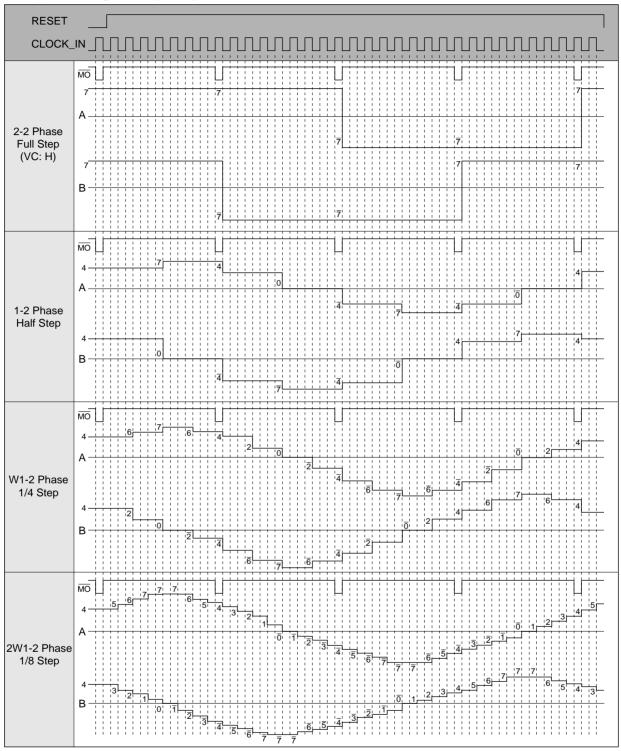
 \times : Don't care

■Excitation Selection Table


		Input	:		0	utput	currer	nt mod	le of S	SLA70	42M/7	7044M
Excitation method	Excitation mod selection			0	1	2	3	4	5	6	7	Torque vector
	VC	MS1	MS2	0%	20%	40%	55.5%	71.4%	83%	91%	100%	Torque vector
2-2 Phase	Η	L	L	-	-	_	_	_	_	-	0	141%
Full Step	L	L	L	-	-	-	-	0	-	-	-	100%
1-2 Phase Half Step	×	Н	L	0	-	_	_	0	_	-	0	100%
W1-2 Phase 1/4 Step	×	L	н	0	-	0	-	0	_	0	0	100%
2W1-2 Phase 1/8 Step	×	н	н	0	0	0	0	0	0	0	0	100%

■Output Mode Sequence

Excitation		CLOCK	RESET	1	2	3	4	5	6	7	8	9 1	0	11	12	13	14	15	16	17	18	19	20	212	222	32	425	526	27	28	29	30	31	32
method	CW/CCW	MO	L	н	н	н	н	н	н	н		н	н	н	н	н	н	н	L	н	н	н	н	н	HH	1 1	. н	Н	н	н	н	н	н	L
	CW	DATA_A	7	=	=	П	=	=	=	= 7	7	=	=	=	=	=	=	=	7	=	=	=	=	=	= =	= 7	' =	=	=	=	=	=	=	7
2-2 Phase Full Step (1)		DATA_B	7	=	=	=	=	=	=	= 1	7	=	=	=	=	=	=	=	7	=	=	=	=	=	= =	= 7	- -	=	=	=	=	=	=	7
(VC: H)	CCW	DATA_A	7	=	=	=	=	=	=	= 1	7	=	=	=	=	=	=	=	7	=	=	=	=	=	= =	= 7	=	=	=	=	=	=	=	7
		DATA_B	7	=	=	=	=	=	=	= 7	7	=	=	=	=	=	=	=	7	=	=	=	=	=	= =	= 7	' =	=	=	=	=	=	=	7
	CW	DATA_A	4	=	=	=	=	=	=	=	4	=	=	=	=	=	=	=	4	=	=	=	=	=	= =	= 4	=	=	=	=	=	=	=	4
2-2 Phase Full Step (2)	000	DATA_B	4	=	=	=	=	=	=	=	4	=	=	=	=	=	=	=	4	=	=	=	=	=	= =	= 2	ī =	=	=	=	=	=	=	4
(VC: L)	ccw	DATA_A	4	=	=	=	=	=	=	= 4	4	=	=	=	=	=	=	=	4	=	=	=	=	=	= =	= 7	ī =	=	=	=	=	=	=	4
	0000	DATA_B	4	=	=	=	=	=	=	=	4	=	=	=	=	=	=	=	4	=	=	=	=	=	= =	= 2	+ =	=	=	=	=	=	=	4
	cw	DATA_A	4	=	=	=	$\overline{0}$	=	=	=	4	=	=	=	7	=	=	=	4	=	=	=	0	=	= =	= 2	+ =	=	=	7	=	=	=	4
1-2 Phase	CVV	DATA_B	4	=	=	=	7	=	=	= 4	4	=	=	=	ō	=	=	=	4	=	=	=	7	=	= =	= 2	ī =	=	=	0	=	=	=	4
Half Step	ccw	DATA_A	4	=	=	=	7	=	=	=	4	=	=	=	0	=	=	=	4	=	=	=	7	=	= =	= 2	ī =	=	=	$\overline{0}$	=	=	=	4
	0000	DATA_B	4	=	=	=	0	=	=	=	4	=	=	=	7	=	=	=	4	=	=	=	ō	=	= =	= 2	+ =	=	=	7	=	=	=	4
	CW	DATA_A	4	=	2	=	$\overline{0}$	=	2	=	4	=	6	=	7	=	6	=	4	=	2	=	0	=	2 =	= 2	=	6	=	7	=	6	=	4
W1-2 Phase	000	DATA_B	4	=	6	=	7	=	6	= 4	4	=	2	=	0	=	2	=	4	=	6	=	7	=	6 =	= Z	F =	2	=	0	=	2	=	4
1/4 Step	ccw	DATA_A	4	=	6	Ш	7	=	6	= 4	4	= 1	2	=	0	=	2	=	4	=	6	=	7	=	6 =	= Z	ī =	2	=	$\overline{0}$	=	2	=	4
		DATA_B	4	=	2	=	0	=	2	= 4	4	=	6	=	7	=	6	=	4	=	2	=	0	=	2 =	= 2	+ =	6	=	7	=	6	=	4
	CW	DATA_A	4	3	2	1	ō	1	2	3	4	5	6	7	7	7	6	5	4	3	2	1	0	1	2	3 4	۱ <u>5</u>	6	7	7	7	6	5	4
2W1-2 Phase 1/8 Step	000	DATA_B	4	5	6	7	7	7	6	5	4	3	2	1	0	1	2	3	4	5	6	7	7	7	6 3	5 2	ī 3	2	1	0	1	2	3	4
	0014	DATA_A	4	5	6	7	7	7	6	5	4	3	2	1	0	1	2	3	4	5	6	7	7	7	<u></u> 6 र	5 2	ī 3	2	1	ō	1	2	3	4
	CCW	DATA_B	4	3	2	1	0	1	2	3	<u>4</u>	5	6	7	7	7	6	5	4	3	2	1	0	1	2	3 4	5	6	7	7	7	6	5	4


= : No output

^{* :} $\overline{\text{MO}}$ outputs L level while CLOCK_IN is H level when output mode is 4:4 (7:7), $\overline{4}$:4 ($\overline{7}$:7), 4: $\overline{4}$ (7: $\overline{7}$), or $\overline{4}$: $\overline{4}$ ($\overline{7}$: $\overline{7}$). Modes in brackets () are for 2-2 phase VC: H.

■Output Timing Chart (CW) ··· Excitation Current of SLA7042M/7044M

For 2-2 phase VC : L, output mode is $7\rightarrow 4$.

■Output Timing Chart (CCW) ··· Excitation Current of SLA7042M/7044M

For 2-2 phase VC:L, output mode is $7\rightarrow 4$.

2-Phase Stepper Motor Bipolar Driver IC

Allegro MicroSystems product

■Features

- Maximum output ratings: 30V, ±650mA
- Internal fixed-frequency PWM current control
- Internal ground-clamp & flyback diodes
- Internal thermal shutdown, crossover-current protection and UVLO protection circuitry
- Employs copper batwing lead frame with low thermal resistance

■Absolute Maximum Ratings

		Rati	ngs	
Parameter	Symbol	A3966SA	A3966SLB	Units
Load supply voltage	VBB	3	0	V
Output current (peak)	lo (Peak)	±75	50	mA
Output current (continuous)	ю	±6	50	mA
Logic supply voltage	Vcc	7.	0	V
Logic input voltage range	Vin	–0.3 to \	/cc+0.3	V
Sense voltage	Vs	1.	0	V
Package power dissipation	PD (Note1)	2.08	1.86	W
Ambient operating temperature	Ta	-20 to	o +85	°C
Junction temperature	T _j (Note2)	+1	50	°C
Storage temperature	Tstg	–55 to	+150	°C

Output current rating may be limited by duty cycle, ambient temperature, and heat sinking. Under any set of conditions, do not exceed the specified current rating or a junction temperature of 150°C.
 Note 1: When ambient temperature is 25°C or over, derate using -16.67mW/°C (SA), -14.93mW/°C (SLB).
 Note 2: Fault conditions where junction temperature (T_i) exceeds 150°C will activate the device's thermal shutdown circuitry. These conditions can be tolerated but should be avoided.

Electrical Characteristics (Unless specified otherwise, Ta=25°C, VBB=30V, Vcc=4.75V to 5.5V, VREF=2V, VS= 0V, 56kΩ & 680pF RC to ground the specified otherwise, Ta=25°C, VBB=30V, Vcc=4.75V to 5.5V, VREF=2V, VS= 0V, 56kΩ & 680pF RC to ground the specified otherwise, Ta=25°C, VBB=30V, Vcc=4.75V to 5.5V, VREF=2V, VS= 0V, 56kΩ & 680pF RC to ground the specified otherwise, Ta=25°C, VBB=30V, Vcc=4.75V to 5.5V, VREF=2V, VS= 0V, 56kΩ & 680pF RC to ground the specified otherwise, Ta=25°C, VBB=30V, Vcc=4.75V to 5.5V, VREF=2V, VS= 0V, 56kΩ & 680pF RC to ground the specified otherwise, Ta=25°C, VBB=30V, Vcc=4.75V to 5.5V, VREF=2V, VS= 0V, 56kΩ & 680pF RC to ground the specified otherwise, Ta=25°C, VBB=30V, Vcc=4.75V to 5.5V, VREF=2V, VS= 0V, 56kΩ & 680pF RC to ground the specified otherwise, Ta=25°C, VBB=30V, Vcc=4.75V to 5.5V, VREF=2V, VS= 0V, 56kΩ & 680pF RC to ground the specified otherwise, Ta=25°C, VBB=30V, Vcc=4.75V to 5.5V, VREF=2V, VS= 0V, 56kΩ & 680pF RC to ground the specified otherwise, Ta=25°C, VBB=30V, Vcc=4.75V to 5.5V, VREF=2V, VS= 0V, 56kΩ & 680pF RC to ground the specified otherwise, Ta=25°C, VBB=30V, Vcc=4.75V to 5.5V, VREF=2V, VS= 0V, 56kΩ & 680pF RC to ground the specified otherwise, Ta=25°C, VBB=30V, Vcc=4.75V to 5.5V, VREF=2V, VS= 0V, 56kΩ & 680pF RC to ground the specified otherwise, Ta=25°C, VBB=30V, Vcc=4.75V to 5.5V, VREF=2V, VS= 0V, 56kΩ & 680pF RC to ground the specified otherwise, Ta=25°C, VBB=30V, Vcc=4.75V to 5.5V, VREF=2V, VS= 0V, 56kΩ & 680pF RC to ground the specified otherwise, Ta=25°C, VBB=30V, Vcc=4.75V to 5.5V, VREF=2V, VS= 0V, 56kΩ & 680pF RC to ground the specified otherwise, Ta=25°C, VBB=30V, Vcc=4.75V to 5.5V, VREF=2V, VS= 0V, 56kΩ & 680pF RC to ground the specified otherwise, Ta=25°C, VBB=30V, Vcc=4.75V to 5.5V, VREF=2V, VS= 0V, 56kΩ & 680pF RC to ground the specified otherwise, Ta=25°C, VS= 0V, 56kΩ & 680pF RC to 5.5V, VS= 0V, 56kΩ & 680pF RC to 5.5

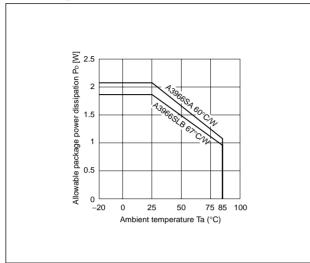
Parameter	Symbol	Conditions		Ratings		Units
	Symbol	Conditions	min	typ	max	Units
Power outputs (OUT _A or OUT _B)						
Load supply voltage range	VBB	Operating, Io=±650mA, L=3mH	Vcc		30	V
Output leakage current	ICEX	Vo=30V		< 1.0	50	μΑ
Output leakage current	ICEX	Vo=0V		< -1.0	-50	μΑ
		Source Driver, lo=-400mA		1.7	2.0	V
Output saturation voltage	Vce (sat)	Source Driver, lo=-650mA		1.8	2.1	V
Ouput saturation voltage	VCE (Sal)	Sink Driver, Io=+400mA, VSENSE=0.5V		0.3	0.5	V
		Sink Driver, Io=+650mA, VSENSE=0.5V		0.4	1.3	V
Sense-current offset	lso	ls–Io, Io =50~650mA	12	18	24	mA
Clamp diada fanyard valtaga	VF	IF=400mA		1.1	1.4	V
Clamp diode forward voltage	VF	I⊧=650mA		1.4	1.6	V
	IBB (ON)	VENABLE1=VENABLE2=0.8V		3.0	5.0	mA
Motor supply current (No load)	IBB (OFF)	VENABLE1=VENABLE2=2.4V		< 1.0	200	μΑ
Control logic	. ,					
Logic supply voltage range	Vcc	Operating	4.75		5.50	V
	VIH		2.4			V
Logic input voltage	Vil				0.8	V
	Ін	VIN=2.4V		< 1.0	20	μA
Logic input current	١L	V _{IN} =0.8V		< -20	-200	μA
Reference input voltage range	VREF	Operating	0.1		2.0	V
Reference input current	REF		-2.5	0	1.0	μA
Reference divider ratio	VREF/VTRIP		3.8	4.0	4.2	- F
Current-sense comparator input offset voltage	Vio	VREF=0V	-6.0	0	6.0	mV
Current-sense comparator input voltage range		Operating	-0.3	-	1.0	V
PWM RC frequency	fosc	Cτ=680pF, Rτ=56kΩ	22.9	25.4	27.9	kHz
· · ·		Comparator Trip to Source OFF		1.0	1.4	μS
PWM propagation delay time	tрwм	Cycle Reset to Source ON		0.8	1.2	μS
Cross-over dead time	tcodt	1kΩ Load to 25V	0.2	1.8	3.0	μS
	toout	Io=±650mA, 50% to 90% : ENABLE ON to Source ON	0.2	100	0.0	ns
		Io=±650mA, 50% to 90% : ENABLE OFF to Source OFF		500		ns
		Io=±650mA, 50% to 90% : ENABLE ON to Sink ON		200		ns
		Io=±650mA, 50% to 90% : ENABLE OFF to Sink OFF		200		ns
Propagation delay time	t _{pd}	$I_0=\pm 650$ mA, 50% to 90% : PHASE Change to Sink ON		2200		ns
		Io=±650mA, 50% to 90% : PHASE Change to Sink OFF		2200		ns
		Io=±650mA, 50% to 90% : PHASE Change to Surk OFT		2200		ns
				2200		
Thermal shutdown temperature	Tj	Io=±650mA, 50% to 90% : PHASE Change to Source OFF		165		ns °C
Thermal shutdown temperature	ΔT_j			165		°C
,	ΔIj VuvLoen			4.1	4.6	^ی ر
UVLO enable threshold		Increasing Vcc	0.1		4.0	
UVLO hysteresis			0.1	0.6		V
Logic supply current	Icc (ON)	VENABLE1=VENABLE2=0.8V			50	mA
	Icc (OFF)	VENABLE1=VENABLE2=2.4V			9	mA

• "typ" values are for reference.

-++ (--

SENSE

0 TO OTHER BRIDGE


rs∮

+4

Q

REFERENCE

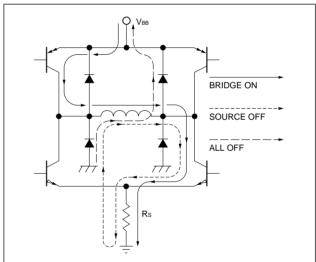
■Derating

SO LOGIC LOAD SUPPLY OUTB **UT**∧ Q Ò Ò PHASE Ż UVLO & TSD

PWM LATCH

ĺЦÌ

R


CURRENT-SENSE COMPARATOR

TO OTHER

BLANKING GATE

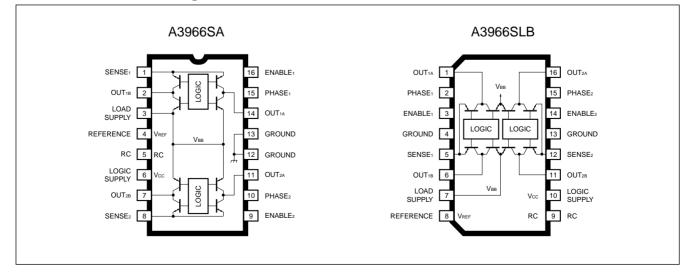
Internal Block Diagram (1/2 circuit)

■Load-Current Paths

■Truth Table

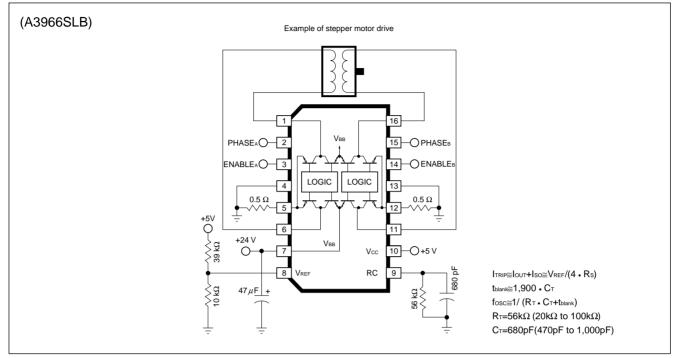
PHASE

X	Н	Z	Z
Н	L	Н	L
L	L	L	Н
X: Don't care	(either L or H)		

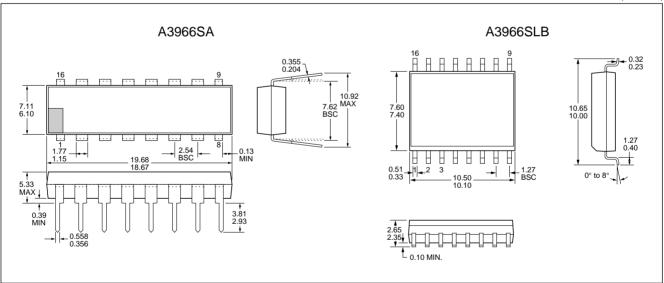

OUTA

OUTB

Z: High impedance (source and sink both OFF)


ENABLE

■Terminal Connection Diagram



(Unit: mm)

■Typical Application

■External Dimensions

A3964SLB

2-Phase Stepper Motor Bipolar Driver IC

Allegro MicroSystems product

■Features

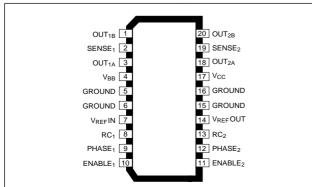
- Fixed off-time PWM current control
- Internally generated, precision 2.5V reference
- External filter for sense terminal not required
- Internal thermal shutdown circuitry
- Internal crossover-current protection circuitry
- Internal UVLO protection
- Internal transient-suppression diodes
- Low thermal resistance 20-pin SOP

■Absolute Maximum Ratings

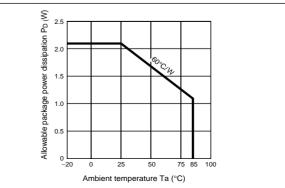
Parameter	Symbol	Ratings	Units
Load supply voltage	VBB	30	V
Output current (continuous)	ю	±0.80	А
Logic supply voltage	Vcc	7.0	V
Logic input voltage range	Vin	–0.3 to Vcc+0.3	V
Continuous output emitter voltage	Ve	1.0	V
Reference output current	REF-OUT	1.0	mA
Package power dissipation	PD (Note1)	2.08	W
Operating temperature	Ta	-20 to +85	°C
Junction temperature	T _j (Note2)	+150	°C
Storage temperature	Tstg	-55 to +150	°C

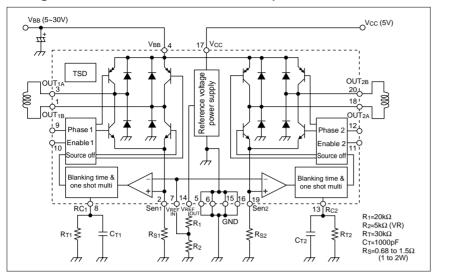
●Output current rating may be limited by duty cycle, ambient temperature, and heat sinking. Under any set of conditions, do not exceed the specified current rating or a junction temperature of 150°C. Note 1: When ambient temperature is 25°C or over, derate using –16.7mW/°C.

Note 2: Fault conditions where junction temperature (Tj) exceeds 150°C will activate the device's thermal shutdown circuitry. These conditions can be tolerated but should be avoided.


■Electrical Characteristics (Unless specified otherwise, Ta=25°C, VBB=30V, Vcc=4.75V to 5.25V, VREF=2V, VSENSE= 0V)

Parameter	Cumhal	Conditions		Ratings		Units
Parameter	Symbol	Conditions	min	typ	max	Units
Power outputs (OUT _A or OUT _B)	-					
Load supply voltage range	VBB	Operating	5		30	V
		Sink driver, Vo=VBB		< 1.0	50	μΑ
Output leakage current	ICEX	Source driver, Vo=0V		<- 1.0	-50	μΑ
		Sink driver, Io=+500mA		0.3	0.6	V
		Sink driver, Io=+750mA		0.5	1.2	V
Output action time to the sec		Sink driver, Io=+800mA			1.5	V
Output saturation voltage	VCE (SAT)	Source driver, lo=–500mA		1.0	1.2	V
		Source driver, Io=-750mA		1.1	1.5	V
		Source driver, lo=-800mA			1.7	V
Output sustaining voltage	VCE (SUS)	Io=±800mA, L=3mH	30			V
Clamp diode leakage current	IR	V _R =30V		< 1.0	50	μΑ
Clamp diode forward voltage	VF	I⊧=800mA		1.6	2.0	V
	BB (ON)	VEN1=VEN2=0.8V, no load			10	mA
Motor supply current	BB (OFF)	VEN1=VEN2=2.4V, no load			10	mA
Control logic	-	(Unles	s specifie	d otherwis	e, Vin=Vd	or GND)
	VIH		2.4			V
Logic input voltage	VIL				0.8	V
	Ін	V _{IN} =2.4V		< -1.0	20	μΑ
Logic input current	lı.	VIN=0.8V		< -20	-200	μA
Reference output voltage	VREF • OUT1	Vcc=5.0V, Iref• out=90~900µ A	2.45	2.50	2.55	V
Current-sense comparator input current	REF • IN	VREF · IN=1V	-5.0		5.0	μΑ
Current-sense comparator input voltage range	VREF • IN	Operating	-0.3		1.0	V
Current-sense comparator input offset voltage	Vтн	VREF · IN=OV	-6		6	mV
Timer blanking charge current (RC off)	RC	Vrc=2.0V		1.0		mA
	VBLTH(1)			3.0		V
Timer blanking threshold (RC off)	VBLTH(0)			1.0		V
Timer blanking OFF voltage (RC off)	VRCOFF	R⊤=20kΩ		3.0		V
Thermal shutdown temperature	Tj			165		°C
Thermal shutdown hysteresis	ΔΤj			15		°C
	ICC (ON)	VEN1=VEN2=0.8V, no load		65	85	mA
Logic supply current	CC (OFF)	VEN1=VEN2=2.4V, no load			17	mA
Logic supply current/temperature coefficient	, ,	VEN1=VEN2=0.8V, no load		0.18		mA/°C


"typ" values are for reference.


Note) Logic input: En1, En2, Ph1, Ph2

■Terminal Connection Diagram

■Derating

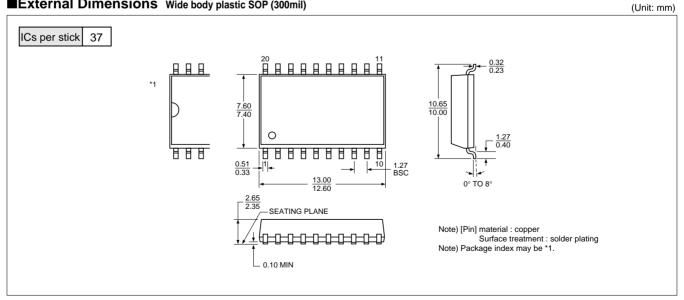
■Internal Block Diagram(Dotted Line)/ **Diagram of Standard External Circuit (Recommended Circuit Constants)**

■Truth Table

Phase	Enable	Out A	Out B
н	L	н	L
L	L	L	н
Х	Н	Z	Z

X = Don't care, Z = High impedance

■Excitation Sequence

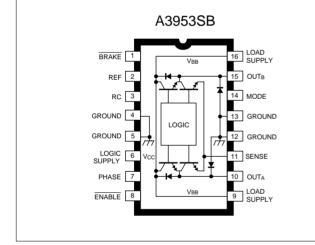

[2-phase excitation]

		-			
	0	1	2	3	0
Phase 1	н	L	L	н	н
Enable 1	L	L	L	L	L
Phase 2	Н	Н	L	L	Н
Enable 2	L	L	L	L	L

[1-2 phase excitation]

	0	1	2	3	4	5	6	7	0
Phase 1	Н	н	Х	L	L	L	Х	н	Н
Enable 1	L	L	н	L	L	L	н	L	L
Phase 2	Х	н	н	н	Х	L	L	L	Х
Enable 2	н	L	L	L	н	L	L	L	н

External Dimensions Wide body plastic SOP (300mil)

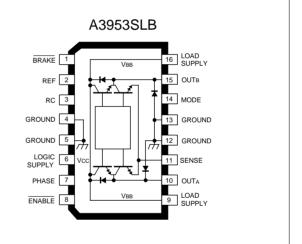

2-Phase Stepper Motor Bipolar Driver ICs

Allegro MicroSystems product

■Features

- Fixed off-time PWM current control
- Switching between power supply regeneration mode and loop regeneration mode in order to improve motor current response in microstepping
- External filter for sense terminal not required
- 3.3V and 5V logic supply voltage
- Sleep (low current consumption) mode
- Brake operation with PWM current limiting
- Internal thermal shutdown circuitry
- Internal crossover-current protection circuitry
- Internal UVLO protection
- Internal transient-suppression diodes
- Low thermal resistance package

■Terminal Connection Diagram

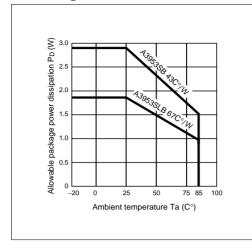


■Absolute Maximum Ratings

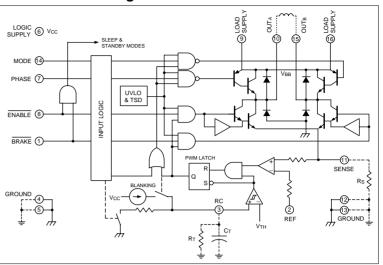
Deservator	Ourseland	Rati	Links			
Parameter	Symbol	A3953SB	A3953SLB	Units		
Load supply voltage	VBB	5	50			
Output current (continuous)	lo	±1	.3	A/unit		
Logic supply voltage	Vcc	7.	V			
Logic/reference input voltage range	Vin	–0.3 to ^v	V			
Sense voltage	VSENSE D.C.	1.0 (Vcc 0.4 (Vcc	V			
Package power dissipation	PD (Note1)	2.90	1.86	W/pkg		
Operating temperature	Ta	-20 to +85		°C		
Junction temperature	T _j (Note2)	+1	°C			
Storage temperature	Tstg	–55 to	+150	°C		

•Output current rating may be limited by duty cycle, ambient temperature, and heat sinking. Under any set of conditions, do not exceed the specified current rating or a junction temperature of 150°C. Note 1: When ambient temperature is 25°C or over, derate using –23.26mW/°C(SB) or –14.93mW/°C(SLB).

Note 2: Fault conditions where junction temperature (Tj) exceeds 150°C will activate the device's thermal shutdown circuitry. These conditions can be tolerated but should be avoided.

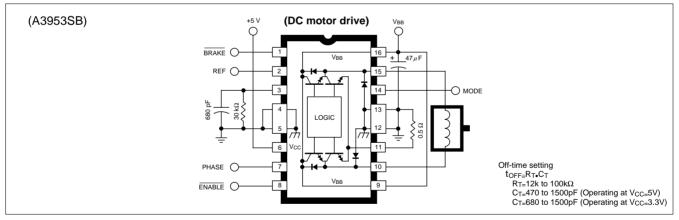

■Electrical Characteristics

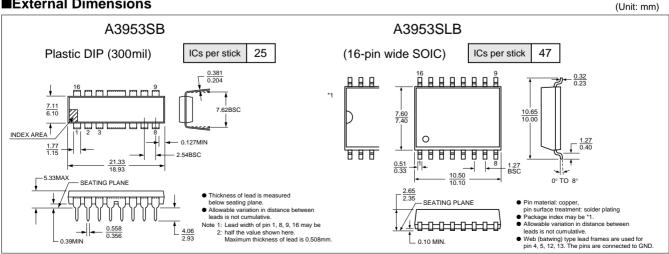
(Unless specified otherwise, T_a=25°C, V_{BB}=5V to 50V, V_{CC}=3.0V to 5.5V)


Parameter	Symbol	Conditions		Limits		Units
			min	typ	max	
ower outputs (OUT _A or OUT _B)	VBB		N/		50	V
Load supply voltage range	VBB	Operating, Io=±1.3A, L=3mH Vo=V _{BB}	Vcc	.1.0	50	
Output leakage current	ICEX			<1.0	50	μΑ
Sense current offset			10	<-1.0	-50	μΑ
Sense current offset	Iso	Isense-Io, Io=850mA, Vsense=0V, Vcc=5V	18	33	50	mA
		Vsense=0.4V, Vcc=3.0V, BRAKE=H:Source driver, Io=–0.85A		1.0	1.1	V V
Output saturation voltage	VCE (SAT)	Vsense=0.4V, Vcc=3.0V, BRAKE=H:Source driver, Io=-1.3A		1.7	1.9	
(Forward/reverse mode)		VSENSE=0.4V, Vcc=3.0V, BRAKE=H:Sink driver, lo=0.85A		0.4	0.9	V
O I I I I I	-	Vsense=0.4V, Vcc=3.0V, BRAKE=H:Sink driver, Io=1.3A		1.1	1.3	V
Output saturation voltage	VCE (SAT)	Vsense=0.4V, Vcc=3.0V, BRAKE=L:Sink driver, Io=0.85A		1.2	1.4	V
(Brake mode)	-	VSENSE=0.4V, Vcc=3.0V, BRAKE=L:Sink driver, Io=1.3A		1.4	1.8	V
Clamp diode forward voltage	VF	IF=0.85A		1.2	1.4	V
		IF=1.3A		1.4	1.8	V
	BB (ON)	VENABLE=0.8V, VBRAKE=2.0V		2.5	4.0	mA
Motor supply current	BB (OFF)	VENABLE=VBRAKE=2.0V, VMODE=0.8V		1.0	50	μΑ
(No load)	BB (BRAKE)	VBRAKE=0.8V		1.0	50	μA
	BB (SLEEP)	VENABLE=VBRAKE=VMODE=2.0V		1.0	50	μΑ
ontrol logic						
Thermal shutdown temperature	Tj			165		°C
Thermal shutdown hysteresis	ΔT_j			8		°C
UVLO enable threshold	Vuvlo		2.5	2.75	3.0	V
UVLO hysteresis	ΔVuvlo		0.12	0.17	0.25	V
Logic supply current	ICC (ON)	VENABLE=0.8V, VBRAKE=2.0V		42	50	mA
	ICC (OFF)	VENABLE=VBRAKE=2.0V, VMODE=0.8V		12	15	mA
	ICC (BRAKE)	VBRAKE=0.8V		42	50	mA
	ICC (SLEEP)	VENABLE=VBRAKE=VMODE=2.0V		500	800	μΑ
Logic supply voltage range	Vcc	Operating	3.0	3.3		v
				5.0	5.5	
Logic input voltage	ViH		2.0			V
	VIL				0.8	V
Logic input current	Ін	Vin=2.0V		<1.0	20	μΑ
	lı.	Vin=0.8V		<-2.0	-200	μΑ
Sense voltage range	VSENSE (3.3)	Vcc=3.0V to 3.6V	0		0.4	V
	VSENSE (5.0)	Vcc=4.5V to 5.5V	0		1.0	V
Reference input current	IREF	V _{REF} =0V to 1V			±5.0	μΑ
Comparator input offset voltage	Vio	Vref=0V		±2.0	±5.0	mV
C timing						
PWM RC fixed off-time	toff RC	CT=680pF, RT=30kΩ, Vcc=3.3V	18.3	20.4	22.5	μs
PWM turn-off time	tpwm (OFF)	Comparator Trip to Source OFF, Io=25mA		1.0	1.5	μs
		Comparator Trip to Source OFF, Io=1.3A		1.8	2.6	μs
PWM turn-on time	tpwm (ON)	IRC Charge ON to Source ON, Io=25mA		0.4	0.7	μs
		IRC Charge ON to Source ON, Io=1.3A		0.55	0.85	μs
PWM minimum on-time	tpwm (ON)	Vcc=3.3V, Rτ≥12kΩ, Cτ=680pF	0.8 0.8	1.4	1.9	μs
		Vcc=5.0V, R⊤≥12kΩ, C⊤=470pF		1.6	2.0	μs
		Io=±1.3A, 50% to 90% ENABLE ON to Source ON		1.0		μs
		Io=±1.3A, 50% to 90% ENABLE OFF to Source OFF		1.0		μs
		$I_0=\pm 1.3A$, 50% to 90% ENABLE ON to Sink ON		1.0		μs
Propagation delay time	tpd	Io=±1.3A, 50% to 90% ENABLE OFF to Sink OFF (MODE=L)		0.8		μs
i ropagation delay time	Lpd	Io=±1.3A, 50% to 90% PHASE Change to Sink ON		2.4		μs
		Io=±1.3A, 50% to 90% PHASE Change to Sink OFF		0.8		μs
		Io=±1.3A, 50% to 90% PHASE Change to Source ON		2.0		μs
		I₀=±1.3A, 50% to 90% PHASE Change to Source OFF		1.7		μs

• "typ" values are for reference.

■Derating


Internal Block Diagram


■Truth Table

BRAKE	ENABLE	PHASE	MODE	OUTA	OUTB	Operating Mode
н	н	х	н	z	z	Sleep mode
Н	н	Х	L	Z	z	Standby
н	L	Н	н	н	L	Forward, fast current-decay mode
н	L	н	L	н	L	Forward, slow current-decay mode
н	L	L	н	L	н	Reverse, fast current-decay mode
н	L	L	L	L	н	Reverse, slow current-decay mode
L	x	Х	н	L	L	Brake, fast current-decay mode
L	Х	Х	L	L	L	Brake, no current control

■Application Circuit

■External Dimensions

Application Notes

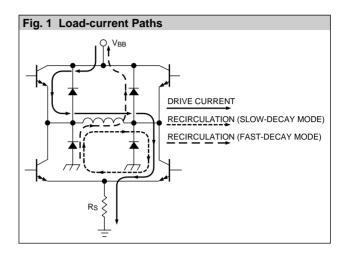
■Outline

Designed for bidirectional pulse-width modulated (PWM) current control of inductive loads, the A3953S- is capable of continuous output currents to $\pm 1.3A$ and operating voltages to 50V. Internal fixed off-time PWM current-control circuitry can be used to regulate the mximum load current to a desired value. The peak load current limit is set by the user's selection of an input reference voltage and external sensing resistor. The fixed offtime pulse duration is set by a userselected external RC timing network. Internal circuit protection includes thermal shutdown with hysteresis, transient-suppression diodes, and crossover current protection. Special power-up sequencing is not required. With the ENABLE input held low, the PHASE input controls load current polarity by selecting the appropriate source and sink driver pair. The MODE input determines whether the PWM current-control circuitry operates in a slow current-decay mode (only the selected source driver switching) or in a fast current-decay mode (selected source and sink switching). A user-selectable blanking window prevents false triggering of the PWM currentcontrol circuitry. With the ENABLE input held high, all output drivers are disabled. A sleep mode is provided to reduce power consumption.

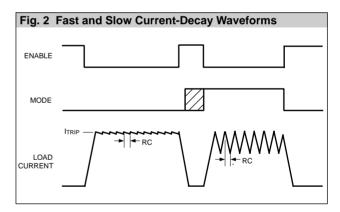
When a logic low is applied to the Brake input, the braking function is enabled. This overrides ENABLE and PHASE to turn OFF both source drivers and turn ON both sink drivers. The brake function can be used to dynamically brake brush dc motors.

■FUNCTIONAL DESCRIPTION

(A) Internal PWM Current Control During Forward and Reverse Operation.


The A3953S-contains a fixed off-time pulse-width modulated (PWM) current-control circuit that can be used to limit the load current to a desired value. The peak value of the current limiting (I_{TRIP}) is set by the selection of an external current sensing resistor (Rs) and reference input voltage (V_{REF}). The internal circuitry compares the voltage across the external sense resistor to the voltage on the reference input terminal (REF) resulting in a transconductance function approximated by:

$$I_{TRIP} \approx \frac{V_{REF}}{R_{SENSE}} - I_{SC}$$


where Iso is the offset due to base drive current.

In forward or reverse mode the current-control circuitry limits the load current as follows: when the load current reaches I_{TRIP} , the comparator resets a latch that turns off the selected source driver or selected sink and source driver pair depending on whether the device is operating in slow or fast current-decay mode, respectively.

In slow current-decay mode, the selected source driver is disabled; the load inductance causes the current to recirculate through the sink driver and ground clamp diode. In fast currentdecay mode, the selected sink and source driver pair are disabled; the load inductance causes the current to flow from ground to the load supply via the ground clamp and flyback diodes.

The user selects an external resistor (R_T) and capacitor (C_T) to determine the time period ($t_{OFF}=R_T \cdot C_T$) during which the drivers remain disabled (see "RC Fixed Off-time" below). At the end of the RC interval, the drivers are enabled allowing the load current to increase again. The PWM cycle repeats, maintaing the peak load current at the desired value (see figure 2).

(B)INTERNAL PWM CURRENT CONTROL DURING BRAKE-MODE OPERATION

(1) Brake Operation-MODE Input High.

The brake circuit turns OFF both source drivers and turns ON both sink drivers. For dc motor applications, this has the effect of shoring the motor's back-EMF voltage resulting in current flow that dynamically brakes the motor. If the back-EMF voltage is large, and there is no PWM current limiting, the load current can increase to a value that approaches that of a locked rotor condition. To limit the current, when the ITRIP level is reaced, the PWM circuit disables the conducting sink drivers. The energy stored in the motor's inductance is discharged into the load supply causing the motor current to decay.

As in the case of forward/reverse operation, the drivers are enabled after a time given by $t_{OFF}=R_T \cdot C_T$ (see "RC Fixed Off-time" below). Depending on the back-EMF voltage (proportional to the motor's decreasing speed), the load current again may increase to I_{TRIP} . If so, the PWM cycle will repeat, limiting the peak load current to the desired value.

During braking, when the MODE input is high, the peak current limit can be approximated by:

$$\mathsf{I}_{\mathsf{TRIP}}\,\mathsf{BRAKE}\,\mathsf{MH}\approx\frac{\mathsf{VREF}}{\mathsf{RSENSE}}$$

CAUTION: Because the kinetic energy stored in the motor and load inertia is being converted into current, which charges the V_{BB} supply bulk capacitance (power supply output and decoupling capacitance), care must be taken to ensure the capacitance is sufficient to absorb the energy without exceeding the voltage rating of any devices connected to the motor supply.

(2) Brake Operation-MODE Input Low.

During braking, with the MODE input low, the internal currentcontrol circuitry is disabled. Therefore, care should be taken to ensure that the motor's current does not exceed the ratings of the device. The braking current can be measured by using an oscilloscope with a current probe connected to one of the motor's leads, or if the back-EMF voltage of the motor is known, approximated by:

 $\mathsf{I}_{\mathsf{PEAK}\,\mathsf{BRAKE}\,\mathsf{ML}}\approx\frac{\mathsf{V}_{\mathsf{BEMF}}-\mathsf{1V}}{\mathsf{RLOAD}}$

(C) RC Fixed Off-Time.

The internal PWM current-control circuitry uses a one shot to control the time the driver (s) remain (s) off. The one-shot time, t_{OFF} (fixed off-time), is determined by the selection of an external resistor (R_T) and capacitor (C_T) connected in parallel from the RC timing terminal to ground. The fixed off-time, over a range of values of C_T =470pF to 1500pF and R_T =12k Ω to 100k Ω , is approximated by:

$$t_{off} \approx R_T \cdot C_T$$

The operation of the circuit is as follows: when the PWM latch is reset by the current comparator, the voltage on the RC terminal will begin to decay from approximately 0.60Vcc. When the voltage on the RC terminal reaches approximately 0.22 Vcc, the PWM latch is set, thereby enabling the driver (s).

(D) RC Blanking.

In addition to determining the fixed off-time of the PWM control circuit, the C_T component sets the comparator blanking time. This function blanks the output of the comparator when the outputs are switched by the internal current-control circuitry (or by the PHASE, BRAKE, or ENABLE inputs). The comparator output is blanked to prevent false over-current detections due to reverse recovery currents of the clamp diodes, and/or switching transients related to distributed capacitance in the load.

During internal PWM operation, at the end of the $\ensuremath{\mathsf{to}}\xspace{\mathsf{FF}}$ time, the

comparator's output is blanked and C_T begins to be charged from approximately 0.22 V_{CC} by an internal current source of approximately 1 mA. The comparator output remains blanked until the voltage on C_T reaches approximately 0.60 V_{CC}.

When a transition of the PHASE input occurs, C_T is discharged to near ground during the crossover delay time (the crossover delay time is present to prevent simultaneous conduction of the source and sink drivers). After the crossover delay, C_T is charged by an internal current source of approximately 1 mA. The comparator output remains blanked until the voltage on C_T reaches approximately 0.60Vcc.

When the device is disabled, via the ENABLE input, C_T is discharged to near ground. When the device is reenabled, C_T is charged by an internal current source of approximately 1 mA. The comparator output remains blanked until the voltage on C_T reaches approximately 0.60 V_{cc}.

For 3.3 V operation,

the minimum recommended value for Cr is 680pF±5%. For 5.0V operation,

the minimum recommended value for C_T is 470pF±5%. These values ensure that the blanking time is sufficient to avoid false trips of the comparator under normal operating conditions. For optimal regulation of the load current, the ablove values for C_T are recommended and the value of R_T can be sized to determine to_{FF}. For more information regarding load current regulation, see below.

(E) LOAD CURRENT REGULATION WITH INTERNAL PWM CURRENT-CONTROL CIRCUITRY

When the device is operating in slow current-decay mode, there is a limit to the lowest level that the PWM current-control circuitry can regulate load current. The limitation is the minimum duty cycle, which is a function of the user-selected value of toFF and the minimum on-time pulse toN (min) max that occurs each time the PWM latch is reset. If the motor is not rotating (as in the case of a stepper motor in hold/detent mode, a brush dc motor when stalled, or at startup), the worst case value of current regulation can be approximated by:

$$I_{AVE} \cong \frac{\left[\left(V_{BB} - V_{SAT} \left(\text{source } + \text{sink} \right) \right) \bullet \text{ton (min) max} \right] - \left[1.05 \bullet \left(V_{SAT} \left(\text{sink} \right) + V_F \right) \bullet \text{toff} \right]}{1.05 \bullet \left(\text{ton (min) max} + \text{toff} \right) \bullet \text{RLOAD}}$$

where $to_{FF}=R_T \cdot C_T$, R_{LOAD} is the series resistance of the load, V_{BB} is the motor supply voltage and t_{ON} (min) max is specified in the electrical characteristics table. When the motor is rotating, the back EMF generated will influence the above relationship. For brush dc motor applications, the current regulation is improved. For stepper motor applications, when the motor is rotating, the effect is more complex. A discussion of this subject is included in the section on stepper motors below.

The following procedure can be used to evaluate the worst-case slow current-decay internal PWM load current regulation in the system:

Set V_{REF} to 0 volts. With the load connected and the PWM current control operating in slow current-decay mode, use and oscilloscope to measure the time the output is low (sink ON) for the output that is chopping. This is the typical minimum ON time (toN (min) typ) for the device.

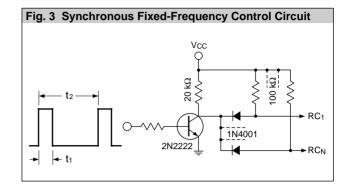
The C_T then should be increased until the measured value of tow (min) is equal to tow (min) max as specified in the electrical characteristics table. When the new value of C_T has been set, the value of R_T should be decreased so the value for to_{FF}=R_T-C_T (with the artificially increased value of C_T) is equal to the nominal design value. The worst-case load-current regulation then can be measured in the system under operating conditions.

(F) PWM of the PHASE and ENABLE Inputs.

The PHASE and ENABLE inputs can be pulse-width modulated to regulate load current. Typical propagation delays from the PHASE and ENABLE inputs to transitions of the power outputs are specified in the electrical characteristics table. If the internal PWM current control is used, the comparator blanking function is active during phase and enable transitions. This eliminates false tripping of the over-current comparator caused by switching transients (see "RC Blanking" above).

(1) Enable PWM.

With the MODE input low, toggling the ENABLE input turns ON and OFF the selected source and sink drivers. The corresponding pair of flyback and ground-clamp diodes conduct after the drivers are disabled, resulting in fast current decay. When the device is enabled the internal current-control curcuitry will be active and can be used to limit the load current in a slow current-decay mode.


For applications that PWM the ENABLE input and desire the internal current-limiting circuit to function in the fast decay mode, the ENABLE input signal should be inverted and connected to the MODE input. This prevents the device from being switched into sleep mode when the ENABLE input is low.

(2) Phase PWM.

Toggling the PHASE terminal selects which sink/source pair is enabled, producing a load current that varies with the duty cycle and remains continuous at all times. This can have added benefits in bidirectional brush dc servo motor applications as the transfer function between the duty cycle on the PHASE input and the average voltage applied to the motor is more linear than in the case of ENABLE PWM control (withch produces a discontinuous current at low current levels). For more information see "DC Motor Applications" below.

(3) Synchronous Fixed-Frequency PWM.

The internal PWM current-control circuitry of multiple A3953Sdevices can be synchronized by using the simple circuit shown in figure 3. A 555IC can be used to generate the reset pulse/ blanking signal (t_1) for the device and the period of the PWM cycle (t_2). The value of t_1 should be a minimum of 1.5ms. When used in this configuration, the R_T and C_T components should be omitted. The PHASE and ENABLE inputs should not be PWM with this circuit configuration due to the absence of a blanking function synchronous with their transitions.

(G)Miscellaneous Information.

A logic high applied to both the ENABLE and MODE terminals puts the device into a sleep mode to minimize current consumption when not in use.

An internally generated dead time prevents crossover currents that can occur when switching phase or braking.

Thermal protection circuitry turns OFF all drivers should the junction termperature reach 165°C (typical). This is intended only to protect the device from failures due to excessive junction temperatures and should not imply that output short circuits are permitted. The hysteresis of the thermal shutdown circuit is approximately 8°C.

■APPLICATION NOTES

(A)Current Sensing.

The actual peak load current (I_{PEAK}) will be above the calculated value of I_{TRIP} due to delays in the turn off of the drivers. The amount of overshoot can be approximated by:

$$I_{OS} \approx \frac{(V_{BB-}[(I_{TRIP} \bullet R_{LOAD}) + V_{BEMF}]) \bullet t_{PWM} (_{OFF})}{L_{LOAD}}$$

where V_{BB} is the motor supply voltage, V_{BEMF} is the back-EMF voltage of the load, R_{LOAD} and L_{LOAD} are the resistance and inductance of the load respectively, and $t_{PWM (OFF)}$ is specified in the electrical characteristics table.

The reference terminal has a maximum input bias current of $\pm 5\mu$ A. This current should be taken into account when determining the impedance of the external circuit that sets the reference voltage value.

To minimize current-sensing inaccuracies caused by ground trace I-R drops, the current-sensing resistor should have a separate return to the ground terminal of the device. For low-value sense resistors, the I-R drops in the printed wiring board can be significant and should be taken into account. The use of sockets should be avoided as their contact resistance can cause variations in the effective value of Rs.

Generally, larger values of Rs reduce the aforementioned effects but can result in excessive heating and power loss in the

sense resistor. The selected value of Rs should not cause the absolute maximum voltage rating of 1.0V (0.4V for Vcc=3.3Voperation), for the SENSE terminal, to be exceeded. The current-sensing comparator functions down to ground allowing the device to be used in microstepping, sinusoidal, and other varying current-profile applications.

(B) Thermal Considerations.

For reliable operation it is recommended that the maximum junction termperature be kept below 110° C to 125° C. The junction termperature can be measured best by attaching a thermocouple to the power tab/batwing of the device and measuring the tab temperature, T_{TAB}. The junction temperature can then be approximated by using the formula:

 $T_J \approx T_{TAB} + (I_{LOAD} \cdot 2 \cdot V_F \cdot R_{\theta} T_J)$

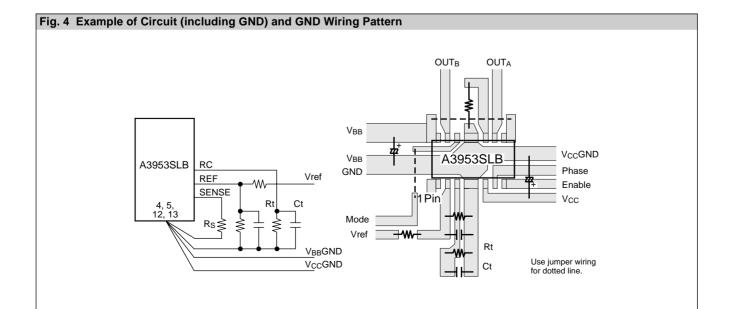
where V_F may be chosen from the electrical specification table for the given level of I_{LOAD}. The value for R_{aut} is given in the package thermal resistance table for the appropriate package. The power dissipation of the batwing packages can be improved by 20% to 30% by adding a section of printed circuit board copper (typically 6 to 18 square centimeters) connected to the batwing terminals of the device.

The thermal performance in applications that run at high load currents and/or high duty cycles can be improved by adding external diodes in parallel with the internal diodes. In internal PWM slow-decay applications, only the two ground clamp diodes need be added. For internal fast-decay PWM, or external PHASE or ENABLE input PWM applications, all four external diodes should be added for maximum junction temperature reduction.

(C)PCB Layout.

The load supply terminal, V_BB should be decoupled with an electrolytic capacitor (>47 μ F is recommeded) placed as close to the device as is physically practical. To minimize the elffect of system ground I•R drops on the logic and reference input signals, the system ground should have a low-resistance return to the motor supply voltage.

See also "Current Sensing" and "Thermal Considerations" above.


(D) Fixed Off-Time Selection.

With increasing values of toFF, switching losses will decrease, low-level load-current regulation will improve, EMI will be reduced, the PWM frequency will decrease, and ripple current will increase. The value of toFF can be chosen for optimization of these parameters. For applications where audible noise is a concern, typical values of toFF are chosen to be in the range of 15 ms to 35 ms.

(E) Stepper Motor Applications.

The MODE terminal can be used to optimize the performance of the device in microstepping/sinusoidal stepper-motor drive applications. When the load current is increasing, slow decay mode is used to limit the switching losses in the device and iron losses in the motor. This also improves the maximum rate at which the load current can increase (as compared to fast decay) due to the slow rate of decay during toFF.

When the load current is decreasing, fast-decay mode is used to regulate the load current to the desired level. This prevents tailing of the current profile caused by the back-EMF voltage of the stepper motor.

In stepper-motor applications applying a constant current to the load, slow-decay mode PWM is typically used to limit the switching lossess in the device and iron losses in the motor.

(F) DC Motor Applications.

In closed-loop systems, the speed of a dc motor can be controlled by PWM of the PHASE or ENABLE inputs, or by varying the reference input voltage (REF). In digital systems (microprocessor controlled), PWM of the PHASE or ENABLE input is used typically thus avoiding the need to generate a variable analog voltage reference. In this case, a dc voltage on the REF input is used typically to limit the maximum load current.

In dc servo applications, which require accurate positioning at low or zero speed, PWM of the PHASE input is selected typically. This simplifies the servo control loop because the transfer function between the duty cycle on the PHASE input and the average voltage applied to the motor is more linear than in the case of ENABLE PWM comtrol (which produces a discontinuous current at low current levels).

With bidirectional dc servo motors, the PHASE terminal can be used for mechanical direction control. Similar to when branking the motor dynamically, abrupt changes in the direction of a rotating motor produces a current generated by the back-EMF. The current generated will depend on the mode of operation. If the internal current control circuitry is not being used, then the maximum load current generated can be approximated by $I_{LOAD}=(V_{BEMF}+V_{BB})/R_{LOAD}$ where V_{BEMF} is proportional to the motor's speed. If the internal slow current-decay control circuitry is used, then the maximum load current generated can be approximated by $I_{LOAD}=V_{BEMF}/R_{LOAD}$. For both cases care must be taken to ensure that the maximum ratings of the device are not exceeded. If the internal fast current-decay control circuitry is used, then the load current will regulate to a value given by:

$$I_{LOAD} \approx \frac{V_{REF}}{Rs}$$

CAUTION: In fast current-decay mode, when the direction of the motor is changed abruptly, the kinetic energy stored in the motor and load inertia will be converted into current that charges the V_{BB} supply bulk capacitance (power supply output and decoupling capacitance). Care must be taken to ensure that the capacitance is sufficient to absorb the energy without exceeding the voltage rating of any devices connected to the motor supply.

See also "Brake Operation" above.

2-Phase Stepper Motor Bipolar Driver IC

Allegro MicroSystems product

■Features

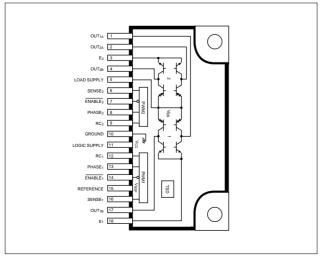
- Fixed off-time PWM current control
- Low saturation voltage (Sink transistor)
- Internal thermal shutdown circuitry
- Internal crossover-current protection circuitry
- Internal UVLO protection
- Internal transient-suppression diodes
- Low thermal resistance 18-pin SIP

■Absolute Maximum Ratings

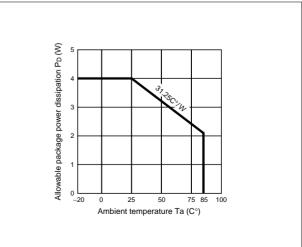
Parameter	Symbol	Conditions	Ratings	Units
Motor supply voltage	VBB		45	V
Output current (peak)	O (peak)	tw≤20 <i>µ</i> s	±1.75	A
Output current (continuous)	lo		±1.5	A
Logic supply voltage	Vcc		7.0	V
Logic input voltage range	Vin		-0.3 to +7.0	V
Output emitter voltage	Ve		1.5	V
Package power dissipation	PD (Note1)		4.0	W
Operating temperature	Ta		-20 to +85	°C
Junction temperature	T _j (Note2)		+150	°C
Storage temperature	Tstg		–55 to +150	°C

●Output current rating may be limited by duty cycle, ambient temperature, and heat sinking. Under any set of conditions, do not exceed the specified current rating or a junction temperature of 150°C. Note 1: When ambient temperature is 25°C or over, derate using –32.0mW/°C.

Note 2: Fault conditions where junction temperature (T_i) exceeds 150°C will activate the device's thermal shutdown circuitry. These conditions can be tolerated but should be avoided.


■Electrical Characteristics

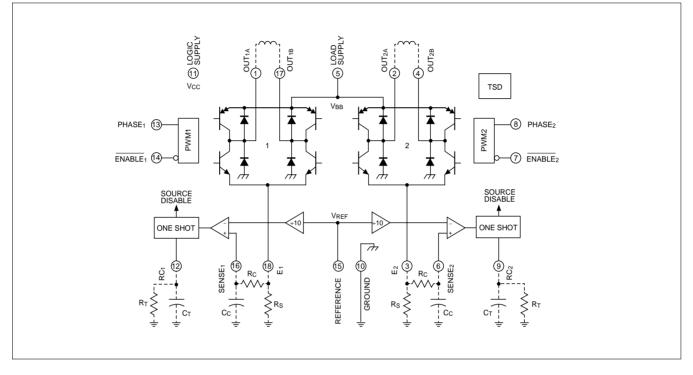
(Unless specified otherwise, Ta=25°C, VBB=45V, Vcc=4.75V to 5.25V, VREF=5V)


Symbol	Symbol Conditions		Limits		
Symbol			typ	max	Units
VBB		10		45	V
lory	Vo=VBB			50	μΑ
ICEX	Vo=0V			-50	μΑ
VCE (SUS)	lo=±1.5A, L=3.5mH	45			V
	Sink driver, lo=+1.0A			0.8	V
	Sink driver, Io=+1.5A			1.1	V
V CE (SAT)	Source driver, Io=-1.0A			2.0	V
	Source driver, Io=–1.5A			2.2	V
IR	V _R =45V			50	μA
VF	IF=1.5A			2.0	V
BB (ON)	Both bridges ON, no load			15	mA
BB (OFF)	Both bridges OFF			10	mA
		ŀ			
ViH	All inputs	2.4			V
VIL	All inputs			0.8	V
lin	V _{IN} =2.4V			20	μΑ
lı.	V _{IN} =0.8V			-200	μΑ
VREF	Operating	1.5		Vcc	V
VREF/VSENSE	V _{REF} =5V 9.5		10	10.5	
Tj	170		1	°C	
lcc	V _{EN} =0.8V, no load			140	mA
	VBB ICEX VCE (SUS) VCE (SAT) IR VF IBB (ON) IBB (OFF) VIH VIL IH VIL IH VREF VREF/VSENSE Tj	VBB Vo=VBB ICEX Vo=0V VcE (SUS) Io=±1.5A, L=3.5mH Sink driver, Io=+1.0A Sink driver, Io=+1.0A VCE (SAT) Source driver, Io=-1.0A Source driver, Io=-1.5A IR VF Ir=1.5A IBB (ON) Both bridges ON, no load IBB (OFF) Both bridges OFF VIL All inputs VIL All inputs INH VIN=2.4V IL VIN=0.8V VREF Operating VREF/VSENSE VREF=5V	VBB 10 ICEX Vo=VBB 10 VCE (SUS) Io=±1.5A, L=3.5mH 45 VCE (SUS) Io=±1.5A, L=3.5mH 45 VCE (SUS) Io=±1.5A, L=3.5mH 45 VCE (SAT) Sink driver, lo=+1.0A 5 VCE (SAT) Source driver, lo=-1.0A 5 IR VR=45V 1 VF IF=1.5A 1 IB (ON) Both bridges ON, no load 1 IBB (ON) Both bridges OFF 2.4 VIL All inputs 2.4 VIL All inputs 1.5 VREF Operating 1.5 VREF/VSENSE VREF=5V 9.5	VBB IO ICEX Vo=VBB 10 ICEX Vo=0V 10 VCE (SUS) Io=±1.5A, L=3.5mH 45 VCE (SUS) Io=±1.5A, L=3.5mH 45 VCE (SUS) Io=±1.5A, L=3.5mH 45 VCE (SAT) Sink driver, lo=+1.0A 10 VCE (SAT) Source driver, lo=-1.0A 10 IR VR=45V 10 VF IF=1.5A 10 IBB (ON) Both bridges ON, no load 10 IBB (OFF) Both bridges OFF 10 VIH All inputs 2.4 VIH All inputs 1.5 VREF Operating 1.5 VREF/VSENSE VREF=5V 9.5 10 Tj 170 170 170	$\begin{tabular}{ c c c c c } \hline Symbol & Conditions & \hline min & typ & max \\ \hline min & typ & typ \\ \hline min & typ$

• "typ" values are for reference.

Terminal Connection Diagram

Derating



■Truth Table

ENABLE	PHASE	OUTA	OUTB
L	Н	н	L
L	L	L	Н
н	Х	Z	Z

X=Don't Care Z=High impedance

■Internal Block Diagram

External Dimensions Plastic SIP

18 ICs per stick A2918SWV A2918SWH 31^{±0.2} 31^{±0.2} $\phi \, 3.2^{\pm 0.15}$ 24.4^{±0.2} $\phi 3.2^{\pm 0.15}$ 24.4^{±0.2} $\phi 3.2^{\pm 0.15} \times 3.8$ $4.8^{\pm0.2}$ $\phi 3.2^{\pm 0.15} \times 3.8$ 1.7^{±0.1} 1.7^{±0.1} 16.4^{±0.2} $16.4^{\pm0.2}$ \oplus \oplus \oplus Ð \oplus \oplus 2.45^{±0.2} 2.45^{±0.2} ±0.6 °.9 Ф Φ Φ Φ <u>Örörörörörörörörörörö</u> 0.5 R-End 0.65^{+0.2} +0.2 2.2^{±0.1} 0.55⁺⁰ .6^{±0.6} 0.55^{+0.2} $6.0^{\pm0.6}$ 0.65^{+0.2} +0.2 1^{-0.1} 17× P1.68^{±0.4}=28.56^{±1} 7.5^{±0.6} 17× P1.68^{±0.7}=28.56[±] 4^{±0.7} <u>31.3</u>±0.2 31.3^{±0.2} <u>, 4 a 4 a 6 a</u> 123 123

(Unit: mm)

2-Phase Stepper Motor Bipolar Driver ICs

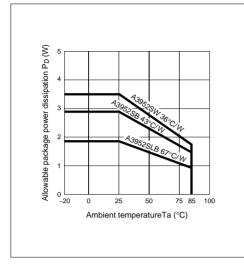
Allegro MicroSystems product

■Features

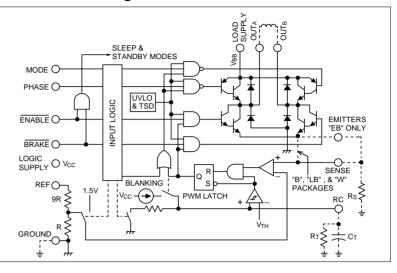
- Fixed off-time PWM current control
- Switching between power supply regeneration mode and loop regeneration mode in order to improve motor current response in microstepping
- External filter for sense terminal not required
- Sleep (low current consumption) mode
- Brake operation with PWM current limiting
- Internal thermal shutdown circuitry
- Internal crossover-current protection circuitry
- Internal UVLO protection
- Internal transient-suppression diodes
- Low thermal resistance package

■Absolute Maximum Ratings

Parameter	Symbol	Conditions		Units		
Farameter	Symbol	Conditions	A3952SB	A3952SLB	A3952SW	Units
Load supply voltage	VBB			50		V
Output current (peak)	O (Peak)	tw≤20 <i>µ</i> s		±3.5		А
Output current (continuous)	ю		±2.0			А
Logic supply voltage	Vcc		7.0			V
Logic input voltage	Vin		-0.3 to Vcc+0.3			V
Sense voltage	VSENSE		1.5			V
Reference voltage	Vref		15			V
Package power dissipation	PD (Note1)		2.90 1.86 3.47		W	
Operating temperature	Ta		-20 to +85			°C
Junction temperature	T _j (Note2)		+150			°C
Storage temperature	Tstg			-55 to +150		°C


Output current rating may be limited by duty cycle, ambient temperature, and heat sinking. Under any set of conditions, do not exceed the specified current rating or a junction temperature of 150°C.
 Note 1: When ambient temperature is 25°C or over, derate using -23.26mW/°C(SB), -14.93mW/°C(SLB) or -27.78mW/°C(SW).

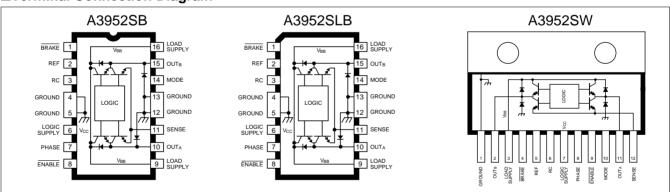
Note 2: Fault conditions where junction temperature (T_i) exceeds 150°C will activate the device's thermal shutdown circuitry. These conditions can be tolerated but should be avoided.


Parameter	Symbol	Conditions			Limits		
Faidilletei	Symbol	Conditions		typ	max	Units	
Power outputs							
Load supply voltage range	VBB	Operating, Io=±2.0A, L=3mH	Vcc		50	V	
Output leakage current		Vo=Vbb		<1.0	50	μ Α	
Ouput leakage current	ICEX	Vo=0V		< -1.0	-50	μΑ	
		Source driver, lo=-0.5A		0.9	1.2	V	
		Source driver, lo=-1.0A		1.0	1.4	V	
Output saturation voltage		Source driver, lo=-2.0A		1.2	1.8	V	
Output saturation voltage	V CE (SAT)	Sink driver, Io=+0.5A		0.9	1.2	V	
		Sink driver, Io=+1.0A		1.0	1.4	V	
		Sink driver, Io=+2.0A		1.3	1.8	V	
		I⊧=0.5A		1.0	1.4	V	
Clamp diode forward voltage	VF	IF=1.0A		1.1	1.6	V	
(Source or sink)		IF=2.0A		1.4	2.0	V	
	BB (ON)	VENABLE=0.8V, VBRAKE=2.0V		2.9	6.0	mA	
Load supply current	BB (OFF)	VENABLE=2.0V, VMODE=0.8V, VBRAKE=2.0V		3.1	6.5	mA	
(No load)	BB (BRAKE)	VBRAKE=2.0V		3.1	6.5	mA	
	BB (SLEEP)	VENABLE=VMODE=VBRAKE=2.0V		<1.0	50	μΑ	
Control logic	(
Logic supply voltage range	Vcc	Operating	4.5	5.0	5.5	V	
	Vie	operating	2.0	0.0	0.0	v	
Logic input voltage	Vii		2.0		0.8	v	
Logic input current	Ін	VIH=2.0V		<1.0	20	μΑ	
	h.	VIII-2.0V VIII-0.8V		< -2.0	-200	μΑ	
Reference voltage range	VREF	Operating	0	< −2.0	15	V	
Reference input current	IREF	VREF=2.0V	25	40	55	μA	
Reference voltage divider ratio	IKEP	VREF=2.0V VREF=15V	9.5	10.0	10.5	μη	
Comparator input offset voltage	Vio	VREF=13V VREF=0V	9.5	±1.0	±10	mV	
PWM RC fixed off-time	toff	Cτ=1000pF, Rτ=20kΩ	18	±1.0 20	22		
FWW RC lixed oil-time	Loff	· /	10	1.7	3.0	μs	
PWM minimum on-time	ton (min)	CT=820pF, RT≥12kΩ		2.5		μs	
		CT=1200pF, RT≥12kΩ		2.5	3.8	μs	
		Iout=±2.0A, 50% E _{IN} to 90% E _{out} Transition:					
		ENABLE ON to SOURCE ON		2.9		μs	
		ENABLE OFF to SOURCE OFF		0.7		μs	
		ENABLE ON to SINK ON		2.4		μs	
Propagation delay time	tpd	ENABLE OFF to SINK OFF		0.7		μs	
		PHASE CHANGE to SOURCE ON		2.9		μs	
		PHASE CHANGE to SOURCE OFF		0.7		μs	
		PHASE CHANGE to SINK ON		2.4		μs	
		PHASE CHANGE to SINK OFF		0.7		μs	
	tpd (PWM)	Comparator Trip to SINK OFF		0.8	1.5	μs	
Thermal shutdown temperature	Tj			165		°C	
Thermal shutdown hysteresis	ΔT_j			15		°C	
UVLO enable threshold	Vcc (UVLO)		3.15	3.50	3.85	V	
UVLO hysteresis	ΔVcc (UVLO)		300	400	500	mV	
,		VENABLE=0.8V, VBRAKE=2.0V		20	30	mA	
Logic supply current	ICC (OFF)	VENABLE=2.0V, VMODE=0.8V, VBRAKE=2.0V		12	18	mA	
(No load)	ICC (BRAKE)	VBRAKE=0.8V		26	40	mA	
	ICC (BRARE)	VENABLE=VMODE=VBRAKE=2.0V		3.0	5.0	mA	
"typ" values are for reference.	ICC (SLEEP)	V EIVADLE - V WODE - V DRARE-2.V V		0.0	0.0	1 11/1	

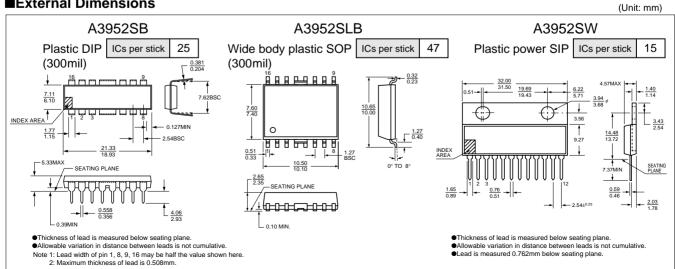
Electrical Characteristics (Unless specified otherwise, Ta=25°C, VBB=50V, VCc=5.0V, VBRAKE=2.0V, VSENSE= 0V, 20kΩ & 1000pF RC to ground)

■Derating

Internal Block Diagram


X : Don't Care Z : High impedance

Note 1: Includes active pull-offs for power outputs Note 2: Includes internal default VSENSE level for overcurrent protection


■Truth Table

BRAKE	ENABLE	PHASE	MODE	OUTA	OUTB	Operating Mode
н	н	х	н	z	z	Sleep mode
н	н	Х	L	Z	Z	Standby (Note 1)
н	L	н	н	н	L	Forward, fast current-decay mode
н	L	н	L	н	L	Forward, slow current-decay mode
н	L	L	Н	L	Н	Reverse, fast current-decay mode
н	L	L	L	L	Н	Reverse, slow current-decay mode
L	Х	Х	Н	L	L	Brake, fast current-decay mode
L	Х	Х	L	L	L	Brake, no current control (Note 2)

■Terminal Connection Diagram

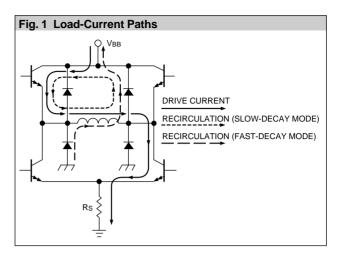
External Dimensions

Application Notes

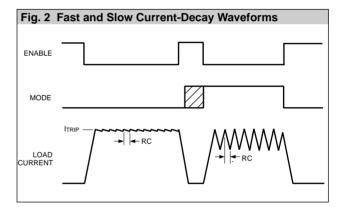
■Outline

Designed for bidirectional pulse-width modulated current control of inductive loads, the A3952S- is capable of continuous output currents to ±2A and operating voltages to 50V. Internal fixed off-time PWM current-control circuitry can be used to regulate the maximum load current to a desired value. The peak load current limit is set by the user's selection of an input reference voltage and external sensing resistor. The fixed OFF-time pulse duration is set by a user-selected external RC timing network. Internal circuit protection includes thermal shutdown with hysteresis, transient suppression diodes, and crossover-current protection. Special power-up sequencing is not required.

With the ENABLE input held low, the PHASE input controls load current polarity by selecting the appropriate source and sink driver pair. The MODE input determines whether the PWM current-control circuitry operates in a slow current-decay mode (only the selected sink driver switching) or in a fast current-decay mode (selected source and sink switching). A user-selectable blanking window prevents false triggering of the PWM current control circuitry. With the ENABLE input held high, all output drivers are disabled. A sleep mode is provided to reduce power consumption when inactive.


When a logic low is applied to the BRAKE input, the braking function is enabled. This overrides ENABLE and PHASE to turn OFF both source drivers and turn ON both sink drivers. The brake function can be safely used to dynamically brake brush dc motors.

■FUNCTIONAL DESCRIPTION (A) INTERNAL PWM CURRENT CONTROL DURING FOR-WARD AND REVERSE OPERATION


The A3952S- contains a fixed OFF-time pulse-width modulated (PWM) current-control circuit that can be used to limit the load current to a desired value. The value of the current limiting (I_{TRIP}) is set by the selection of an external current sensing resistor (Rs) and reference input voltage (V_{REF}). The internal circuitry compares the voltage across the external sense resistor to one tenth the voltage on the REF input terminal, resulting in a function approximated by

$$I_{TRIP}\approx \frac{V_{REF}}{10 \bullet Rs}$$

In forward or reverse mode the current-control circuitry limits the load current. When the load current reaches ITRIP, the comparator resets a latch to turn OFF the selected sink driver (in the slow-decay mode) or selected sink and source driver pair (in the fast-decay mode). In slow-decay mode, the selected sink driver is disabled; the load inductance causes the current to recirculate through the source driver and flyback diode (see figure 1). In fast-decay mode, the selected sink and source driver pair are disabled; the load inductance causes the current to flow from ground to the load supply via the ground clamp and flyback diodes.

The user selects an external resistor (R_T) and capacitor (C_T) to determine the time period ($t_{off}=R_TC_T$) during which the drivers remain disabled (see "RC Fixed OFF Time" below). At the end of the R_TC_T interval, the drivers are re-enabled allowing the load current to increase again. The PWM cycle repeats, maintaining the load current at the desired value (see figure 2).

(B)INTERNAL PWM CURRENT CONTROL DURING BRAKE MODE OPERATION

The brake circuit turns OFF both source drivers and turns ON both sink drivers. For dc motor applications, this has the effect of shorting the motor's back-EMF voltage, resulting in current flow that brakes the motor dynamically. However, if the back-EMF voltage is large, and there is no PWM current limiting, then the load current can increase to a value that approaches a locked rotor condition. To limit the current, when the ITRIP level is reached, the PWM circuit disables the conducting sink driver. The energy stored in the motor's inductance is then discharged into the load supply causing the motor current to decay.

As in the case of forward/reverse operation, the drivers are reenabled after a time given by tor= R_T - C_T (see"RC Fixed OFF Time" below). Depending on the back-EMF voltage (proportional to the motor's decreasing speed), the load current again may increase to I_{TRIP} . If so, the PWM cycle will repeat, limiting the load current to the desired value.

(1) Brake Operation-MODE Input High

During braking, when the MODE input is high, the current limit can be approximated by

$$I_{\text{TRIP}} \approx \frac{V_{\text{REF}}}{10 \cdot \text{Rs}}$$

CAUTION: Because the kinetic energy stored in the motor and load inertia is being converted into current, which charges the V_{BB} supply bulk capacitance (power supply output and decoupling capacitance), care must be taken to ensure the capacitance is sufficient to absorb the energy without exceeding the voltage rating of any devices connected to the motor supply.

(2) Brake Operation-MODE Input Low

During braking, with the MODE input low, the peak current limit defaults internally to a value approximated by

$$I_{\text{TRIP}} \approx \frac{1.5\text{V}}{\text{Rs}}$$

In this mode, the value of Rs determines the I_{TRIP} value independent of V_{REF}. This is useful in applications with differing run and brake currents and no practical method of varying V_{REF}.

Choosing a small value for Rs essentially disables the current limiting during braking. Therefore, care should be taken to ensure that the motor's current does not exceed the absolute maximum ratings of the device. The braking current can be measured by using an oscilloscope with a current probe connected to one of the motor's leads.

(C) RC Fixed OFF Time

The internal PWM current control circuitry uses a one shot to control the time the driver (s) remain (s) OFF. The one shot time, t_{off} (fixed OFF time), is determined by the selection of an external resistor (R_T) and capacitor (C_T) connected in parallel from the RC terminal to ground. The fixed OFF time, over a range of values of C_T =820pF to 1500pF and R_T =12k Ω to 100k Ω , is approximated by

$$\mathsf{toff} \approx \mathsf{Rt} \bullet \mathsf{Ct}$$

When the PWM latch is reset by the current comparator, the voltage on the RC terminal will begin to decay from approximately 3 volts. When the voltage on the RC terminal reaches approximately 1.1 volt, the PWM latch is set, thereby re-enabling the driver (s).

(D) RC Blanking

In addition to determining the fixed OFF-time of the PWM control circuit, the C_T component sets the comparator blanking time. This function blanks the output of the comparator when the outputs are switched by the internal current control circuitry (or by the PHASE, BRAKE, or ENABLE inputs). The comparator output is blanked to prevent false over-current detections due to reverse recovery currents of the clamp diodes, and/or switching transients related to distributed capacitance in the load.

During internal PWM operation, at the end of the t_{off} time, the comparator's output is blanked and C_T begins to be charged from approximately 1.1V by an internal current source of ap-

proximately 1mA. The comparator output remains blanked until the voltage on C_T reaches approximately 3.0 volts.

Similarly, when a transition of the PHASE input occurs, C_T is discharged to near ground during the crossover delay time (the crossover delay time is present to prevent simultaneous conduction of the source and sink drivers). After the crossover delay, C_T is charged by an internal current source of approximately 1mA. The comparator output remains blanked until the voltage on C_T reaches approximately 3.0 volts.

Similarly, when the device is disabled via the ENABLE input, C_T is discharged to near ground. When the device is re-enabled, C_T is charged by the internal current source. The comparator output remains blanked until the voltage on C_T reaches approximately 3.0V.

For applications that use the internal fast-decay mode PWM operation, the minimum recommended value is $C_T=1200pF\pm5\%$. For all other applications, the minimum recommended value is $C_T=820pF\pm5\%$. These values ensure that the blanking time is sufficient to avoid false trips of the comparator under normal operating conditions. For optimal regulation of the load current, the above values for C_T are recommended and the value of R_T can be sized to determine torf. For more information regarding load current regulation, see below.

(E) LOAD CURRENT REGULATION WITH THE INTERNAL PWM CURRENT-CONTROL CIRCUITRY

When the device is operating in slow-decay mode, there is a limit to the lowest level that the PWM current-control circuitry can regulate load current. The limitation is the minimum duty cycle, which is a function of the user-selected value of toff and the maxuimum value of the minimum ON-time pulse, ton (min), that occurs each time the PWM latch is reset. If the motor is not rotating, as in the case of a stepper motor in hold/detent mode, or a brush dc motor when stalled or at startup, the worst-case value of current regulation can be approximated by

 $I(\text{AV}) \cong \ \frac{\left[\left(\text{V}_{\text{BB}}-\text{V}_{\text{SAT}}\left(\text{source + sink}\right)\right) \bullet t_{\text{on (min)}} \text{ max}\right] - \left[1.05 \bullet \left(\text{V}_{\text{SAT}}\left(\text{sink}\right) + \text{V}_{\text{D}}\right) \bullet t_{\text{off}}\right]}{1.05 \bullet \left(\text{ton (min)} \text{ max + toff}\right) \bullet \text{R}_{\text{LOAD}}}$

where toff=RT+CT, RLOAD is the series resistance of the load, VBB is the load/motor supply voltage, and ton (min) max is specified in the electrical characteristics table. When the motor is rotating, the back EMF generated will influence the above relationship. For brush dc motor applications, the current regulation is improved. For stepper motor applications when the motor is rotating, the effect is more complex. A discussion of this subject is included in the section on stepper motors under "Applications".

The following procedure can be used to evaluate the worst-case slow-decay internal PWM load current regulation in the system: Set V_{REF} to 0 volts. With the load connected and the PWM current control operating in slow-decay mode, use an oscilloscope to measure the time the output is low (sink ON) for the output that is chopping. This is the typical minimum ON time (ton (min) typ) for the

device. C_T then should be increased until the measured value of ton (min) is equal to ton (min) max)=3.0 μ s as specified in the electrical characteristics table. When the new value of C_T has been set, the value of R_T should be decreased so the value for toff=R_T•C_T (with the artificially increased value of C_T) is equal to 105% of the nominal design value. The worst-case load current regulation then can be measured in the system under operating conditions.

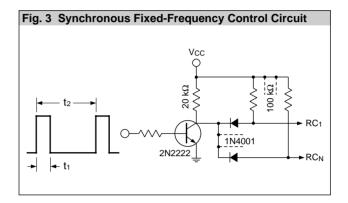
In applications utilizing both fast-and slow-decay internal PWM modes, the performance of the slow-decay current regulation should be evaluated per the above procedure and a ton (min) max of 3.8μ s. This corresponds to a CT value of 1200pF, which is required to ensure sufficient blanking during fast-decay internal PWM.

(F) LOAD CURRENT REGULATION WITH EXTERNAL PWM OF THE PHASE AND ENABLE INPUTS

The PHASE and ENABLE inputs can be pulse-width modulated to regulate load current. Typical propagation delays from the PHASE and ENABLE inputs to transitions of the power outputs are specified in the electrical characteristics table. If the internal PWM current control is used, then the comparator blanking function is active during phase and enable transitions. This eliminates false tripping of the over-current comparator caused by switching transients (see "RC Blanking" above).

(1) ENABLE Pulse-Width Modulation

With the MODE input low, toggling the ENABLE input turns ON and OFF the selected source and sink drivers. The corresponding pair of flyback and ground clamp diodes conduct after the drivers are disabled, resulting in fast current decay. When the device is enabled, the internal current control circuitry will be active and can be used to limit the load current in a slow-decay mode.


For applications that PWM the ENABLE input, and desire that the internal current limiting circuit function in the fast-decay mode, the ENABLE input signal should be inverted and connected to the MODE input. This prevents the device from being switched into sleep mode when the ENABLE input is low.

(2) PHASE Pulse-Width Modulation

Toggling the PHASE terminal determines/controls which sink/ source pair is enabled, producing a load current that varies with the duty cycle and remains continuous at all times. This can have added benefits in bidrectional brush dc servo motor applications as the transfer function between the duty cycle on the phase input and the average voltage applied to the motor is more linear than in the case of ENABLE PWM control (which produces a discontinuous current at low current levels). See also, "DC Motor Applications" below.

(3) SYNCHRONOUS FIXED-FREQUENCY PWM

The internal PWM current-control circuitry of multiple A3952Sdevices can be synchronized by using the simple circuit shown in figure 3. A555IC can be used to generate the reset pulse/ blanking signal (t₁) and the period of the PWM cycle (t₂). The value of t₁ should be a minimum of 1.5 μ s in slow-decay mode and 2 μ s in fast-decay mode. When used in this configuration, the R_T and C_T components should be omitted. The PHASE and ENABLE inputs should not be PWMed with this circuit configuration due to the absence of a blanking function synchronous with their transitions.

(G)MISCELLANEOUS INFORMATION

A logic high applied to both the ENABLE and MODE terminals puts the device into a sleep mode to minimize current consumption when not in use.

An internally generated dead time prevents crossover currents that can occur when switching phase or braking.

Thermal protection circuitry turns OFF all drivers should the junction temperature reach 165°C (typical). This is intended only to protect the device from failures due to excessive junction temperatures and should not imply that output short circuits are permitted. The hysteresis of the thermal shutdown circuit is approximately 15°C.

If the internal current-control circuitry is not used; the V_{REF} terminal should be connected to V_{CC} , the SENSE terminal should be connected to ground, and the RC terminal should be left floating (no connection).

An internal under-voltage lockout circuit prevents simultaneous conduction of the outputs when the device is powered up or powered down.

■APPLICATION NOTES

(A) Current Sensing

The actual peak load current (I_{OUTP}) will be greater than the calculated value of I_{TRIP} due to delays in the turn OFF of the drivers. The amount of overshoot can be approximated as

 $\text{IOUTP} \approx \frac{(\text{V}_{\text{BB}} - [(\text{I}_{\text{TRIP}} \bullet \text{R}_{\text{LOAD}}) + \text{V}_{\text{BEMF}}]) \bullet t_{pd} \text{ (pwm)}}{\text{LLOAD}}$

where V_{BB} is the load/motor supply voltage, V_{BEMF} is the back-EMF voltage of the load, R_{LOAD} and L_{LOAD} are the resistance and inductance of the load respectively, and $t_{pd \ (pwm)}$ is the propagation delay as specified in the electrical characteristics table.

The reference terminal has an equivalent input resistance of $50k\Omega\pm30\%$. This should be taken into account when determining the impedance of the external circuit that sets the reference voltage value.

To minimize current-sensing inaccuracies caused by ground trace IR drops, the current-sensing resistor should have a separate return to the ground terminal of the device. For low-value sense resistors, the IR drops in the PCB can be significant and should be taken into account. The use of sockets should be avoided as their contact resistance can cause variations in the effective value of Rs.

Larger values of Rs reduce the aforementioned effects but can result in excessive heating and power loss in the sense resistor. The selected value of Rs must not cause the SENSE terminal absolute maximum voltage rating to be exceeded. The recommended value of Rs is in the range of

$$R_{S} \approx \frac{(0.375 \text{ to } 1.125)}{I_{TRIP}}$$

The current-sensing comparator functions down to ground allowing the device to be used in microstepping, sinusoidal, and other varying current profile applications.

(B) Thermal Considerations

For reliable operation, it is recommended that the maximum junction temperature be kept as low as possible, typically 90°C to 125°C. The junction temperature can be measured by attaching a thermocouple to the power tab/batwing of the device and measuring the tab temperature, T_T . The junction temperature can then be approximated by using the formula

$$T_J \approx T_T + (2V_F \text{ IOUT } R_{\theta JT})$$

where V_F is the clamp diode forward voltage and can be determined from the electrical specification table for the given level of I_{OUT}. The value for R_{eff} is given in the package thermal resistance table for the appropriate package.

The power dissipation of the batwing packages can be improved by 20 to 30% by adding a section of printed circuit board copper (typically 6 to 18 square centimeters) connected to the batwing terminals of the device. The thermal performance in applications with high load currents and/or high duty cycles can be improved by adding external diodes in parallel with the internal diodes. In internal PWM slowdecay applications, only the tow top-side (flyback) diodes need be added. For internal fast-decay PWM, or external PHASE or ENABLE input PWM applications, all four external diodes should be added for maximum junction temperature reduction.

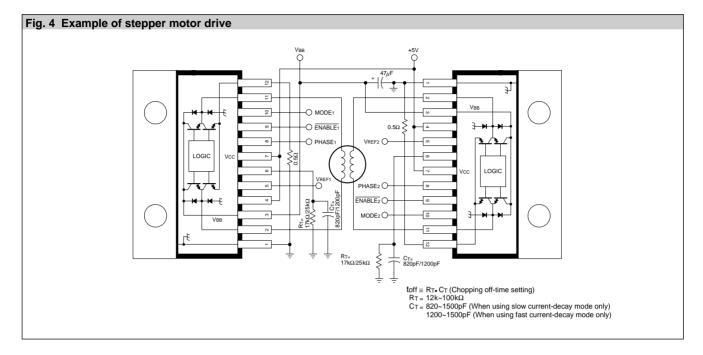
(C)PCB Layout

The load supply terminal, V_{BB}, should be decoupled (>47 μ F electrolytic and 0.1 μ F ceramic capacitors are recommended) as close to the device as is physically practical. To minimize the effect of system ground I•R drops on the logic and reference input signals, the system ground should have a low-resistance return to the load supply voltage.

See also "Current Sensing" and "Thermal Considerations" above.

(D) Fixed Off-Time Selection

With increasing values of t_{off} , switching losses decrease, lowlevel load-current regulation improves, EMI is reduced, the PWM frequency will decrease, and ripple current will increase. The value of t_{off} can be chosen for optimization of these parameters. For applications where audible noise is a concern, typical values of t_{off} are chosen to be in the range of 15 to 35μ s.


(E) Stepper Motor Applications

The MODE terminal can be used to optimize the performance of the device in microstepping/sinusoidal stepper motor drive applications. When the average load current is increasing, slowdecay mode is used to limit the switching losses in the device and iron losses in the motor.

This also improves the maximum rate at which the load current can increase (as compared to fast decay) due to the slow rate of decay during toff. When the average load current is decreasing, fast-decay mode is used to regulate the load current to the desired level. This prevents tailing of the current profile caused by the back-EMF voltage of the stepper motor.

In stepper motor applications applying a constant current to the load, slow-decay mode PWM is used typically to limit the switching losses in the device and iron losses in the motor.

(F) Application circuit (Bipolar stepper motor drive)

(G)DC Motor Applications

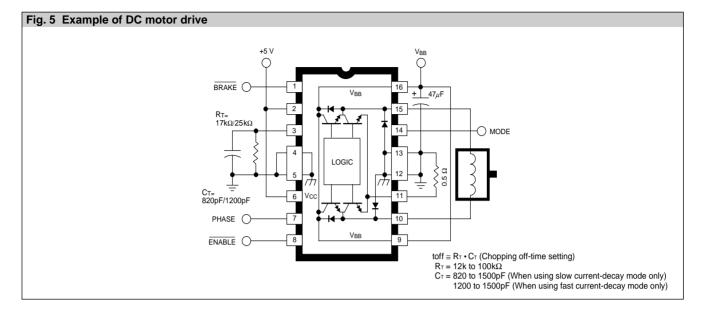
In closed-loop systems, the speed of a dc motor can be controlled by PWM of the PHASE or ENABLE inputs, or by varying the REF input voltage (V_{REF}). In digital systems (microprocessor controlled), PWM of the PHASE or ENABLE input is used typically thus avoiding the need to generate a variable analog voltage reference. In this case, a dc voltage on the REF input is used typically to limit the maximum load current.

In dc servo applications that require accurate positioning at low or zero speed, PWM of the PHASE input is selected typically. This simplifies the servo-control loop because the transfer function between the duty cycle on the PHASE input and the average voltage applied to the motor is more linear than in the case of ENABLE PWM control (which produces a discontinuous current at low-current levels).

With bidirectional dc servo motors, the PHASE terminal can be used for mechanical direction control. Similar to when braking the motor dynamically, abrupt changes in the direction of a rotating motor produce a currrent generated by the back EMF. The current generated will depend on the mode of operation. If the internal current-control circuitry is not being used, then the maximum load current generated can be approximated by

$$I_{LOAD} \approx \frac{(V_{BEMF} + V_{BB})}{R_{LOAD}}$$

where V_{BEMF} is proportional to the motor's speed. If the internal slow-decay current-control circuitry is used, then the maximum load current generated can be approximated by $I_{\text{LOAD}}=V_{\text{BEMF}}/R_{\text{LOAD}}$. For both cases, care must be taken to ensure the maximum ratings of the device are not exceeded. If the internal fast-decay current-control circuitry is used, then the load current will


regulate to a value given by

$$I_{LOAD} \approx \frac{V_{REF}}{(10 \cdot Rs)}$$

CAUTION: In fast-decay mode, when the direction of the motor is changed abruptly, the kinetic energy stored in the motor and load inertia will be converted into current that charges the V_{BB} supply bulk capacitance (power supply output and decoupling capacitance). Care must be taken to ensure the capacitance is sufficient to absorb the energy without exceeding the voltage rating of any devices connected to the motor supply.

See also, the sections on brake operation under "Functional Description," above.

(H) Application circuit (DC motor drive)

2-Phase Stepper Motor Bipolar Driver ICs

Allegro MicroSystems product

■Features

- Fixed off-time PWM current control
- Internal 1/3 and 2/3 reference divider
- 1-phase/2-phase/W1-2 phase excitation mode with digital input
- Microstepping with reference input
- Low saturation voltage (Sink transistor)
- Internal thermal shutdown circuitry
- Internal crossover-current protection circuitry
- Internal UVLO protection
- Internal transient-suppression diodes
- Low thermal resistance package

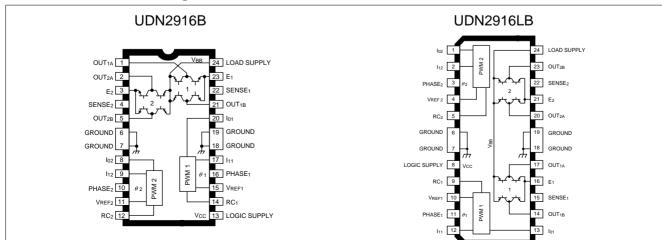
Electrical Characteristics

■Absolute Maximum Ratings

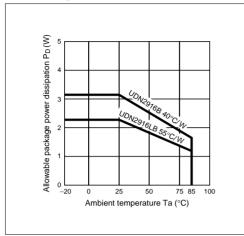
Parameter	Symbol	Conditions	Rat	Units			
Farameter	Symbol	Conditions	UDN2916B	UDN2916LB	Units		
Motor supply voltage	VBB		4	5	V		
Output current (peak)	lo (peak)	tw≤20 <i>µ</i> s	±1	.0	A		
Output current (continuous)	ю		±0.75		±0.75		A
Logic supply voltage	Vcc		7.0		V		
Logic input voltage range	Vin		–0.3 te	o +7.0	V		
Output emitter voltage	Ve		1	.5	V		
Package power dissipation	PD (Note1)		3.12	2.27	W		
Operating temperature	Ta		-20 to +85		°C		
Junction temperature	T _j (Note2)		+150		°C		
Storage temperature	Tstg		–55 to	+150	°C		

●Output current rating may be limited by duty cycle, ambient temperature, and heat sinking. Under any set of conditions, do not exceed the specified current rating or a junction temperature of 150°C. Note 1: When ambient temperature is 25°C or over, derate using -25mW/°C (UDN2916B) or -18.2mW/

ote 1: When ambient temperature is 25°C or over, derate using -25mW/°C (UDN2916B) or -18.2mW/ °C (UDN2916LB).


Note 2: Fault conditions where junction temperature (T_i) exceeds 150°C will activate the device's thermal shutdown circuitry. These conditions can be tolerated but should be avoided.

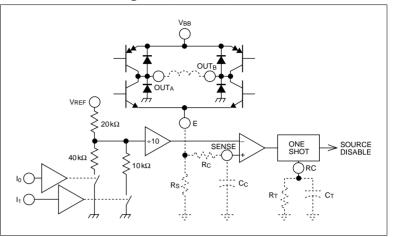
(Unless specified otherwise, Ta=25°C, VBB=45V, Vcc=4.75V to 5.25V, VREF=5.0V)


Parameter	Symbol	Conditions		Limits		Units
Falameter	Symbol	Conditions	min	typ	max	Onita
Power outputs (OUT _A or OUT _B)						
Motor supply voltage range	VBB		10		45	V
Output leakage current	ICEX	Sink driver, Vo=VBB		<1.0	50	μA
	ICEX	Source driver, Vo=0V		<-1.0	-50	μA
Output sustaining voltage	VCE (SUS)	lo=±750mA, L=3.0mH	45			V
		Sink driver, Io=+500mA		0.4	0.6	V
Output saturation voltage	VCE (SAT)	Sink driver, Io=+750mA		1.0	1.2	V
Output saturation voltage	V CE (SAT)	Source driver, lo=-500mA		1.0	1.2	V
		Source driver, lo=-750mA		1.3	1.5	V
Clamp diode leakage current	IR	V _R =45V		<1.0	50	μA
Clamp diode forward voltage	VF	I⊧=750mA		1.6	2.0	V
Motor supply current	BB (ON)	Both bridges ON, no load		20	25	mA
Motor supply current	BB (OFF)	Both bridges OFF		5.0	10	mA
Control logic						
Input voltage	VIH	All inputs	2.4			V
input voltage	VIL	All inputs			0.8	V
Input current	lн	VIH=2.4V		<1.0	20	μA
input current	١L	VIL=0.8V		-3.0	-200	μA
Reference voltage range	VREF	Operating	1.5		7.5	V
		lo=l1=0.8V	9.5	10.0	10.5	
Current control threshold	VREF/VSENSE	I0=2.4V, I1=0.8V	13.5	15.0	16.5	
		I0=0.8V, I1=2.4V	25.5	30.0	34.5	
Thermal shutdown temperature	Tj			170		°C
Logio supply surrent	ICC (ON)	I₀=I1=0.8V, no load		40	50	mA
Logic supply current	ICC (OFF)	Io=I1=2.4V, no load		10	12	mA

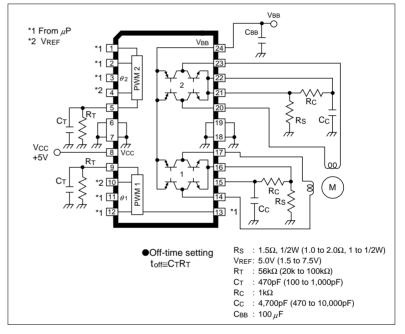
• "typ" values are for reference.

■Terminal Connection Diagram

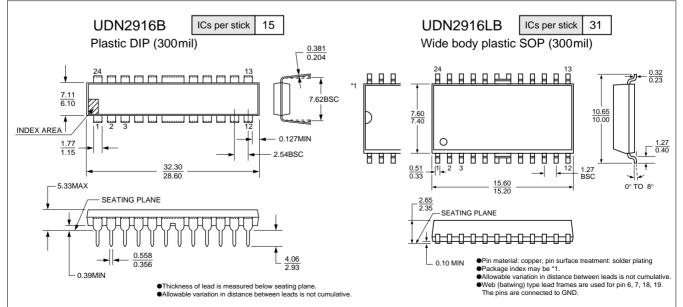
■Derating



■Truth Table

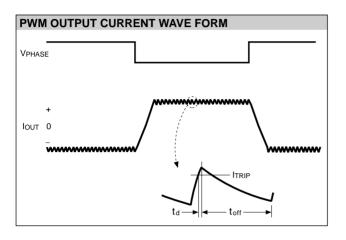

PHASE	OUTA	OUTB
н	Н	L
L	L	Н

lo	l ₁	Output Current
L	L	VREF/ (10×Rs)=ITRIP
н	L	VREF/ (15×Rs)=ITRIP×2/3
L	н	VREF/ (30×Rs)=ITRIP×1/3
Н	н	0


■Internal Block Diagram (1/2 Circuit)

■Application Circuit (UDN2916LB)

External Dimensions

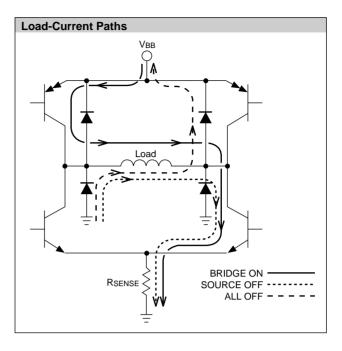


(Unit: mm)

Application Notes

●PWM CURRENT CONTROL

The UDN2916B/LB dual bridges are designed to drive both windings of a bipolar stepper motor. Output current is sensed and controlled independently in each bridge by an external sense resistor (Rs), internal comparator, and monostable multivibrator.


When the bridge is turned ON, current increases in the motor winding and it is sensed by the external sense resistor until the sense voltage (V_{SENSE}) reaches the level set at the comparator's input:

ITRIP=VREF/10Rs

The comparator then triggers the monostable which turns OFF the source driver of the bridge. The actual load current peak will be slightly higher than the trip point (especially for low-in-ductance loads) because of the internal logic and switching delays. This delay (t_d) is typically 2μ s. After turn-off, the motor current decays, circulating through the ground-clamp diode and sink transistor. The source driver's OFF time (and therefore the magnitude of the current decrease) is determined by the monostable's external RC timing components, where torrent complex within the range of $20k\Omega$ to $100k\Omega$ and 100pF to 1000 pF.

When the source driver is re-enabled, the winding current (the sense voltage) is again allowed to rise to the comparator's threshold. This cycle repeats itself, maintaining the average motor winding current at the desired level.

Loads with high distributed capacitances may result in high turn-ON current peaks. This peak (appearing across Rs) will attempt to trip the comparator, resulting in erroneous current control or high-frequency oscillations. An external RcCc time delay should be used to further delay the action of the comparator. Depending on load type, many applications will not require these external components (SENSE connected to E.)

OLOGIC CONTROL OF OUTPUT CURRENT

Two logic level inptus (I_0 and I_1) allow digital selection of the motor winding current at 100%, 67%, 33%, or 0% of the maximum level per the table. The 0% output current condition turns OFF all drivers in the bridge and can be used as an OUTPUT ENABLE function.

These logic level inputs greatly enhance the implementation of μ P-controlled drive formats.

During half-step operations, the I₀ and I₁ allow the μ P to control the motor at a constant torque between all positions in an eightstep sequence. This is accomplished by digitally selecting 100% drive current when only one phase is ON and 67% drive current when two phases are ON. Logic highs on both I₀ and I₁ turn OFF all drivers to allow rapid current decay when switching phases. This helps to ensure proper motor operation at high step rates.

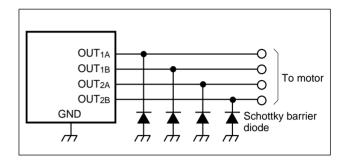
The logic control inputs can also be used to select a reduced current level (and reduced power dissipation) for 'hold' conditions and/or increased current (and available torque) for startup conditions.

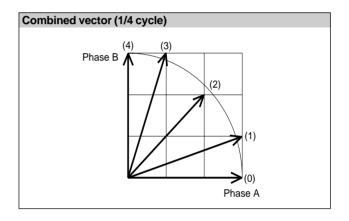
•SWITCHING THE EXCITATION CURRENT DIRECTION

The PHASE input to each bridge determines the direction moter winding current flows. An internally generated deadtime (approximately 2μ s) prevents crossover currents that can occur when switching the PHASE input.

•REDUCTION AND DISPERSION OF POWER LOSS

The thermal performance can be improved by adding four external Schottky barrier diodes (AK03 or other) between each output terminal and ground. In most applications, the chopping ON time is shorter than the chopping OFF time (small ON duty). Therefore, a great part of the power loss of the driver IC is attributable to the motor regenerative current during the chopping OFF period. The regenerative current from the motor flows through the current sensing resistor and ground clamp diode and returns to the motor. The voltage drop across this path causes the power loss. On this path, the forward voltage VF of ground clamp diode shows the greatest drop. This means that adding Schottky barrier diodes will improve the thermal performance if their V_F characteristic is smaller than that of the internal ground clamp diode.


The external diodes also disperse the loss (a source of heat) and reduce the package power dissipation P_D of the driver IC. Consequently, a greater output current can be obtained.


•CONTROL SEQUENCE OF 1-2 OR W1-2 PHASE EXCITATION

To reduce vibration when the stepper motor is rotating, the UDN2916B/LB can provide 1-2 or W1-2 phase excitation for the control sequence without varying the V_{REF} terminal voltage. The step angle is

1/2 step : 1-2 excitation About 1/4 step : W1-2 excitation

The control sequence is as shown below. (This sequence uses threshold signal terminals lo and I_1 for PWM current control.)

W1-2 phase	1-2 phase		Phase B				se A	Pha		Sequence
excitation		Current ratio	l 02	I ₁₂	PH ₂	Current ratio	l 01	l11	PH1	No.
*	*	0	1	1	х	1	0	0	0	0
*		1/3	0	1	0	1	0	0	0	1
*	*	2/3	1	0	0	2/3	1	0	0	2
*		1	0	0	0	1/3	0	1	0	3
*	*	1	0	0	0	0	1	1	Х	4
*		1	0	0	0	1/3	0	1	1	5
*	*	2/3	1	0	0	2/3	1	0	1	6
*		1/3	0	1	0	1	0	0	1	7
*	*	0	1	1	х	1	0	0	1	8
*		1/3	0	1	1	1	0	0	1	9
*	*	2/3	1	0	1	2/3	1	0	1	10
*		1	0	0	1	1/3	0	1	1	11
*	*	1	0	0	1	0	1	1	х	12
*		1	0	0	1	1/3	0	1	0	13
*	*	2/3	1	0	1	2/3	1	0	0	14
*		1/3	0	1	1	0	0	0	0	15

Control sequence (1-2/W1-2 phase)

Note: When the sequence no. is 0, 4, 8, or 12, power-down can be set as follows

I11=1, I01=0: Sequence No. 0 or 8

I12=1, I02=0: Sequence No. 4 or 12

If power-down is necessary for a sequence other than 0, 4, 8, or 12, lower the VREF

terminal voltage. However, do not set the voltage lower than the lower limit of the setting range.

•MICROSTEPPING (1/8 STEP) CONTROL SEQUENCE

Varying the VREF terminal voltage in steps provides 1/8

microstepping and reduces motor vibration greatly. The microstepping control sequence is as follows:

Control sequence (microstepping)

Sequence			Phase A			Phase B					
No.	PH1	VREF1 (V)	I11	I 01	Current ratio (%)	PH ₂	VREF2 (V)	I ₁₂	I 02	Current ratio (%)	
0	0	7.5	0	0	100	Х	1.5	1	1	0	
1	0	7.4	0	0	98	0	1.5	0	0	20	
2	0	6.9	0	0	92	0	2.9	0	0	38	
3	0	6.2	0	0	83	0	4.2	0	0	56	
4	0	5.3	0	0	71	0	5.3	0	0	71	
5	0	4.2	0	0	56	0	6.2	0	0	83	
6	0	2.9	0	0	38	0	6.9	0	0	92	
7	0	1.5	0	0	20	0	7.4	0	0	98	
8	Х	1.5	1	1	0	0	7.5	0	0	100	
9	1	1.5	0	0	20	0	7.4	0	0	98	
10	1	2.9	0	0	38	0	6.9	0	0	92	
11	1	4.2	0	0	56	0	6.2	0	0	83	
12	1	5.3	0	0	71	0	5.3	0	0	71	
13	1	6.2	0	0	83	0	4.2	0	0	56	
14	1	6.9	0	0	92	0	2.9	0	0	38	
15	1	7.4	0	0	98	0	1.5	0	0	20	
16	1	7.5	0	0	100	Х	1.5	1	1	0	
17	1	7.4	0	0	98	1	1.5	0	0	20	
18	1	6.9	0	0	92	1	2.9	0	0	38	
19	1	6.2	0	0	83	1	4.2	0	0	56	
20	1	5.3	0	0	71	1	5.3	0	0	71	
21	1	4.2	0	0	56	1	6.2	0	0	83	
22	1	2.9	0	0	38	1	6.9	0	0	92	
23	1	1.5	0	0	20	1	7.4	0	0	98	
24	Х	1.5	1	1	0	1	7.5	0	0	100	
25	0	1.5	0	0	20	1	7.4	0	0	98	
26	0	2.9	0	0	38	1	6.9	0	0	92	
27	0	4.2	0	0	56	1	6.2	0	0	83	
28	0	5.3	0	0	71	1	5.3	0	0	71	
29	0	6.2	0	0	83	1	4.2	0	0	56	
30	0	6.9	0	0	92	1	2.9	0	0	38	
31	0	7.4	0	0	98	1	1.5	0	0	20	

Note: The V_{REF} terminal voltage cannot be set to 0 V. To make the output current ratio 0%, set I_{0x}=I_{1x}=1. When the sequence is 0, 8, 16, or 24, power-down can be set as follows:

 $I_{11}=1$, $I_{01}=0$: Sequence No. 0 or 16

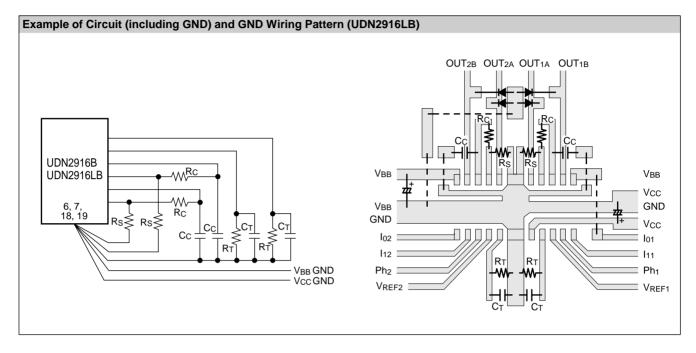
I12=1, I02=0: Sequence No. 8 or 24

●VREF terminal

 V_{REF} is the reference voltage input terminal for PWM constant current control. To realize stable ensure a stable signal, make sure noise is not applied to the terminal.

●V_{BB} terminal

To prevent voltage spikes on the load power supply terminal (V_{BB}), connect a large capacitor ($\geq 22\mu$ F) between the V_{BB} terminal and ground as close to the device as possible. Make sure the load supply voltage does not exceed 45 V.


Thermal protection

Thermal protection circuitry turns OFF all drivers when the junction temperature reaches +170°C. It is only intended to protect the device from failures due to excessive junction temperature and should not imply that output short circuits are permitted. The output drivers are re-enabled when the junction temperature cools to +145°C.

Around the ground

Since the UDN2916B/LB is a chopping type power driver IC, take great care around the ground when mounting. Separate

the power system and the small signal (analog) system. Provide a single-point connection to the GND terminal or a solid pattern of low enough impedance.

UDN2917EB

2-Phase Stepper Motor Bipolar Driver IC

Allegro MicroSystems product

■Features

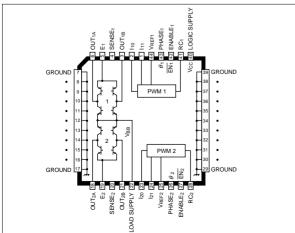
- Fixed off-time PWM current control
- Internal 1/3 and 2/3 reference divider
- 1-phase/2-phase/W1-2 phase excitation mode with digital input
- Microstepping with reference input
- Low saturation voltage (Sink transistor)
- Internal thermal shutdown circuitry
- Internal crossover-current protection circuitry
- Internal UVLO protection
- Internal transient-suppression diodes
- Low thermal resistance 44-pin PLCC

■Absolute Maximum Ratings

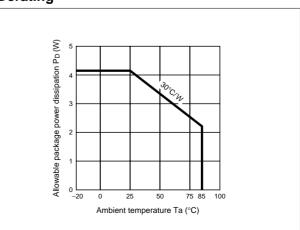
Parameter	Symbol	Conditions	Ratings	Units
Motor supply voltage	VBB		45	V
Output current (peak)	O (peak)	tw≤20 <i>µ</i> s	±1.75	А
Output current (continuous)	lo		±1.5	A
Logic supply voltage	Vcc		7.0	V
Logic input voltage range	Vin		-0.3 to +7.0	V
Output emitter voltage	Ve		1.0	V
Package power dissipation	PD (Note1)		4.16	W
Operating temperature	Ta		-20 to +85	°C
Junction temperature	T _j (Note2)		+150	°C
Storage temperature	Tstg		–55 to +150	°C

●Output current rating may be limited by duty cycle, ambient temperature, and heat sinking. Under any set of conditions, do not exceed the specified current rating or a junction temperature of 150°C. Note 1: When ambient temperature is 25°C or over, derate using –33.3mW/°C.

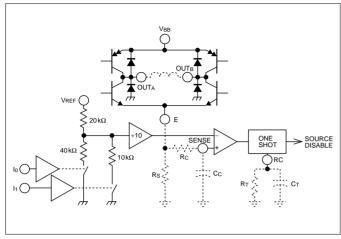
Note 2: Fault conditions where junction temperature (T_i) exceeds 150°C will activate the device's thermal shutdown circuitry. These conditions can be tolerated but should be avoided.


■Electrical Characteristics

(Unless specified otherwise, Ta=25°C, VBB=45V, Vcc=5.0V, VREF=5.0V)

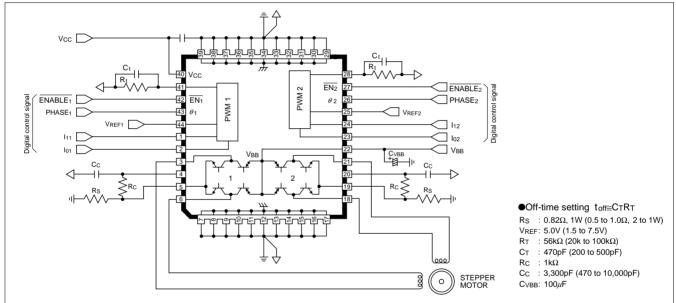

Oumshall	Qualities		Limits			
Symbol	Conditions	min	typ	max	Units	
VBB		10		45	V	
	Sink driver, Vo=VBB		<1.0	50	μA	
ICEX	Source driver, Vo=0V		< -1.0	-50	μA	
VCE (SUS)	lo=±1.5A, L=3.5mH	45			V	
	Sink driver, Io=+1.0A		0.5	0.7	V	
	Sink driver, Io=+1.5A		0.8	1.0	V	
VCE (SAT)	Source driver, Io=-1.0A		1.8	1.9	V	
	Source driver, Io=-1.5A		1.9	2.1	V	
IR	V _R =45V		<1.0	50	μA	
VF	IF=1.5A		1.6	2.0	V	
BB (ON)	Both bridges ON, no load		9.0	12	mA	
BB (OFF)	Both bridges OFF		4.0	6.0	mA	
		·				
Vcc	Operating	4.75	5.0	5.25	V	
ViH	All inputs	2.4			V	
VIL	All inputs			0.8	V	
lн	V⊪=2.4V		<1.0	20	μA	
lı.	VIL=0.8V		-3.0	-200	μA	
VREF	Operating	1.5		7.5	V	
	lo=l1=0.8V	9.5	10.0	10.5		
VREF/VSENSE	I0=2.4V, I1=0.8V	13.5	15.0	16.5		
	I0=0.8V, I1=2.4V	25.5	30.0	34.5		
Tj			170		°C	
ICC (ON)	Io=I1=VEN=0.8V, no load		90	105	mA	
ICC (OFF)	Io=I1=2.4V, no load		10	12	mA	
	Icex	VBB Sink driver, Vo=VBB Icex Source driver, Vo=0V VcE (SUS) Io=±1.5A, L=3.5mH VCE (SUS) Sink driver, Io=+1.0A VCE (SAT) Source driver, Io=-1.0A VCE (SAT) Source driver, Io=-1.5A IR VR=45V VF I=1.5A IBB (ON) Both bridges ON, no load IBB (OFF) Both bridges OFF Vcc Operating VIL All inputs VIL All inputs VIL All inputs VREF Operating VREF Operating VREF/VSENSE Io=2.4V, I=0.8V VREF/VSENSE Io=0.8V, I=2.4V Tj Icc (ON)	VBB 10 ICEX Sink driver, Vo=VBB 10 VCE (SUS) Io=±1.5A, L=3.5mH 45 VCE (SUS) Io=±1.5A, L=3.5mH 45 VCE (SAT) Sink driver, Io=+1.0A Sink driver, Io=+1.5A VCE (SAT) Source driver, Io=-1.0A Source driver, Io=-1.5A IR VR=45V I VF Ir=1.5A I IBB (ON) Both bridges ON, no load I IBB (OFF) Both bridges OFF I Vcc Operating 4.75 VIH All inputs 2.4 VIL All inputs I.5 VREF Operating 1.5 VREF/VSENSE Io=1:=0.8V 9.5 VREF/VSENSE Io=2.4V, I=0.8V 13.5 Io=0.8V, I=2.4V 25.5 Tj I Icc (ON) Io=1:=VEN=0.8V, no load I	VBB 10 ICEX Sink driver, Vo=VBB <1.0	Symbol Conditions min typ max VBB 10 45 IGEX Sink driver, Vo=VBB <1.0	

• "typ" values are for reference.

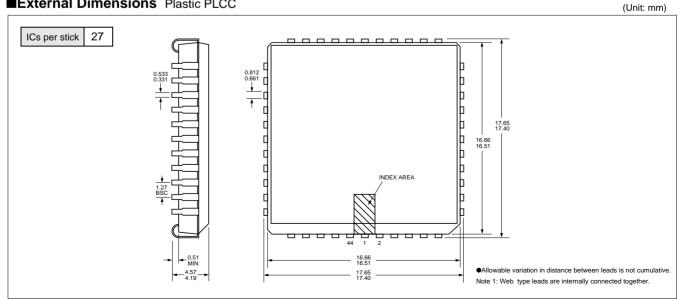

■Terminal Connection Diagram

■Derating

■Internal Block Diagram (1/2 Circuit)



■Truth Table


ENABLE	PHASE	OUTA	OUTB
L	н	н	L
L	L	L	н
н	Х	Z	Z
X=Don't Care	Z=High impeda	ince	
	1.		Outrast Outras

lo	l1	Output Current
L	L	VREF/ (10×Rs)=ITRIP
н	L	VREF/ (15×Rs)=ITRIP×2/3
L	н	VREF/ (30×Rs)=ITRIP×1/3
н	н	0

■Application Circuit

External Dimensions Plastic PLCC

Application Notes

•REDUCTION AND DISPERSION OF POWER LOSS

The thermal performance can be improved by adding four external Schottky barrier diodes (EK13 or other) between each output terminal and ground. In most applications, the chopping ON time is shorter than the chopping OFF time (small ON duty). Therefore, a great part of the power loss of the driver IC is attributable to the motor regenerative current during the chopping OFF period. The regenerative current from the motor flows through the current sensing resistor and ground clamp diode and returns to the motor. The voltage drop across this path causes the power loss. On this path, the forward voltage V_F of ground clamp diode shows the greatest drop. This means that adding Schottky barrier diodes will improve the thermal performance if their V_F characteristic is smaller than that of the internal ground clamp diode.

The external diodes also disperse the loss (a source of heat) and reduce the package power dissipation P_D of the driver IC. Consequently, a greater output current can be obtained.

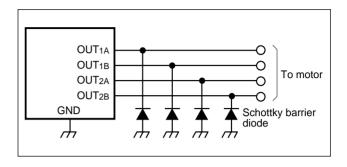
•CONTROL SEQUENCE OF 1-2 OR W1-2 PHASE EXCITATION

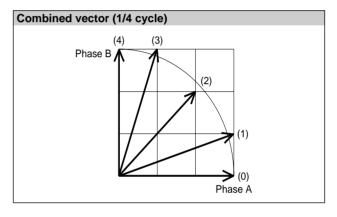
To reduce vibration when the stepper motor is rotating, the UDN2917EB can provide 1-2 or W1-2 phase excitation for the control sequence without varying the V_{REF} terminal voltage. The step angle is

Control sequence (1-2/W1-2 phase)

 $(\overline{\text{ENABLE}}1=\overline{\text{ENABLE}}2=0)$ Phase A Phase B Sequence 1-2 phase W1-2 phase PH₁ I 01 Current ratio PH₂ Current ratio excitation excitation No Х 1/3 2/3 2/3 1/3 Х * * 1/3 2/32/3 1/3* Х 1/32/32/3 1/3 Х 1/3 2/3 2/3 1/3

Note: When the sequence no. is 0, 4, 8, or 12, power-down can be set as follows


I11=1, I01=0: Sequence No. 0 or 8


I12=1, I02=0: Sequence No. 4 or 12

If power-down is necessary for a sequence other than 0, 4, 8, or 12, lower the

VREF terminal voltage. However, do not set the voltage lower than the lower limit of the setting range.

The control sequence is as shown below. (This sequence uses threshold signal terminals lo and I₁ for PWM current control.)

•MICROSTEPPING (1/8 STEP) CONTROL SEQUENCE

Varying the V_{REF} terminal voltage in steps provides 1/8

microstepping and reduces motor vibration greatly. The microstepping control sequence is as follows:

Control sequence (microstepping)

								(ENABLE1=	ENABLE 2=0
Sequence			Phase A					Phase B		
No.	PH ₁	Vref1 (V)	l11	l 01	Current ratio (%)	PH ₂	VREF2 (V)	I ₁₂	I 02	Current ratio (%)
0	0	7.5	0	0	100	Х	1.5	1	1	0
1	0	7.4	0	0	98	0	1.5	0	0	20
2	0	6.9	0	0	92	0	2.9	0	0	38
3	0	6.2	0	0	83	0	4.2	0	0	56
4	0	5.3	0	0	71	0	5.3	0	0	71
5	0	4.2	0	0	56	0	6.2	0	0	83
6	0	2.9	0	0	38	0	6.9	0	0	92
7	0	1.5	0	0	20	0	7.4	0	0	98
8	Х	1.5	1	1	0	0	7.5	0	0	100
9	1	1.5	0	0	20	0	7.4	0	0	98
10	1	2.9	0	0	38	0	6.9	0	0	92
11	1	4.2	0	0	56	0	6.2	0	0	83
12	1	5.3	0	0	71	0	5.3	0	0	71
13	1	6.2	0	0	83	0	4.2	0	0	56
14	1	6.9	0	0	92	0	2.9	0	0	38
15	1	7.4	0	0	98	0	1.5	0	0	20
16	1	7.5	0	0	100	Х	1.5	1	1	0
17	1	7.4	0	0	98	1	1.5	0	0	20
18	1	6.9	0	0	92	1	2.9	0	0	38
19	1	6.2	0	0	83	1	4.2	0	0	56
20	1	5.3	0	0	71	1	5.3	0	0	71
21	1	4.2	0	0	56	1	6.2	0	0	83
22	1	2.9	0	0	38	1	6.9	0	0	92
23	1	1.5	0	0	20	1	7.4	0	0	98
24	Х	1.5	1	1	0	1	7.5	0	0	100
25	0	1.5	0	0	20	1	7.4	0	0	98
26	0	2.9	0	0	38	1	6.9	0	0	92
27	0	4.2	0	0	56	1	6.2	0	0	83
28	0	5.3	0	0	71	1	5.3	0	0	71
29	0	6.2	0	0	83	1	4.2	0	0	56
30	0	6.9	0	0	92	1	2.9	0	0	38
31	0	7.4	0	0	98	1	1.5	0	0	20

Note: The VREF terminal voltage cannot be set to 0 V. To make the output current ratio 0%, set Iox=I1x=1.

When the sequence is 0, 8, 16, or 24, power-down can be set as follows:

I11=1, I01=0: Sequence No. 0 or 16

I12=1, I02=0: Sequence No. 8 or 24

●VREF terminal

 V_{REF} is the reference voltage input terminal for PWM constant current control. To realize stable ensure a stable signal, make sure noise is not applied to the terminal.

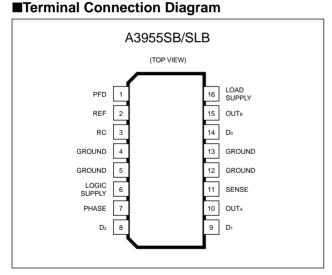
●V_{BB} terminal

To prevent voltage spikes on the load power supply terminal (V_{BB}), connect a large capacitor (\geq 47µF) between the V_{BB} terminal and ground as close to the device as possible. Make sure the load supply voltage does not exceed 45V.

Thermal protection

Thermal protection circuitry turns OFF all drivers when the junction temperature reaches +170°C. It is only intended to protect the device from failures due to excessive junction temperature and should not imply that output short circuits are permitted. The output drivers are re-enabled when the junction temperature cools to +145°C.

Around the ground


Since the UDN2917EB is a chopping type power driver IC, take great care around the ground when mounting. Separate the power system and the small signal (analog) system. Provide a single-point connection to the GND terminal or a solid pattern of low enough impedance.

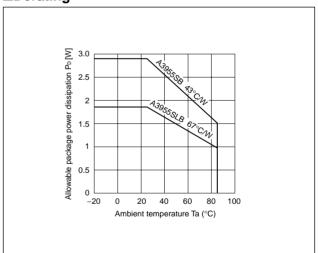
2-Phase Stepper Motor Bipolar Driver ICs

Allegro MicroSystems product

Features

- Maximum output ratings: 50V, ±1.5A
- Internal 3-bit non-linear DAC for 8-division microstepping enables 2W1-2,W1-2, 1-2, 2-phase excitation drive without external sine wave generator
- Internal PWM current control in Mixed Decay mode (can also be used in Fast Decay and Slow Decay mode), which improves motor current response and stability without deterioration of motor iron loss
- External RC filter for sense terminal not required thanks to internal blanking circuitry
- Internal thermal shutdown, crossover-current protection and transient-suppression diodes
- Special power-up and power-down sequencing for motor supply and logic supply not required
- Employs copper batwing lead frame with low thermal resistance

Terminal Connection Diagram

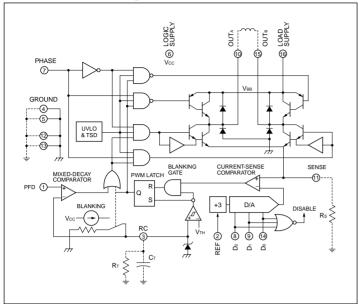

■Absolute Maximum Ratings

Parameter	Symbol	Rati	ngs	Units
Falametei	Symbol	A3955SB	A3955SLB	Offics
Load supply voltage	VBB	50	0	V
Output current (continuous)	lo	±1	.5	A
Logic supply voltage	Vcc	7.	V	
Logic/reference input	Vin	-0.3 to \	V	
voltage range	VIN	-0.5 10	VCC+0.5	v
Sense voltage	Vs	1.	0	V
Package power dissipation	PD ^(Note1)	2.90	1.86	W
Operating temperature	Ta	-20 to	°C	
Junction temperature	T _j (Note2)	+1	°C	
Storage temperature	Tstg	–55 to	+150	°C

•Output current rating may be limited by duty cycle, ambient temperature, and heat sinking. Under any set of conditions, do not exceed the specified current rating or a junction temperature of 150°C. Note 1: When ambient temperature is 25°C or over, derate using –23.26mW/°C(SB) or –14.93mW/°C(SLB).

Note 2: Fault conditions where junction temperature (T) exceeds 150°C will activate the device's thermal shutdown circuitry. These conditions can be tolerated but should be avoided.

■Derating


■Electrical Characteristics

(Unless specified otherwise, $T_a{=}25^{\circ}C,\,V_{BB}{=}5V$ to 50V, $V_{CC}{=}4.5V$ to 5.5V)

	Symbol					
Parameter	Symbol	Conditions	min	typ	max	Unit
Power outputs (OUT _A or OUT _B)						
Load supply voltage range	VBB	Operating, Io=±1.5A, L=3mH	Vcc		50	V
Output leakage current	1	Vo=VBB		<1.0	50	μA
	ICEX	Vo=0V		< -1.0	-50	μA
		VSENSE=1.0V : Source Driver, Io=-0.85A		1.0	1.2	V
Output astrontian weltere		VSENSE=1.0V : Source Driver, Io=-1.5A		1.3	1.5	V
Output saturation voltage	VCE (sat)	Vsense=1.0V : Sink Driver, lo=0.85A		0.5	0.6	V
		VSENSE=1.0V : Sink Driver, Io=1.5A		1.3	1.5	V
Sense current offset	lso	Is-lo, lo=0.85A, Vs=0V, Vcc=5V	20	33	40	m/
		l⊧=0.85A		1.2	1.4	V
Clamp diode forward voltage	VF	IF=1.5A		1.4	1.7	V
	BB (ON)			2.0	4.0	m/
Motor supply current (No load)	BB (OFF)	D0=D1=D2=0.8V		1.0	50	μ
ontrol logic	. ,			1		
Logic supply voltage range	Vcc	Operating	4.5	5.0	5.5	V
Reference voltage range	VREF	Operating	0.5		2.5	v
JVLO enable threshold	VUVLOen	Vcc=0→5V	3.35	3.70	4.05	v
UVLO hysteresis	VUVLOhys		0.30	0.45	0.60	v
				42	50	m
Logic supply current	ICC (OFF)	D0=D1=D2=0.8V		12	16	m
	VIH	D0-D1-D2-0.0V	2.0	12	10	V
Logic input voltage	VIH		2.0		0.8	V
	Vi∟ Ii∺	V _{IN} =2.0V		<1.0	20	μ
Logic input current		Vin=2.0V Vin=0.8V			-200	· ·
	l⊫		0.5	< -2.0	-200	μ
		Slow Decay Mode	3.5		0.4	V
Mixed Decay comparator trip points	Vpfd	Mixed Decay Mode	1.1		3.1	V
		Fast Decay Mode			0.8	V
Mixed Decay comparator input offset voltage	VIO (PFD)			0	±20	m
Mixed Decay compartor hysteresis	ΔV IO (PFD)		5	25	55	m
Reference input current	IREF	V _{REF} =0V~2.5V			±5.0	μ
Reference divider ratio	Vref/Vs	at trip, D ₀ =D ₁ =D ₂ =2V		3.0		
DAC accuracy *1		VREF=1.0V~2.5V			±3.0	%
	DITOLIKI	Vref=0.5V~1.0V			±4.0	%
Current-sense comparator input offset voltage *1	VIO (S)	Vref=0V			±5.0	mʻ
		D0=D1=D2=0.8V		0		%
		D ₀ =2.0V, D ₁ =D ₂ =0.8V		19.5		%
		D ₀ =0.8V, D ₁ =2V, D ₂ =0.8V		38.2		%
Stop reference oursest ratio	0000	D ₀ =D ₁ =2V, D ₂ =0.8V		55.5		%
Step reference current ratio	SRCR	D ₀ =D ₁ =0.8V, D ₂ =2V		70.7		%
	F	D ₀ =2V, D ₁ =0.8V, D ₂ =2V		83.1		%
		D ₀ =0.8V, D ₁ =D ₂ =2V		92.4		%
		D ₀ =D ₁ =D ₂ =2V		100		%
Thermal shutdown temperature	Tj			165		°C
Thermal shutdown hysteresis	ΔTj			15		°C
C timing						
PWM RC fixed off-time	toffrc	Cτ=470pF, Rτ=43kΩ	18.2	20.2	22.3	μ
		Current-Sense Comparator Trip to Source OFF,				
		Io=0.1A		1.0	1.5	μ
PWM turn-off time	tpwm (OFF)	Current-Sense Comparator Trip to Source OFF,				
				1.4	2.5	μ
				0.1	07	
	tpwm (on)	IRC Charge ON to Source ON, Io=0.1A		0.4	0.7	μ
PWM turn-on time		las Chargo (INI to Source (INI Is=1.5A	1	0.55	0.85	μ
PWM turn-on time		IRC Charge ON to Source ON, Io=1.5A				
PWM turn-on time PWM minimum on-time	ton (min)	Vcc=5.0V, Rτ≥43kΩ, Cτ=470pF, I₀=0.1A	1.0	1.6	2.2	μ

*1: The total error for the VREF/VSENSE function is the sum of the D/A error and the current-sense comparator input offset voltage. •"typ" values are for reference.

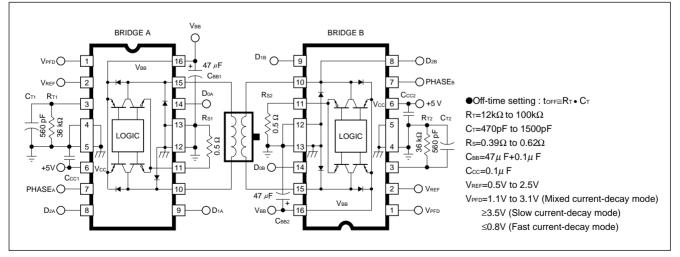
Internal Block Diagram

■Truth Table

ЪЦ	•	c	
ΓП	м	9	

PHASE	OUTA	OUTB
н	Н	L
L	L	Н

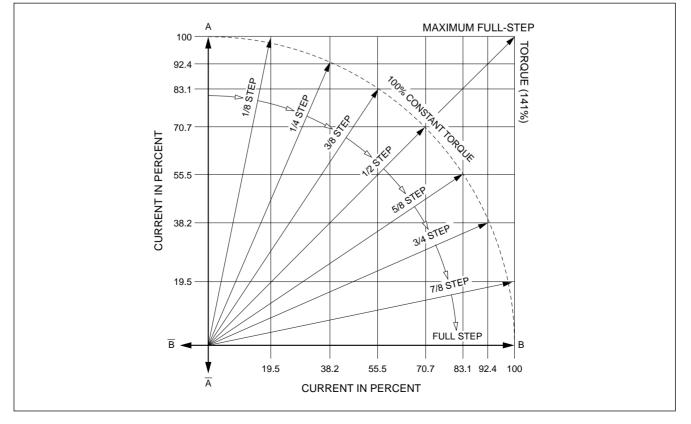
PFD

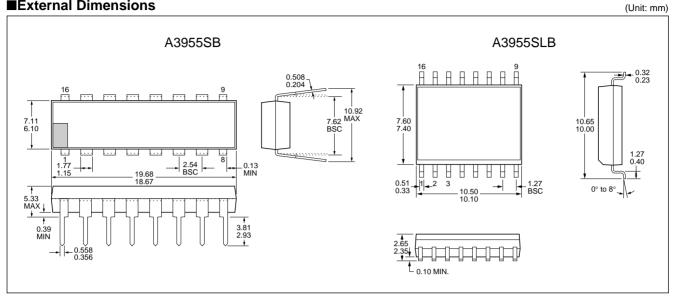

VPFD	Operating Mode
≥3.5V	Slow current-decay mode
1.1V to 3.1V	Mixed current-decay mode
≤0.8V	Fast current-decay mode

υ	м	L.	,	

[DAC DAT	4	DAC [%]	V _{REF} /Vs		
D ₂	D1	D ₀	DAC [/0]	V REF/ VS		
Н	Н	Н	100	3.00		
Н	Н	L	92.4	3.25		
Н	L	Н	83.1	3.61		
Н	L	L	70.7	4.24		
L	Н	Н	55.5	5.41		
L	Н	L	38.2	7.85		
L	L	Н	19.5	15.38		
L	L	L	All Outputs Disabled			

where Vs≅ITRIP*Rs



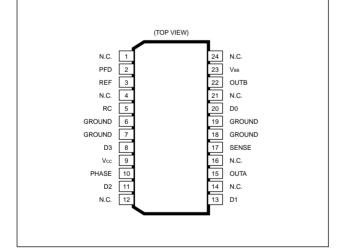

■Step Sequence

						Bridge A					Bridge B		
Full	Half	Quarter	Eigth										
Step	Step	Step	Step	PHASEA	D _{2A}	D _{1A}	DOA	ILOADA	PHASE ^B	D _{2B}	D _{1B}	DOB	LOADB
1	1	1	1	н	Н	L	L	70.7%	н	Н	L	L	70.7%
			2	н	L	Н	н	55.5%	н	Н	L	н	83.1%
		2	3	н	L	Н	L	38.2%	н	Н	н	L	92.4%
			4	н	L	L	н	19.5%	н	Н	н	н	100%
	2	3	5	X	L	L	L	0%	н	Н	н	н	100%
			6	L	L	L	н	-19.5%	н	Н	н	н	100%
		4	7	L	L	Н	L	-38.2%	н	Н	н	L	92.4%
			8	L	L	Н	Н	-55.5%	н	Н	L	Н	83.1%
2	3	5	9	L	н	L	L	-70.7%	н	н	L	L	70.7%
			10	L	н	L	н	-83.1%	н	L	Н	н	55.5%
		6	11	L	н	Н	L	-92.4%	н	L	Н	L	38.2%
			12	L	н	Н	н	-100%	н	L	L	н	19.5%
	4	7	13	L	Н	Н	н	-100%	X	L	L	L	0%
			14	L	Н	Н	н	-100%	L	L	L	н	-19.5%
		8	15	L	Н	Н	L	-92.4%	L	L	н	L	-38.2%
			16	L	Н	L	Н	-83.1%	L	L	Н	Н	-55.5%
3	5	9	17	L	н	L	L	-70.7%	L	н	L	L	-70.7%
			18	L	L	Н	н	-55.5%	L	н	L	н	-83.1%
		10	19	L	L	Н	L	-38.2%	L	Н	н	L	-92.4%
			20	L	L	L	н	-19.5%	L	н	Н	н	-100%
	6	11	21	X	L	L	L	0%	L	н	Н	н	-100%
			22	н	L	L	н	19.5%	L	н	Н	н	-100%
		12	23	н	L	Н	L	38.2%	L	н	Н	L	-92.4%
			24	н	L	Н	Н	55.5%	L	Н	L	Н	-83.1%
4	7	13	25	н	н	L	L	70.7%	L	н	L	L	-70.7%
			26	н	н	L	н	83.1%	L	L	Н	н	-55.5%
		14	27	н	н	Н	L	92.4%	L	L	Н	L	-38.2%
			28	н	Н	н	н	100%	L	L	L	н	-19.5%
	8	15	29	н	Н	Н	н	100%	X	L	L	L	0%
			30	н	н	Н	н	100%	н	L	L	н	19.5%
		16	31	н	н	Н	L	92.4%	н	L	н	L	38.2%
			32	Н	Н	L	Н	83.1%	Н	L	Н	Н	55.5%

■Current Vector Locus

■External Dimensions

A3957SLB

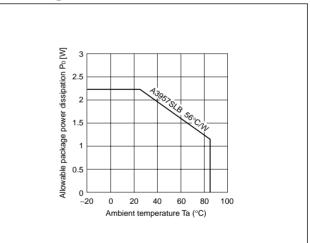

2-Phase Stepper Motor Bipolar Driver IC

Allegro MicroSystems product

Features

- Maximum output ratings: 50V, ±1.5A
- Internal 4-bit non-linear DAC for 16-division microstepping enables 4W1-2, 2W1-2, W1-2, 2-phase excitation drive without external sine wave generator
- Internal PWM current control in Mixed Decay mode (can also be used in Fast Decay and Slow Decay mode), which improves motor current response and stability without deterioration of motor iron loss
- External RC filter for sense terminal not required thanks to internal blanking circuitry
- Internal thermal shutdown, crossover-current protection and transient-suppression diodes
- Special power-up and power-down sequencing for motor supply and logic supply not required
- Employs copper batwing lead frame with low thermal resistance

■Terminal Connection Diagram

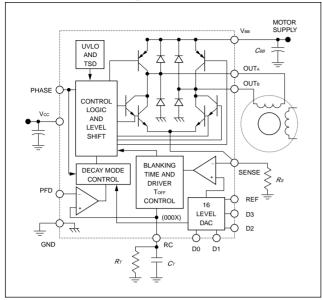

■Absolute Maximum Ratings

Parameter	Symbol	Ratings	Units
Load supply voltage	VBB	50	V
Output current (continuous)	lo	±1.5	A
Logic supply voltage	Vcc	7.0	V
Logic/reference input	Vin	-0.3 to Vcc+0.3	V
voltage range	VIN	-0.3 10 Vcc+0.3	v
Sense voltage	Vs	1.0	V
Package power dissipation	PD (Note1)	2.23	W
Operating temperature	Ta	-20 to +85	°C
Junction temperature	T _j (Note2)	+150	°C
Storage temperature	Tstg	-55 to +150	°C

Output current rating may be limited by duty cycle, ambient temperature, and heat sinking. Under any set of conditions, do not exceed the specified current rating or a junction temperature of 150°C. Note 1: When ambient temperature is 25°C or over, derate using –17.86mW/°C. Note 2: Fault conditions where junction temperature (T_i) exceeds 150°C will activate the device's thermal

shutdown circuitry. These conditions can be tolerated but should be avoided.

■Derating


■Electrical Characteristics

(Unless specified otherwise, T_a=25°C, V_{BB}=5V to 50V, V_{CC}=4.5V to 5.5V)

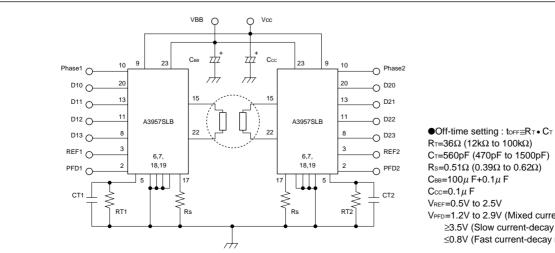
				Limits		
Parameter	Symbol	Conditions	min	typ	max	Units
Power outputs (OUT _A or OUT _B)				-76		
Load supply voltage range	VBB	Operating, Io=±1.5A, L=3mH	Vcc		50	V
		Vo=VBB		<1.0	50	μA
Output leakage current	ICEX	Vo=0V		< -1.0	-50	μA
		VSENSE=1.0V : Source Driver, Io=-0.85A		1.0	1.2	V
		Vsense=1.0V : Source Driver, Io=–1.5A		1.4	1.5	v
Output saturation voltage	VCE (sat)	VSENSE=1.0V : Sink Driver, Io=0.85A		0.5	0.7	v
		VSENSE=1.0V : Sink Driver, Io=1.5A		1.2	1.5	v
Sense current offset	Iso	Is-Io, Io=0.85A, Vs=0V, Vcc=5V	20	30	40	m/
	130	IF=0.85A	20	1.2	1.4	V
Clamp diode forward voltage	VF	IF=0.00A		1.2	1.7	v
	lan (ou)	IF=1.3A		2.0	4.0	m/
Motor supply current (No load)	BB (ON)	D ₀ =D ₁ =D ₂ =D ₃ =0.8V		1.0	4.0 50	
antrol logio	BB (OFF)	$D_0 = D_1 = D_2 = D_3 = 0.8 V$		1.0	50	μA
ontrol logic	V		4.5	5.0		V
Logic supply voltage range	Vcc	Operating	4.5	5.0	5.5	V
Reference voltage range	VREF	Operating	0.5		2.5	V
UVLO enable threshold	VUVLOen	Vcc=0→5V	3.35	3.70	4.05	V
UVLO hysteresis	VUVLOhys		0.25	0.40	0.55	V
Logic supply current	ICC (ON)			42	50	mA
	ICC (OFF)	D ₀ =D ₁ =D ₂ =D ₃ =0.8V		14	17	m/
Logic input voltage	Vih		2.0			V
Logio input voltage	VIL				0.8	V
ogic ipput current	Ін	V _{IN} =2.0V		<1.0	20	μ
Logic input current	lı∟	V _{IN} =0.8V		< -2.0	-200	μ
		Slow Decay Mode	3.5			V
Mixed Decay comparator trip point	Vpfd	Mixed Decay Mode	1.2		2.9	V
		Fast Decay Mode			0.8	V
Mixed Decay comparator input offset voltage	VIO (PFD)			0	±20	m١
Mixed Decay compartor hysteresis	$\Delta V_{IO (PFD)}$		5	25	55	m١
Reference input current	IREF	V _{REF} =0V to 2.5V			±5.0	μ
Reference divider ratio	V _{REF} /Vs	at trip, D ₀ =D ₁ =D ₂ =D ₃ =2V		3.0	20.0	μι
	VREF/V3	VREF=1.0V to 2.5V		0.0	±3.0	%
DAC accuracy *1	DACERR	VREF=0.5V to 2.3V			±3.0 ±4.0	%
Current conce comporter input offect voltage *1	Maria	VREF=0.0V 10 1.0V		16	⊥4.0	m
Current-sense comparator input offset voltage *1	VIO (S)	D1=D2=D3=0.8V		-16 0		
				-		%
		D ₀ =0.8V, D ₁ =2.0V, D ₂ =D ₃ =0.8V		17.4		%
		D ₀ =D ₁ =2.0V, D ₂ =D ₃ =0.8V		26.1		%
		D ₀ =D ₁ =0.8V, D ₂ =2V, D ₃ =0.8V		34.8		%
		D ₀ =2.0V, D ₁ =0.8V, D ₂ =2.0V, D ₃ =0.8V		43.5		%
		D ₀ =0.8V, D ₁ =D ₂ =2.0V, D ₃ =0.8V		52.2		%
		D ₀ =D ₁ =D ₂ =2.0V, D ₃ =0.8V		60.9		%
Step reference current ratio	SRCR	D ₀ =D ₁ =D ₂ =0.8V, D ₃ =2.0V		69.6		%
		D ₀ =2.0V, D ₁ =D ₂ =0.8V, D ₃ =2.0V		73.9		%
		D0=0.8V ,D1=2.0V, D2=0.8V, D3=2.0V		78.3		%
		D ₀ =D ₁ =2.0V, D ₂ =0.8V, D ₃ =2.0V		82.6		%
		D ₀ =D ₁ =0.8V, D ₂ =D ₃ =2.0V		87.0		%
		D ₀ =2.0V, D ₁ =0.8V, D ₂ =D ₃ =2.0V		91.3		%
		D ₀ =0.8V, D ₁ =D ₂ =D ₃ =2.0V		95.7		%
		D ₀ =D ₁ =D ₂ =D ₃ =2.0V		100		%
Thermal shutdown temperature	Tj			165		°C
Thermal shutdown hysteresis	ΔTj			15		°C
C timing	,		1	-		
PWM RC fixed off-time	toffrc	Cτ=470pF, Rτ=43kΩ	18.2	20.2	22.3	μ
	.01110	Current-Sense Comparator Trip to Source OFF,	10.2		_2.0	μ.
		Io=0.1A		1.0	1.5	μ
PWM turn-off time	tpwm (OFF)					
		Current-Sense Comparator Trip to Source OFF,		1.4	2.5	μ
					0 -	· ·
PWM turn-on time	tpwm (on)	IRC Charge ON to Source ON, Io=0.1A		0.4	0.7	μ
		IRC Charge ON to Source ON, Io=1.5A		0.55	0.85	μ
PWM minimum on-time	t ON (min)	Vcc=5.0V, Rτ≥43kΩ, C⊤=470pF,	1.0	1.6	2.2	μ
		lo=0.1A				μ
		1kΩ Load to 25V	0.3	1.5	3.0	μ

*1: The total error for the VREF/VSENSE function is the sum of the D/A error and the current-sense comparator input offset voltage. •"typ" values are for reference.

Internal Block Diagram

■Truth Table

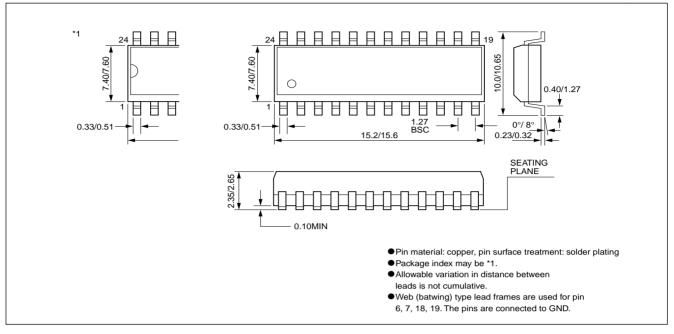
Power Outputs


D3, D2, D1, D0	PHASE	OUTA	OUTB	PFD	Power Output Operating Mode				
0000 or 0001	Х	Z	Z	Х	Disable				
1XXX				≥3.5V	Forward, slow current-decay mode				
or	н	н	н	н	L	1.2V to 2.9V	Forward, mixed current-decay mode		
X1XX				≤0.8V	Forward, fast current-decay mode				
or								≥3.5V	Reverse, slow current-decay mode
XX1X	L	L	н	1.2V to 2.9V	Reverse, mixed current-decay mode				
~~!~				≤0.8V	Reverse, fast current-decay mode				

X: Don't care High impedance (source and sink both OFF)

DAC

D3	D2	D1	D0	DAC [%]	D3	D2	D1	D0	DAC [%]
1	1	1	1	100	0	1	1	1	60.9
1	1	1	0	95.7	0	1	1	0	52.2
1	1	0	1	91.3	0	1	0	1	43.5
1	1	0	0	87.0	0	1	0	0	34.8
1	0	1	1	82.6	0	0	1	1	26.1
1	0	1	0	78.3	0	0	1	0	17.4
1	0	0	1	73.9	0	0	0	1	0
1	0	0	0	69.6	0	0	0	0	0


■Application Circuit

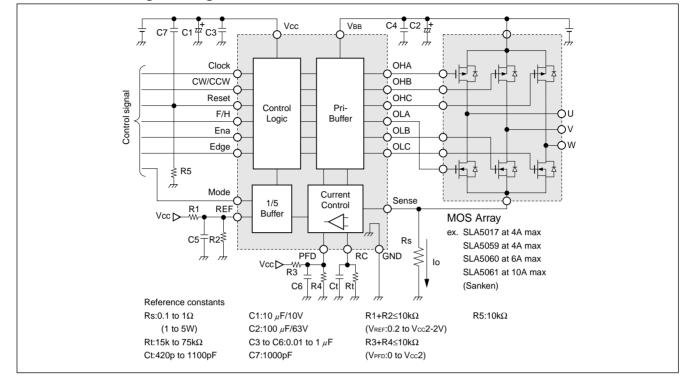
 $R_T=36\Omega$ (12k Ω to 100k Ω) CT=560pF (470pF to 1500pF) Rs=0.51Ω (0.39Ω to 0.62Ω) Свв=100 μ F+0.1 μ F $Ccc=0.1 \mu F$ VREF=0.5V to 2.5V VPFD=1.2V to 2.9V (Mixed current-decay mode) ≥3.5V (Slow current-decay mode) ≤0.8V (Fast current-decay mode)

■External Dimensions

(Unit: mm)

3-Phase Stepper Motor Driver ICs

■Absolute Maximum Ratings


Parameter	Symbol	Ratings	Units
Load supply voltage	VBB	50	V
Logic supply voltage	Vcc	7	V
Input voltage	Vin	-0.3 to Vcc	V
Reference input voltage	VREF	-0.3 to Vcc	V
Sense voltage	Vsense	1.5	V
Package power dissipation	PD	1	W
Junction temperature	Tj	-20 to +85	°C
Operating temperature	Top	+125	°C
Storage temperature	Tstg	-55 to +125	°C

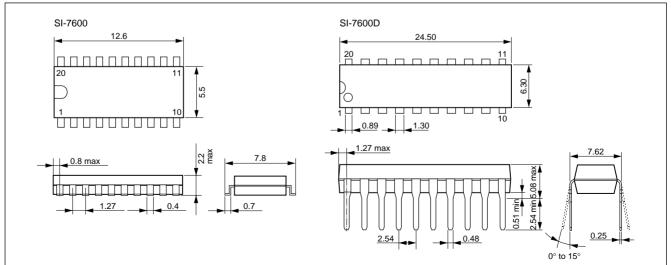
■Recommended Operating Voltage Ranges

Recommended Operating Voltage Ranges			(Ta=25°C)
Parameter	Symbol	Ratings	Units
Load supply voltage	Vвв	15 to 45	V
Logic supply voltage	Vcc	3 to 5.5	V
Reference input voltage	Vref	0.2 to Vcc-2	V

■Electrical Characteristics

Deveration	Cumhal	Ratings			Units	Conditions	
Parameter	Symbol	min	typ	typ max		Conditions	
Load supply voltage	Vвв	15		45	V		
Logic supply voltage	Vcc	3.0		5.5	V		
	Vol1	8		15	V		
Outrast such a sec	Vol2	0		1	V		
Output voltage	Vон1	V _{вв} –15		VBB-8	V		
	Vон2	Vвв-1		VBB	V		
Load supply current	Івв			25	mA	Vcc=5.5V	
Logic supply current	lcc			10	mA	Vcc=5.5V	
La sia inanata di kana	VIH	3.75			V		
Logic input voltage	VIL			1.25	V		
Logic input current	Ін			20	μA	VIN=Vcc×0.75	
	h.	-20			μA	VIN=Vcc×0.25	
	_	200				Edge=0V	
Maximum clock frequency	F	100			kHz	Edge=Vcc	
	Vslow	1.7		Vcc	V		
PFD input voltage	V _{Mix}	0.7		1.3	V		
	VFast			0.3	V		
PFD input current	IPFD.		±50		μΑ		
Reference input voltage	VREF	0		Vcc–2	V		
Reference input current	IREF		±10		μ Α	V _{REF} =0~Vcc-2V	
0	Vs1		Vref×0.2		V	Mode=Vcc, VREF=0~Vcc-2V	
Sense voltage	Vs2		VREF×0.17		V	Mode=0V, AVREF=0~Vcc-2V	
RC source current	IRC		220		μ Α		
Off time	Toff		1.1×Rt×Ct		Sec.		

Internal Block Diagram/Diagram of Standard External Circuit


■Terminal Connection

The package shapes of SI-7600 and SI-7600D are different, however the terminal connection is the same.

	RC 🗆						
		Pin No.	Name	Pin No.	Name	Pin No.	Name
		Pin1	PFD	Pin8	Full/Half	Pin15	OLA
Reset	онв 🗖	Pin2	Sense	Pin9	Enable	Pin16	OHC
Cw/ccw	она 🗖	Pin3	Vcc	Pin10	Mode	Pin17	OHB
		Pin4	Reset	Pin11	REF	Pin18	OHA
Ск		Pin5	CW/CCW	Pin12	GND	Pin19	Vвв
		Pin6	Edge	Pin13	OLC	Pin20	RC
Ena Mada		Pin7	Clock	Pin14	OLB		
☐ Mode	REF	PIN7	CIOCK	Pin14	OLB		

Application Notes

1. Outline

The SI-7600/SI-7600D is a control IC used with a power MOS FET array to drive a 3-phase stepper motor. Select the outputstage MOS FET according to the rated current of the motor. The full step is 2-phase excitation when this IC is in a star connection but 3-phase excitation when it is in a delta connection.

2. Features

- Suitable for both star connection drive and delta connection drive
- Maximum load supply voltage V_{BB}=45V
- Control logic supply voltage Vcc=3 to 5.5V
- Supports star connection (2/2-3phase excitation) and delta connection (3/2-3phase excitation)
- Step switching timing by clock signal input
- Forward/reverse, hold, and motor-free control
- Step switching at the positive edge or positive/negative edge of the clock signal
- Control current automatic switching function for 2-3phase excitation (effective for star connection)

(Current control: 86% for 2-phase excitation, 100% for 3-phase excitation)

- Self-excitation constant-current chopping by external C/R
- Slow Decay, Mixed Decay, or Fast Decay selectable
- Two package lineup: SOP (surface mounting) and DIP (lead insertion)

SOP...SI-7600, DIP...SI-7600D

 Maximum output current depends on the ratings of the MOS FET array used

Input terminal	Low level	High level
CW/CCW	CW	CCW
Full/Half	2-3phase excitation	2-phase excitation
Enable	Disable	Enable
Mode	Always 100%	2-phase excitation: 85%
(Note 1)	Always 100 %	3-phase excitation: 100%
Edge	Positive	Positive/negative
(Note 2)		r contro, nogatro
Reset	Enable	Internal logic reset
(Note 3)	Lindbio	output disable

3. Input Logic Truth Table

Select CW/CCW, Full/Half, or Edge when the clock level is low.

Note 1: The control current is always 85% for the full step (2phase excitation) when the Mode terminal level is high. The value of 100% control current is calculated at the VREF/(5×Rs) terminal because a 1/5 buffer is built into the reference section.

Note 2: When the Edge terminal level is set high, the internal counter increments both at the rising and falling edges. Therefore, the duty ratio of the input clock should be set at 50%.

Note 3: When the Reset terminal level is set high, the internal

counter is reset. Output remains disabled as long as the Reset terminal level is high.

4. Determining the control current

The control current lo can be calculated as follows:

When the Mode terminal level is low

Io≅Vref/(5×Rs)

When the Mode terminal level is high $I_{O\cong}V_{REF}/(5\times R_s) \rightarrow 3$ -phase excitation

 $IO = V_{REF}/(5.88 \times R_s) \rightarrow 2$ -phase excitation

The reference voltage can be set within the range of 0.2V to Vcc -2V. (When the voltage is less than 0.2V, the accuracy of the reference voltage divider ratio deteriorates.)

5. About the Current Control System (Setting the Constant Ct/Rt)

The SI-7600 uses a current control system of the self-excitation type with a fixed chopping OFF time.

The chopping OFF time is determined by the constant Ct/Rt.

The constant Ct/Rt is calculated by the formula

Toff≅1.1×Ct×Rt····· (1)

The recommended range of constant Ct/Rt is as follows:

Ct: 420 to 1100pF

Rt: 15 to 75k Ω

(Slow Decay or Mixed Decay ${\rightarrow}560 pF/47 k\Omega,$ Fast Decay ${\rightarrow}$ 470pF/20kΩ)

Usually, set T_{OFF} to a value where the chopping frequency becomes about 30 to 40kHz.

The mode can be set to Slow Decay, Fast Decay, or Mixed Decay depending on the PFD terminal input potential.

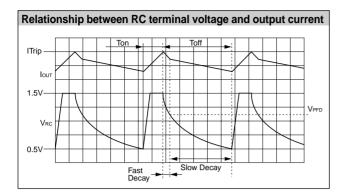
	, ,
PFD applied voltage	Decay mode
0 to 0.3V	Fast Decay
0.7V to 1.3V	Mixed Decay
1.7V to Vcc	Slow Decay

PFD applied voltage and decay mode

In Mixed Decay mode, the Fast/Slow time ratio can be set using the voltage applied to the PFD terminal. The calculated values are summarized below.

In this mode, the point of switching from Fast Decay to Slow Decay is determined by the RC terminal voltage that determines the chopping OFF time and by the PFD input voltage V_{PFD} .

Formula (1) is used to determine the chopping OFF time.


The Fast Decay time is then determined by the RC discharge time from the RC voltage (about 1.5V) to the PFD input voltage (V_{PFD}) when chopping is turned from ON to OFF.

The Fast Decay time is

$$\text{tofff} \cong -R_T \times C_T \times I_n\left(\frac{V_{\text{PFD}}}{1.5}\right) \dots (2)$$

The Slow Decay time (t_{OFFs}) is calculated by subtracting the value of (2) from that of (1).

toffs≅Toff−tofff ·····(3)

6. Method of Calculating Power Loss of Output MOS FET

The SI-7600 uses a MOS-FET array for output. The power loss of this MOS FET array can be calculated as summarized below. This is an approximate value that does not reflect parameter variations or other factors during use in the actual application. Therefore, heat from the MOS FET array should actually be measured.

Parameters for calculating power loss

To calculate the power loss of the MOS FET array, the following parameters are needed:

- (1) Control current lo (max)
- (2) Excitation method

(3) Chopping ON-OFF time at current control: TON, TOFF, tOFFf

(Ton: ON time, Toff: OFF time, toff: Fast Decay time at OFF)

(4) ON resistance of MOS FET: RDS (ON)

(5) Forward voltage of MOS FET body diode: VsD

For (4) and (5), use the maximum values of the MOS FET specifications.

(3) should be confirmed on the actual application.

Power loss of Pch MOS FETs

The power loss of Pch MOS FETs is caused by the ON resistance and by the chopping-OFF regenerative current flowing through the body diodes in Fast Decay mode.

(In Slow Decay mode, the chopping-OFF regenerative current does not flow the body diodes.)

The losses are

b

ON resistance loss P1: P1=I_M²×R_{DS (ON)}

Body diode loss P2: P2=I_M \times V_{SD}

With these parameters, the loss Pp per MOS FET is calculated depending on the actual excitation method as follows:

a) 2-phase excitation (T=ToN+TOFF)

 $P_{P}=(P1\times T_{ON}/T+P2\times t_{OFFf}/T)\times (1/3)$

$$\begin{split} \mathsf{P}_{\mathsf{P}} = & (\mathsf{P}1 \times \mathsf{Ton}/\mathsf{T} + \mathsf{P}2 \times \mathsf{toff}/\mathsf{T}) \times (1/4) + (0.5 \times \mathsf{P}1 \times \mathsf{Ton}/\mathsf{T} + \mathsf{P}2 \times \mathsf{toff}/\mathsf{T}) \\ & \mathsf{T}) \times (1/12) \end{split}$$

Power loss of Nch MOS FETs

The power loss of Nch MOS FETs is caused by the ON resistance or by the chopping-OFF regenerative current flowing through the body diodes.

(This loss is not related to the current control method, Slow,

Mixed, or Fast Decay.)

The losses are

ON resistance loss N1: N1=I_M²×R_DS(ON)

Body diode loss N2: N2=I_M \!\!\times\! V_{\text{SD}}

With these parameters, the loss P_N per MOS FET is calculated depending on the actual excitation method as follows:

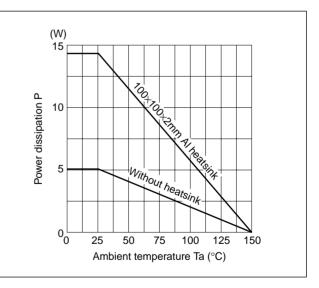
a) 2-phase excitation (T=ToN+TOFF)

 $P_N=(N1+N2\times T_{OFF}/T)\times (1/3)$

b) 2-3 phase excitation (T=Ton+Toff)

PN=(N1+N2×TOFF/T)×(1/4)+(0.5N1+N2×TOFF/T)×(1/12)

 Determining power loss and heatsink when SLA5017 is used

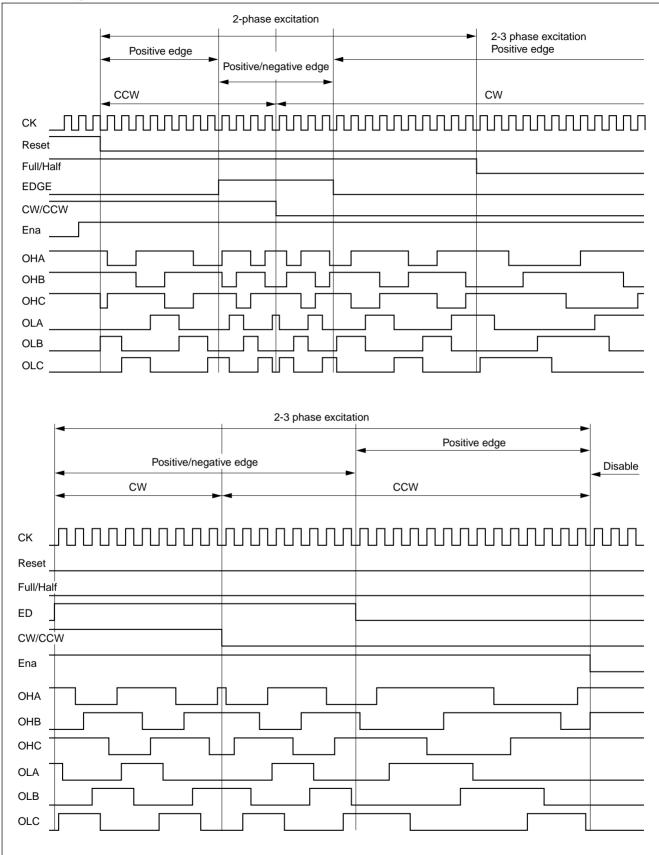

If the SLA5017 is used in an output section, the power losses of a Pch MOS FET and an Nch MOS FET should be multiplied by three and added to determine the total loss P of SLA5017. In other words, $P=3\times P_P+3\times P_N$

The allowable losses of SLA5017 are

Without heatsink: 5W θ j-a=25°C/W

Infinite heatsink: 35W θ j-c=3.57°C/W

Select a heatsink by considering the calculated losses, allowable losses, and following ratings:



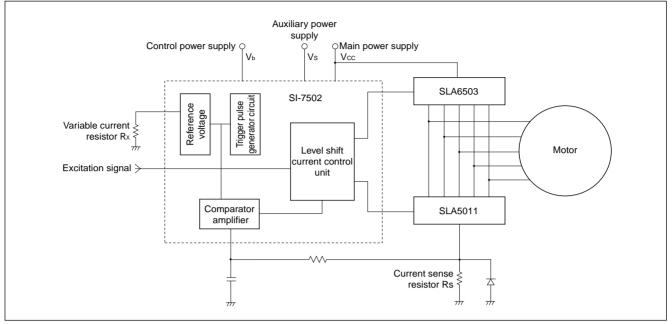
When selecting a heatsink for SLA5017, be sure to check the product temperature when in use in an actual application. The calculated loss is an approximate value and therefore con-

tains a degree of error. Select a heatsink so that the surface AI fin temperature of

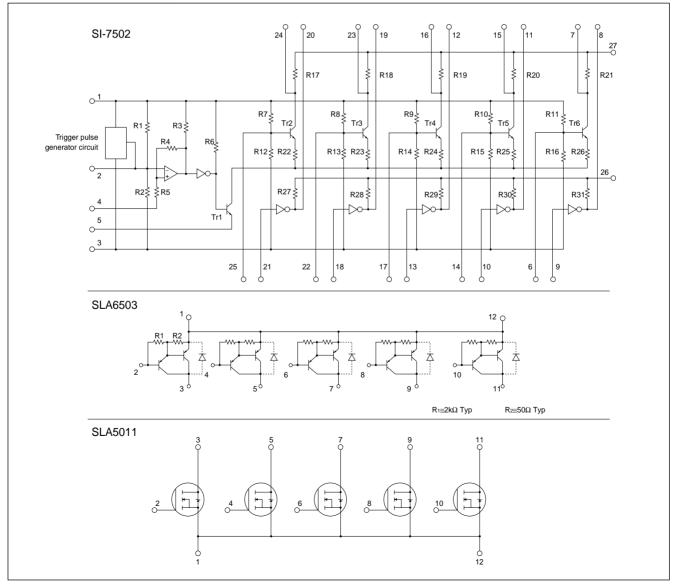
SLA5017 will not exceed 100°C under the worst conditions.

7. I/O Timing Chart

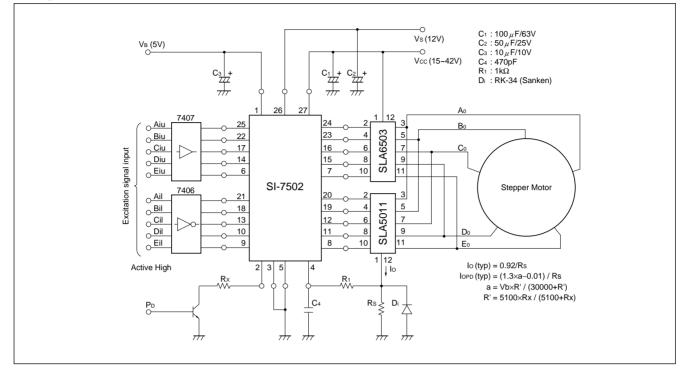
(Ta=25°C)

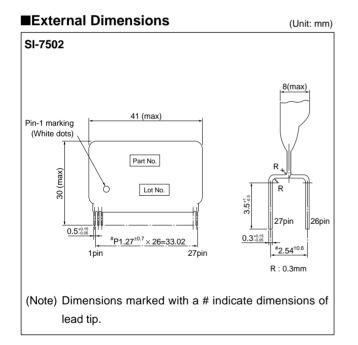

5-Phase Stepper Motor Driver ICs

■Absolute Maximum Ratings (Ta=25°C) Part No. Parameter Symbol Ratings Units Motor supply voltage Vcc 44 V 15 V Vs Auxiliary supply voltage Control voltage Vb 7 V SI-7502 Reference voltage Vref 1.5 V Detection voltage Vrs 5 V 1 W Power dissipation PD Ambient operating temperature Тор 0 to +65 °C Drain -Source voltage VDSS 60 ٧ Drain current lо ±5 А Avalanche energy capability (Single pulse) Eas 2 mJ SLA5011 Рτ 35 W Power dissipation Channel temperature T_{ch} 150 °C Storage temperature Tstg -40 to +150 °C Vсво Collector-Base voltage -60 V V Collector-Emitter voltage Vceo -60 Emitter-Base voltage Vево -6 V Collector current lc -3 А SLA6503 -6 А Collector current (Pulse) C (pulse) Base current lв -1 А Power dissipation Рτ 35 W Tj 150 Junction temperature °C Tstg -40 to +150 °C Storage temperature


■Electrical Characteristics

Part No.	Parameter	Symbol	Limits			Units	Conditions
Fait NO.	Falametei		min	typ	max	Units	Conditions
		lcc			40	mA	Vcc=42V, Vb=5.5V
	Supply current	ls			12.5	mA	Vs=12.5V
		lb			50	mA	V _b =5.5V
	Input current	liu-l, lil-l			1.6	mA	VIU=VIL=0.4V
SI-7502	Upper drive circuit drive current	lou-on	8		11	mA	Vb=5V, AIU to EIU pin open
01-7502	opper unve circuit unve current	lou-off			10	μΑ	Vb=5V
	Lower drive circuit voltage	Vol-on	Vs-1.5			V	Vb=5V, AIL to EIL pin open
	Lower drive circuit voltage	Vo∟-off			1.5	V	Vb=5V
	Oscillation frequency	F	20		30	kHz	Vb=5V
	Detection voltage	Vrs	0.8		1.05	V	Vb=5V, VREF pin open
	Gate threshold voltage	Vтн	2.0		4.0	V	Vbs=10V, Ib=250µ A
	Forward Transconductance	Re (yts)	2.2	3.3		S	VDS=10V, ID=5A
	DC ON-resistance	RDS (ON)		0.17	0.22	Ω	Vgs=10V, Id=5A
SLA5011	Input capacitance	Ciss		300		pF	Vps=25V, f=1.0MHz,Vgs=0V
	Output capacitance	Coss		160		pF	VDS-23V, 1-1.000112, V GS-0V
	Di forward voltage between source and drain	Vsd		1.1	1.5	V	Isd=5A
	Di reverse recovery time between source and drain	trr		150		ns	Isd=±100mA
	Collector cut-off current	Ісво			-10	μΑ	V _{CB} =-60V
SLA6503	Collector-emitter voltage	Vceo	-60			V	Ic=-10mA
3LA0505	DC current gain	hfe	2000				Vce=-4V, Ic=-3A
	Collector emitter saturation voltage	VCE (sat)			1.5	V	Ic=–3A, I₅=–6mA


Internal Block Diagram (Dotted Line)



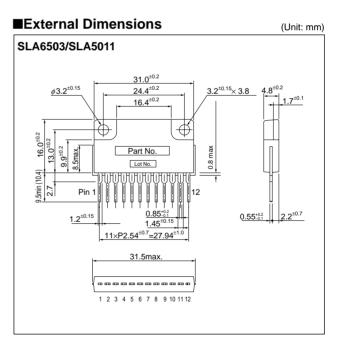

Equivalent Circuit Diagram

Diagram of Standard External Circuit

Application Notes

Determining the Output Current Io (Control Current)

The main factors that determine the output current are current sense resistor R_s , supply voltage V_b , and variable current resistor R_x .

(1) Normal mode

To operate a motor at the maximum current level, set Rx to infinity (open).

From Fig. A, when the maximum current ripple is designated as I_{OH} , its value will be,

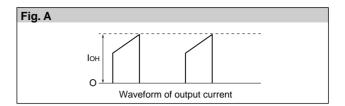
. Vrsh		
он=	 (1)	
Rs		

VRSH can be calculated as follows:

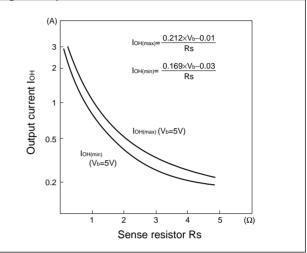
From equations (1) and (2), the output current I_{OH} can be calculated as follows:

$$I_{OH} = \frac{1}{R_s} (0.19 \times V_b \times -0.03)$$

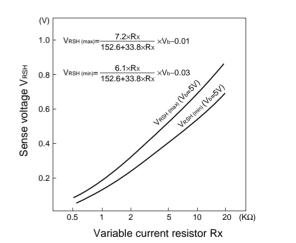
The relationship between I_{OH} and R_{S} is shown in Fig. B.


(2) Power down mode

When an external resistor R_x is connected, V_{RSH} changes as shown in Fig. C even when R_s is retained. Obtain a power down output current I_{OHPD} from Fig. C and equation (1).


■Relation between Output Current I₀ (Control Current) and Motor Winding Current I₀м

The SI-7502 uses the total current control system; therefore, the output current I₀ is different from the motor winding current. In a general pentagonal driving system, the current flows as shown in Figure D. The relation between I₀ and I_{0M} is as follows: I₀=4×I_{0M}


With some driving systems, the relation can also be as follows: $\ensuremath{\mathsf{lo=2\times\mathsf{Io}}}\xspace$

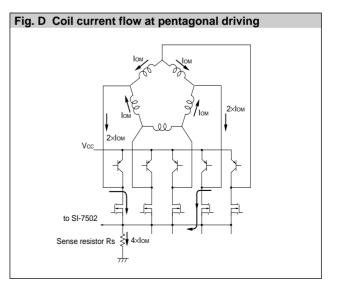
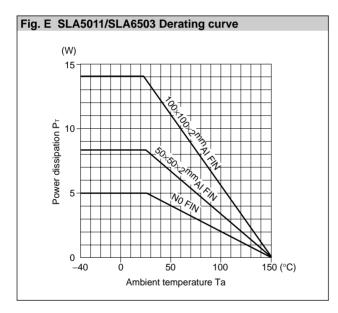


Fig. B Output current vs. Current sense resistor

Fig. C Sense voltage vs. Variable current resistor

■Motor Connection


The 5-phase stepper motor supports various driving systems and the motor connection varies depending on the driving system used.

Use of the motor with some driving systems may be restricted by patents. Therefore, be sure to ask the motor manufacturer about the motor connection and driving system to be used.

■Thermal design

The driver (SLA5011/SLA6503) dissipation varies depending on a driving system used even if the output currents (control current) are the same. Therefore, measure the temperature rise of the driver under the actual operating conditions to determine the size of the heatsink.

Figure E shows an SLA5011/SLA6503 derating curve. This derating curve indicates T_j =150°C; however, when using this device, allow sufficient margin when selecting a heatsink so that $T_c \le 100^{\circ}$ C (AI FIN temperature on the back of the SLA) is obtained.

SI-7502

■Handling Precautions

Refer to the product specifications.

Solvents- Do not use the following solvents:

Substances that can dissolve the package	Chlorine-based solvents: Trichloroethylene, Trichloroethane, etc. Aromatic hydrogen compounds: Benzene, Toluene, Xylene, etc. Keton and Acetone group solvents
Substances that can weaken the package	Gasoline, Benzine, Kerosene, etc.

List of Discontinued Products

■Discontinued Products

Part No.	Substitute
SI-7200E	-
SI-7201A	-
SI-7202A	-
SI-7230E	-
SI-7235E	-
SDK01M	SDK03M
SMA7022M	SMA7022MU
SLA7022M	SLA7022MU
SLA7027M	SLA7027MU

■Not for new design

Part No.	Substitute
SI-7115B	SLA7032M
SI-7300A	SLA7032M
SI-7330A	SLA7033M
SI-7200M	A2918SW
SI-7230M	_
SI-7500A	_

SanKen

SANKEN ELECTRIC COMPANY LTD.

1-11-1 Nishi -Ikebukuro,Toshima-ku, Tokyo PHONE: 03-3986-6164 FAX: 03-3986-8637 TELEX: 0272-2323(SANKEN J)

Overseas Sales Offices Asia

SANKEN ELECTRIC SINGAPORE PTE LTD.

150 Beach Road #14-03, The Gateway, West Singapore 0718, Singapore PHONE: 291-4755 FAX: 297-1744

SANKEN ELECTRIC HONG KONG COMPANY LTD.

1018 Ocean Centre, Canton Road, Kowloon, Hong Kong PHONE: 2735-5262 FAX: 2735-5494 TELEX: 45498 (SANKEN HX)

SANKEN ELECTRIC KOREA COMPANY LTD.

SK Life B/D 6F, 168 Kongduk-dong, Mapo-ku, Seoul, 121-705, Korea PHONE: 82-2-714-3700 FAX: 82-2-3272-2145

North America

ALLEGRO MICROSYSTEMS, INC.

115 Northeast Cutoff, Box 15036 Worcester, Massachusetts 01615, U.S.A. PHONE: (508)853-5000 FAX: (508)853-7861

Europe

ALLEGRO MICROSYSTEMS EUROPE LTD.

Balfour House, Churchfield Road, Walton-on-Thames, Surrey KT12 2TD, U.K. PHONE: 01932-253355 FAX: 01932-246622