MICROTHERM

Current and time based switch

Temperature limiter

Thermostat

Applications

- Household appliances
- Electronics
- Fan heaters
- Automotive industry

Benefits

- Highest safety by self hold types
- PCB terminals available
- Customized ratings
- Manual reset

Description

Series A switches are based on a complex system consisting of a contact spring unit and a thermo-bimetal snap-disc. When heating up to the fixed switching point, the contact opens and thus interrupts the power circuit.
They are very flexible to use: Due to the different types of reset and the adjustable current sensitivity for quick shutdowns, the A switches offer high quality solutions, especially in very specific safety concepts.
Temperature switch with automatic reset A10: After a certain cooling phase (temp. hysteresis) the contact switches back automatically.
Temperature limiter with manual reset A20: After opening the contacts and the subsequent cooling the contacts remain open until a manual reset is performed on the reset pin.
Temperature switch with electr. self-hold A30 (230V) / A40 (120V): After opening the contacts the switch is heated by a parallel connected resistor and thus kept open. The automatic reset is only performed through a mains disconnection, or off-switching of the device in which the temperature switch is installed.

Technical data

type ratings				control			
				$\begin{aligned} & \text { A10V } \\ & \text { A11V } \end{aligned}$	$\begin{aligned} & \mathrm{A} 20 \mathrm{~V} \\ & \mathrm{~A} 21 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { A30V } \\ & \text { A31V } \end{aligned}$	$\begin{aligned} & \mathrm{A} 40 \mathrm{~V} \\ & \mathrm{~A} 41 \mathrm{~V} \end{aligned}$
function				automatic	manual	self hold $230 \mathrm{~V}$	self hold 120 V
version				normally closed			
VDE	rated current at $50 / 60 \mathrm{~Hz}$ (power factor $0.95 / 0.6$)			16 A / 2.5 A (250 V)	16 A / 2.5 A (250 V)	$16 \mathrm{~A} / 2.5 \mathrm{~A}(230 \mathrm{~V})$	19.2 A / 2.5 A (120 V)
	switching cycles			10,000	1,000	10,000	8,000
	temperature range $\mathrm{T}_{\mathrm{A}}\left(\operatorname{steps}\right.$ in $5^{\circ} \mathrm{C}$)			$70^{\circ} \mathrm{C} . . .160^{\circ} \mathrm{C}$	$70^{\circ} \mathrm{C} . . .130^{\circ} \mathrm{C} / 140^{\circ} \mathrm{C}$	$70^{\circ} \mathrm{C} . . .160^{\circ} \mathrm{C}$	
UL	rated current at $50 / 60 \mathrm{~Hz}$ (power factor $1.0 / 0.75$)				16 A / 6.3 A (250 V)		16A/-(125V)
	switching cycles			6,000			
	temperature range T_{A} (steps in $5^{\circ} \mathrm{C}$)			$70^{\circ} \mathrm{C} . . .160^{\circ} \mathrm{C}$			
max. current at $250 \mathrm{~V} 50 / 60 \mathrm{~Hz}$ (power factor 0.95)				25 A			
switching cycles under max. current				200			
tolerance				standard: $\pm 5^{\circ} \mathrm{C}$			
feature of automatic action				1.B, 2.B	2.B	2.C.AK	
contact resistance				$<50 \mathrm{~m} \Omega$			
hysteresis / reset temperature ${ }^{\text {1) }}$				$30^{\circ} \mathrm{C} \pm 15^{\circ} \mathrm{C} /-$	$-/<-20^{\circ} \mathrm{C} ;-10^{\circ} \mathrm{C}$	$-/<-20^{\circ} \mathrm{C}^{2)}$	
suitable for use in protection class				I, II			
approvals		VDE / ENEC	OH/ ${ }^{10}$	EN 60730-1/-2-9			
		UL	Flo	UL 873			
		CSA	c	C22.2 No. $24{ }^{\text {3) }}$			
		CQC	(cac)	GB14536.1-1998 / GB14536.10-1996 ${ }^{\text {4) }}$			

For special applications version P is available with a very low self heating rate.
Manual reset: The maximum operating force must not exceed 6 N . The control should not be reset before the starting conditionsare reached, meaning there should be a satisfactory cooling down time!
Technical data on request.

Versions

TCO		illustration	drawing dimensions (mm)	technical specification	approvals
standard	current - time based ${ }^{1)}$				
A10V	A12V			base of thermosetting plastic	VDE, UL, CSA
$\begin{aligned} & \text { A11V } \\ & \text { A21V } \\ & \text { A31V } \\ & \text { A41V } \end{aligned}$	$\begin{aligned} & \text { A13V } \\ & \text { A23V } \\ & \text { A33V } \\ & \text { A43V } \end{aligned}$			screw-on fixing base of thermosetting plastic	VDE, UL, CSA
A20V	A22V			manual reset base of thermosetting plastic possible srew-on fixing dimensions see above	VDE, UL, CSA
$\begin{aligned} & \mathrm{A} 30 \mathrm{~V} \\ & \mathrm{~A} 40 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{A} 32 \mathrm{~V} \\ & \mathrm{~A} 42 \mathrm{~V} \end{aligned}$			voltage maintained PTC 120 V or 230 V base of thermosetting plastic possible screw-on fixing dimensions see above	VDE, UL, CSA

${ }^{1)}$ For current-time based types (execution D, J, K, L, M, P, R, V) the following information must be provided:

- GDC or AC voltage U_{N} in Volts.
- Continuous operating current IC in Amps at which the switch must not respond.
- Current level I_{0} in Amps at which the switch must respond and the response time t_{0} (in seconds \pm tolerance).
- Ambient temperatures which could be experienced both in normal operation and in switching conditions.
- Maximum current in Amps.

code	used in TCO	illustration	drawing dimensions (mm)	technical specification	approvals
standard	$\begin{aligned} & \text { A10, A11, A12, A13 } \\ & \text { A20, A21, A22, A23 } \\ & \text { A30, A31, A32, A33 } \\ & \text { A40, A41, A42, A43 } \end{aligned}$			terminals for soldering, screwing, riveting or weldingCuNi18Zn20 ${ }^{1)}$	VDE, UL, CSA
A321	$\begin{aligned} & \mathrm{A} 10, \mathrm{~A} 12 \\ & \mathrm{~A} 20, \mathrm{~A} 22 \\ & \mathrm{~A} 30, \mathrm{~A} 32 \\ & \mathrm{~A} 40, \mathrm{~A} 42 \end{aligned}$			SMD terminals CuNi18Zn20 ${ }^{1)}$	VDE, UL
A322	A10, A12 A20, A22 A30, A32 A40, A42			THT terminals CuNi18Zn20 1) Anschlüsse CuNi18Zn20 ${ }^{1)}$	VDE, UL

[^0]He

Current vs. self heating

Test conditions:
Measurement in air flow and lead wires of $1.5 \mathrm{~mm}^{2}$.

Ordering example

A 10	V	120	05	A321

Current vs. response time

TCO variations for current-time based applications.

Marking

A10V type and execution
D
12005
057

A12D
date of manufacture (May 2017)
country ($\mathrm{D}=$ Germany)
response temperature $\left(120^{\circ} \mathrm{C}\right)$, tolerance $\left(\pm 5^{\circ} \mathrm{C}\right)$
type and execution
country (H=China)
customized type with drawing number
date of manufacture (May 2017)

Microtherm GmbH

Täschenwaldstr. 3
75181 Pforzheim
Deutschland

Tel.: +49 7231 787-0
Fax: +497231 787-155
info@microtherm.de

www.microtherm.de

[^0]: ${ }^{1)} \mathrm{P}$ types have terminals of CuFe2P material

